【导语】下面是小编帮大家整理的数据管理制度(共19篇),希望对大家的学习与工作有所帮助。

篇1:数据管理制度
为规范对数据电脑的使用管理,保证中心数据计算机安全、高效地运行,加强对电脑资料与数据文件的保管、保密和电脑维护工作,特制定以下规定:
1、将数据电脑落实到责任人,数据电脑责任人负责设置进入电脑的密码和进入电脑文件的使用权限,负责人将要做好电脑数据的保密、保管和软硬件的维护工作,要定期或不定期的更换不同保密方法或密码口令。
2、使用权限规定,本数据电脑,使用前需向该电脑负责人报告并说明理由。同时该机只允许本部门人员使用,严禁外人或外部门人员使用本中心数据电脑。因工作原因需要使用的,必须经中心领导许可,方可使用。
3、在使用该机作心理测评时,需登记“数据机使用备案单”经批准,方可使用。测评过程中应由中心工作人员全程陪同并给予指导。
4、电脑操作人员要定期进行病毒库升级、补丁包更新,关闭不必要的端口。该机不能使用其他机子的存储介质(如MP3、U盘、移动硬盘等),并不允许联网(除需上传数据),为保证数据的安全,未经中心领导同意,任何人不得擅自删除、更改、拷贝、打印、输出各种保密数据和相关资料。
5、受测试人员需在老师的指导下使用,并听从中心老师相关安排。
6、受测试人员在做完测试后不得进行其他操作,应立即向老师报告并离开计算机,等待老师进行数据分析。
7、受测试人员有权知晓本人相关测试结果的解释,但要查看原始数据分析资料需经中心领导批准。
篇2:数据管理制度
一、为了提高我省工商行政管理机关电子政务应用水平,加强数据管理,明确数据传输、数据检查、数据库管理、数据安全工作的责任,制定本制度。
二、本制度所称数据传输是指我省各级工商行政管理机关对批量信息数据或规定信息数据的发送、接收过程;数据检查是指对要发送数据和已接收数据的正确性、完整性、逻辑性检查;数据库管理是指对本工商行政管理机关和所属下级工商行政管理机关数据库的管理;数据安全是指对于数据传输和数据库的信息安全管理。
三、各级工商行政管理机关信息中心(含信息化归口管理部门,以下简称信息中心)负责牵头实施数据管理,工商行政管理机关各工作部门应加强数据录入、数据更新工作,不断提高数据应用工作水平,配合做好相关数据管理和质量保证工作。
四、数据传输
(一)信息中心应落实各级工商行政管理机关网络维护人员,明确管理责任,每日对网络运行情况进行检查,如实记录网络运行日志,发现网络运行故障及时予以排除,确保工商行政管理网络通畅运行。网络运行日志应包括运行日期、各个端口运行状况、服务器工作状况、通信设备工作状况、故障处理排除情况、责任人员签名等内容。
(二)网络维护人员对要发送信息、数据应进行最后检查,对有缺、错、漏项的应要求录入部门进行补正,对违反网络安全有关规定或存在安全隐患的应拒绝发送。信息数据发送完成后,应及时通知接收方查收。
(三)接收方网络维护人员应及时对接收数据进行检查,发现数据益出、数据断点、接收失败应及时排除问题并通知发送方重新发送,确保数据库的完整。
(四)不经过网络维护人员处理的直报信息、数据,由发送部门和接收部门按照上述要求进行处理,网络维护人员应给予技术帮助。
(五)在启动应急预案时,网络维护人员应按照应急预案要求,确保网络畅通并及时发送、接收信息数据。
五、数据检查
(一)各级信息中心应按照《贵州省工商行政管理机关数据质量检查制度》规定的办法,定期或不定期组织数据质量检查,通过坚持不懈的开展这项工作,促进工商行政管理机关数据质量的不断提高。
(二)数据检查项目,应根据上级金信工程建设要求和本地开展电子政务建设的实际,针对存在的问题具体拟订。
(三)对于在数据检查中发现的数据质量问题,应在三个工作日内及时通报相关单位进行补正和重传,相关单位接到通报后,应在七个工作日内完成补正和重传工作,确因工作量大等原因,不能在七个工作日内完成的,应及时报告上级信息中心,并组织力量在最短时间内完成补正和上传工作。
(四)对于在检查中发现的擅自改变数据指标体系,擅自违反或扩大数据指标逻辑内涵进行处理的数据,应比照前款规定及时予以纠正和补传。
(五)各有关部门对于数据质量检查和补正上传工作应当积极配合,不得设置人为障碍或无故拖延。
六、数据库管理
(一)各级工商行政管理机关信息中心应指定专人负责对数据库的管理,数据库管理人员应明确管理职责,定时对数据库进行检查,检查情况应记入运行日志。
(二)数据库管理人员应视工作量情况,以不影响工作为原则,每1~5天进行一次数据备份。不得因数据备份不及时、不完整造成工作损失。
(三)数据库管理人员发现数据库不安全隐患或病毒威胁时,应采取措施加以预防或制止,必要时可以切断用户接入并向有关领导报告,安全隐患或病毒威胁消除后,应及时将切断用户接入。
(四)计算机使用人员应自觉接受数据库管理人员的监督,不得在非涉密计算机上录入、传输、查询、保存涉密信息数据,不得在非涉密计算机上安装、运行涉密程序、软件,不得使用非涉密计算机联接、访问涉密信息网络。未经许可,不得擅自下载、安装、使用与工作无关的程序、软件。
(五)数据库批量录入、查询必须做好书面记录,如实记载录入查询的时间、数量、录入查询人姓名等有关情况。
(六)数据库中的过期、冗余数据每半年进行一次清理,清理中发现需要删除的数据,应书面报省局信息中心,经核对批准后方能进行。未经正式批准,不得擅自删除数据。
(七)数据库上传和接收数据,按照本规定第四条办理。
七、各级信息中心应采取切实有效的措施,保证工商行政管理数据标准的贯彻执行。在应用中发现数据指标体系有不满足、不适应工作需要的问题,应及时书面报省局信息中心,由省局信息中心统一做出修改。不得擅自增加、减少或改变数据结构。
八、数据管理责任
(一)因违反上述规定导致工商行政管理机关行政许可出现过错的,按照国家有关规定和《贵州省工商行政管理机关行政许可过错责任追究暂行办法》追究有关人员的责任;因违反上述规定导致工商行政管理机关行政执法出现过错的,按照国家有关规定和《贵州省工商行政管理机关执法过错责任追究办法》追究有关人员的责任。
(二)因违反上述第四条第(二)款、第六条第(三)款、第(四)款规定,造成泄密的,依据国家安全保密和计算机安全管理有关规定追究有关人员的责任。构成犯罪的,移送司法机关追究刑事责任。
(三)除以上情形以外,如违反上述规定,视情况每次扣减该单位绩效分1~5分,个人责任的追究办法,由被扣分单位研究决定。
九、本规定适用于我省各级工商行政管理机关的各类信息数据管理。
十、本规定自公布之日起执行。
篇3:数据管理制度
第一章总则
第一条目的
为了确保公司信息系统的数据安全,使得在信息系统使用和维护过程中不会造成数据丢失和泄密,特制定本制度。
第二条适用范围
本制度适用于公司技术管理部及相关业务部门。
第三条管理对象
本制度管理的对象为公司各个信息系统系统管理员、数据库管理员和各个信息系统使用人员。
第二章数据安全管理
第四条数据备份要求
存放备份数据的介质必须具有明确的标识。备份数据必须异地存放,并明确落实异地备份数据的管理职责。
第五条数据物理安全
注意计算机重要信息资料和数据存储介质的存放、运输安全和保密管理,保证存储介质的物理安全。
第六条数据介质管理
任何非应用性业务数据的使用及存放数据的设备或介质的调拨、转让、废弃或销毁必须严格按照程序进行逐级审批,以保证备份数据安全完整。
第七条数据恢复要求
数据恢复前,必须对原环境的数据进行备份,防止有用数据的丢失。数据恢复过程中要严格按照数据恢复手册执行,出现问题时由技术部门进行现场技术支持。数据恢复后,必须进行验证、确认,确保数据恢复的完整性和可用性。
第八条数据清理规则
数据清理前必须对数据进行备份,在确认备份正确后方可进行清理操作。历次清理前的备份数据要根据备份策略进行定期保存或永久保存,并确保可以随时使用。数据清理的实施应避开业务高峰期,避免对联机业务运行造成影响。
第九条数据转存
需要长期保存的数据,数据管理部门需与相关部门制定转存方案,根据转存方案和查询使用方法要在介质有效期内进行转存,防止存储介质过期失效,通过有效的查询、使用方法保证数据的完整性和可用性。转存的数据必须有详细的文档记录。
第十条涉密数据设备管理
非本单位技术人员对本公司的设备、系统等进行维修、维护时,必须由本公司相关技术人员现场全程监督。计算机设备送外维修,须经设备管理机构负责人批准。送修前,需将设备存储介质内应用软件和数据等涉经营管理的信息备份后删除,并进行登记。对修复的设备,设备维修人员应对设备进行验收、病毒检测和登记。
第八条报废设备数据管理
管理部门应对报废设备中存有的程序、数据资料进行备份后清除,并妥善处理废弃无用的资料和介质,防止泄密。
第九条计算机病毒管理
运行维护部门需指定专人负责计算机病毒的防范工作,建立本单位的计算机病毒防治管理制度,经常进行计算机病毒检查,发现病毒及时清除。
第十条专用计算机管理
营业用计算机未经有关部门允许不准安装其它软件、不准使用来历不明的载体(包括软盘、光盘、移动硬盘等)。
第三章附则
第十一条本制度自20xx年6月1日起执行。
第十二条本制度由技术管理部负责制定、解释和修改。
篇4:数据管理制度
为规范备份管理工作,合理存储历史数据及保证数据的安全性,防止因硬件故障、意外断电、xx等因素造成数据的丢失,保障公司正常的知识产权利益和技术资料的储备,特制订本管理制度。
一。 所有服务器、交换机及其他系统主要设备均由企业管理部负责数据管理和备份。
二。 根据公司情景将数据分为一般数据和重要数据两种。一般数据主要指:个人或部门的各种信息及办公文档、电子邮件、人事档案、考勤管理、监控数据等。重要数据主要包括:财务数据、技术部门图纸、商务部标书、服务器数据等。
三。 一般数据由各部门每月自行备份,部门经理负责整理归档后刻盘,系统管理员每半年对一般数据资料进行选择性收集归档。
四。 重要数据由系统管理员负责,具体细则如下:
1。 财务部每月底将当月电子帐、表格等数据统一整理,系统管理员负责刻盘,由财务部保存。
2。 技术部门已定稿的图纸、商务部标书须在每月底前,由各部门的文件管理员上传至PDM系统,由系统管理员做备份保存。
3。 服务器的ERP、PDM、CRM等数据由系统管理员在硬盘做每日备份,并在每周六午时统一刻盘保存。
五。 当服务器、交换机及其他系统主要设备配置更新变动,以及服务器应用系统、软件修改后均要在改动当天进行备份。
六。 备份数据所使用的刻录机、光盘均由系统管理员保存,当刻录机故障或光盘不足时应及时联系维修或购买,确保备份工作的正常进行。
七。 所有数据备份工作由系统管理员进行详实记录,并建立档案。
八。 如遇网络攻击或xx感染等突发事件,各部门应进取配合系统管理员进行处理,同时将团体情景记录到备份档案中。
九。 各部门负责人应严格执行公司规定,如发现不及时上传资料、故意隐瞒资料或没有及时执行备份任务的,将进行严肃处理。
篇5:数据管理制度
第一章 总 则
第一条 为适应集团信息化发展要求,充分利用数据资源为生产、经营、管理和决策服务,保证各类信息合理、有序流动和信息安全,确保集团信息化建设快速协调有序安全发展,根据国家有关法律法规以及《集团信息安全管理办法》(中平??188号)、等规定,特制定本管理办法。
第二条 本办法适用于集团各职能部室,直属和特设机构、专业化公司、事业部、区域公司及其所属各单位(以下简称各单位)。
第二章 管理范围
第三条 本办法管理范围包括:各单位与生产、经营、办公、安全等相关的应用系统和数据,以及为其供给支撑的基础设施资源、计算存储资源和办公终端资源等。
第三章 组织机构和工作机制
第四条 集团信息化领导小组是集团数据资源管理体系的最高层,负责审定集团有关数据资源管理的规章、制度、办法,负责审核有关标准、规范、重要需求等。集团信息化领导小组办公室(以下简称集团信息办)负责集团数据管理的监督、检查和考核,指导集团数据管理工作,查处危害集团数据安全的事件。各单位负责本单位数据的采集、传输、使用、安防、备份等管理
工作。中国平煤神马集团平顶山信息通信技术开发公司(以下简称信通公司)作为技术支撑及运维部门,负责集团数据中心的运维和运营工作。
第四章 数据分级管理
第五条 根据数据在生产、经营和管理中的重要性,结合有关保密规定,按照集团级应用系统和数据、厂矿级应用系统和数据、区队(车间)级应用系统和数据分别制定管理标准。
第六条 集团级应用系统和数据,技术管理由集团信息办负责,业务管理由相关业务处室负责,运维管理由信通公司负责。厂矿级应用系统和数据由各单位信息管理部门管理,集团需要利用的管理数据和生产数据要同步上传到集团数据中心。区队(车间)级应用系统和数据由各单位信息管理部门管理和维护。
数据管理制度范文 数据管理制度怎样写
第五章 数据标准管理
第七条 集团信息办负责集团数据编码和接口标准的统一规划和标准制定,负责对集团及各单位应用系统的数据标准管理进行引导和考核。各单位新建应用系统应严格执行集团下发的数据编码和接口标准,在用应用系统应根据自身实际逐步按照集团标准进行完善。
第八条 数据编码和接口标准应贴合以下要求:
(一)数据编码应能够保证同一个对象编码的唯一性及上下游管理规范的一致性;
(二)接口应实现对外部系统的接入供给企业级的支持,在系统的高并发和大容量的基础上供给安全可靠的接入;
(三)供给完善的数据安全机制,以实现对数据的全面保护,保证系统的正常运行,防止很多访问,以及很多占用资源的情景发生,保证系统的健壮性;
(四)供给有效的系统可监控机制,使得接口的运行情景可监控,便于及时发现错误并排除故障;
(五)保证在充分利用系统资源的前提下,实现系统平滑的移植和扩展,同时在系统并发增加时供给系统资源的动态扩展,以保证系统的稳定性;
(六)在进行扩容、新业务扩展时,应能供给快速、方便和准确的实现方式。
第六章 数据资源管理
第九条 基础设施资源集中管理。为了避免信息机房等基础设施资源重复投资建设,造成资金浪费、设施利用率低等问题,各单位应充分利用集团数据中心资源,集团信息办负责统一协调集团及各单位的基础设施资源。
(一)各单位未经集团批准不得私自新建、改建、扩建信息机房。
(二)集团数据中心要按照《集团机房建设技术规范》建设,满足各单位应用系统及数据统一到集团数据中心所需的各项使用要求。
(三)各单位现有机房自行管理、统一管控。各级信息管理部门作为主要职责部门,要保证信息机房各项运行指标到达集团要求。
第十条 计算存储资源集中管理。为了消除“信息孤岛”,实现集团数据共享和集成,提升数据安全防护等级,各单位所需计算和存储资源,要统一使用集团数据中心的云计算资源,做到资源集中、高效利用。
(一)现有的集团级应用系统及数据(安全监测系统除外)、各单位应用系统及数据(直接用于生产安全、自动化控制和监测监控的系统除外)要按照在用服务器、存储的服务年限和系统生命周期科学制定迁移到集团数据中心的计划和方案,并报集团信息办批准后实施。
(二)新建应用系统原则上不再购臵新的服务器和存储,所需计算和存储资源应使用集团数据中心的云计算资源。各单位如有特殊生产要求,确需购臵服务器或存储的,需报请集团领导批准,由集团信息办备案后,按集团采购管理相关规定执行。
(三)对于当前集团网络不具备实施条件的单位,可向集团提出申请建设集团区域性数据分中心,并根据建设进度制定应用系统和数据迁移计划。集团区域性数据分中心建成后,新建系统需要集中部署、分级管理。
第十一条 办公终端资源集中管理。为了提高办公效率、降低办公成本、实现节能降耗,集团级应用系统要统一使用集团数据中心云桌面,并在厂矿和区队(车间)级应用系统中逐步实现全面使用。
(一)各单位新建系统所需计算机和新增办公用计算机要使用集团数据中心云桌面。
(二)原有集团推广的应用系统所使用的计算机,以及各单位在用的计算机,分别由应用系统主管部门和各单位按年度提出云桌面更换计划,逐步完成云桌面更换工作;集团信息办负责协调和监督。
(三)各单位申请云桌面使用,应与信通公司签订租用协议,由信通公司负责云桌面运维,各单位信息管理部门负责本单位云桌面管理。
(四)对于当前集团网络不具备实施云桌面替换条件的单位,应协同集团相关部门接入集团网络或建设集团区域性数据分中心。在网络接入后或集团区域性数据分中心建成后,按计划完成云桌面的部署工作。
第十二条 各单位使用资源应按集团规定支付相关费用。
第七章 数据分析管理
第十三条 数据分析是采取科学合理的方法,利用现代信息技术手段,对计算机应用系统生成的数据进行分析,充分发掘数据中蕴涵的信息,用数据描述现状,预测趋势,规范生产行为,优化管理流程,加强经营监管,供给决策支持。
第十四条 集团信息化领导小组应加强对各单位数据分析的指导,鼓励各单位结合自身实际,充分利用“大数据”技术,自行组织开发业务选题和数据模型,组织经验交流,提高分析水平。集团信息办要做好数据分析引导和管理工作,为集团安全生产、经营管理工作服务。基层各单位要充分挖掘和利用现有数据资源,不断探索和创新数据分析方法,规范数据分析程序,提高数据分析质量,做好本单位各项应用的数据分析工作。
第十五条 集团级数据分析、处室级数据分析和厂矿级数据分析分别由集团信息办、相关业务处室和各基层单位负责策划和实施,集团信息化领导小组负责监督和考核。
第八章 数据应用管理
第十六条 数据应用是指利用数据分析的成果,查找存在问题,开展业务运转状况评估,提出改善措施,提高管理水平,规避管理风险。
第十七条 各级信息管理部门应加强数据应用。集团信息办负责代表集团对各单位以及单位之间数据共享应用的统一规划并制定标准。各单位要严格按部门、按层级落实数据应用工作,对数据进行科学统计、分析、挖掘和应用,为各级领导决策供给依据。
第九章 数据安全管理 第十八条 各级信息管理部门应建立数据安全管理制度及相关措施,主要包括:数据访问的身份验证、权限管理及数据的加密、保密、日志管理、网络安全、容灾备份等。
第十九条 为统一规范操作权限,各单位应明确工作人员的录入权限、访问权限及维护权限的管理部门,任何人不得擅自设立、变更和注销。
第二十条 各级信息管理部门要指定专人负责系统数据及介质资料的安全管理工作。要加强数据库的安全管理,制定和明确管理员用户和数据查询用户的操作权限及规程。
第二十一条 对数据的各项操作至少要建立运行日志,严格监控操作过程,对发现的数据安全问题,要及时处理和上报。管理员应掌握和运用数据库访问审计技术,实现对数据库操作的监测和追溯。
第二十二条 各级信息管理部门要加强用户身份验证管理、网络安全管理,采取严格措施,做好计算机xx的预防、检测、清除工作,建立针对网络攻击的防范措施,保证数据传输和存储安全。
第二十三条 各级信息管理部门要加强数据的容灾备份工作,建立数据容灾备份机制,保障系统应急恢复和数据溯源。重要数据要上传至集团数据中心备份。
第十章 附 则
第二十四条 本办法解释权归集团。
第二十五条 本办法自本文印发之日起执行。
篇6:数据管理制度
第一章 总则
第一条为加强用户基础资源信息的管理,保证测量室机线系统资源数据的完整、准确、规范、安全,特制定本管理规定。
第二条 本规定适用于公司测量专业的日常装机、拆机、移机、改线、变更服务性能、工程配合等相关基础数据变更的管理。
第三条 本管理规定自发布之日起执行,已下发的测量专业各项规定与本规定有冲突之处,应以本规定为准,本管理规定的解释权和修改权在公司网运部。
第二章 基础数据管理规定
第四条 机线系统资料数据的录入、修改必须由测量室A级权限专人操作,系统具体操作人员应切实做好用户帐号名及密码的保密工作,不得向无关人员公开密码。一人一帐号,每人以自我的帐号登录进行操作。对引起资源数据丢失、错误等职责的追究,以记录在操作日志中的登录帐号为准。
第五条 测量室其他人员或工程施工单位人员不得对系统数据进行录入和修改。
第六条 测量人员必须严格按数据规范资料录入机线资料。
1、普通用户及ISDN用户录入:用户基础信息、设备号资料、局列资料、交接箱资料、分电资料。
2、ADSL用户录入:用户基础信息、设备号资料、ADSL相关资料、DSLAM端口资料、总配线架内板资料、总配线架外板资料、局列资料、交接箱资料、分电资料。
3、小灵通基站录入:用户基础信息、设备号资料、基站编号、网管编号、局列资料、交接箱资料、分电资料。
4、小交换机用户录入:用户基础信息、设备号资料、引示号资料、测试号资料,局列资料、交接箱资料、分电资料。
5、专线用户录入:局列资料、交接箱资料、分电资料。(fwsir)(同时填写专线用户卡片及专线顺号本)
第七条 对于新增用户类型或服务性能由网运部负责组织编写相
应的数据规范,由运营服务支撑中心在系统中予以完善,以解决一线人员录入需求。
第八条 测量员原则对无工单施工不予配合,特急情景无施工工单的,必须有有关处室批文及分公司主管局长的签字方可配合,待正式工单下发及时将相关数据录入系统。
第九条 测量室竖列资源的管理。
1、测量员严格按配线架包列维护资料对竖列资源进行管理,根据包列维护周期完成所有配线架大列的核帐工作。
2、测量班长每月对班组人员所包竖列帐、实相符情景进行检查,每列核实两块保安接线排,帐、实准确率100%。
3、在对线路调区、割接、改线工程验收时,要求测量员按工程队提交的`配线表资料在配线架竖列与工程人员共同进行号码核实,必须保证工程资料的准确率到达100%。
4、杜绝拆机不拆线。
5、测量员配合外线人员障改局线时,改线后按规定时限在系统中录入新局线位置并标注原局线线对的故障类型。(故障类型分类及标识:FD-断线、FE-地气、FSC-小混线、FC-混线、FMC-串电、FR-串音、FN-杂音、FINS-绝缘不良)
第十条 交接箱配线资料的管理
1、测量员配合外线人员装、拆、移改工作中,对经过交接箱到分电的线路必须要求外线人员供给交接箱配线资料,对无配线资料的报竣不予配合。
2、测量员在工程验收中发现工程资料不准;配线资料不全或出现重帐现象必须责成施工人员重新核查。
3、测量员在日常维护工作中发现配线资料短缺或重帐的现象应
先做记录,待外线人员到交接箱时配合查找核实并及时录入系统。
4、测量员配合外线人员障改配线时,改线后按规定时限在系统中录入新配线位置并标注原配线线对的故障类型。(故障类型分类及标识同第八条中第5项)。
第三章 基础数据变更时限规定
第十一条 测量室内当日发生的装机、拆机、移机、更改设备(含障碍改线)位置机线资料的录入时限≤24小时。
第十二条 测量室内当日发生的改名、过户、增、删、改服务性能机线资料的录入时限≤48小时。
第十三条 测量室工程调区、割接、改线资料增、删、改录入时限≤72小时。
时限说明:测量员从接到施工人员供给的已验收过的配线表(局、配线资料准确率应到达100%)至相关工程资料全部录入时止的时限≤72小时,在此期间发生的相关资料信息变动由测量室工程配合人员负责在配线表中填写资料变动情景。
第十四条 测量室竖列机线资料帐、实相符率100%。
第十五条 交接箱配线,机线资料帐、实相符率≥98%
第四章 基础数据分级核查管理规定
第十六条 经过测量员自查——测量室班长核查——各分公司
管理人员检查——网运部定期抽查的分级检查方式确保用户机线资料准确。
第十七条 测量室资料录入人员负责对当日内发生的数据增、删、改情景进行核实确认。
第十八条 测量班长每周对本测量室内发生的资料增、删、改情
况进行全面核查,确认无误后将相关资料留存(施工单及相关帐改依据表格保存期限为一年)。
第十九条 测量班长每月对本测量室内发生的工程资料进行全面抽查,确认无误后将相关配线表资料留存(保存期限为一年)。
第二十条 分公司专业管理人员每月对本分公司内各端局的机
线资料增、删、改情景进行检查,一个端局检查一列,帐、实相符率100%。
第二十一条 公司网运部不定期对各分公司测量室的机线资料
增、删、改情景进行抽查,每次抽查一列,帐、实相符率100%。
第五章 其他管理要求
第二十二条 测量员在配合外线人员施工中,根据施工者供给的交接箱号,分配相应的交接箱局、配线位置,同时在相应的设备位置作预占处理,避免资源的重复占用。
第二十三条 测量员在与外线人员进行各类配合工作中,对发现的线路故障,测量员应及时在机线系统中录入线对的障碍类型。
篇7:数据管理制度
一、为了提高我省工商行政管理机关电子政务应用水平,加强数据管理,明确数据传输、数据检查、数据库管理、数据安全工作的职责,制定本制度。
二、本制度所称数据传输是指我省各级工商行政管理机关对批量信息数据或规定信息数据的发送、接收过程;数据检查是指对要发送数据和已接收数据的正确性、完整性、逻辑性检查;数据库管理是指对本工商行政管理机关和所属下级工商行政管理机关数据库的管理;数据安全是指对于数据传输和数据库的信息安全管理。
三、各级工商行政管理机关信息中心(含信息化归口管理部门,以下简称信息中心)负责牵头实施数据管理,工商行政管理机关各工作部门应加强数据录入、数据更新工作,不断提高数据应用工作水平,配合做好相关数据管理和质量保证工作。
四、数据传输
(一)信息中心应落实各级工商行政管理机关网络维护人员,明确管理职责,每日对网络运行情景进行检查,如实记录网络运行日志,发现网络运行故障及时予以排除,确保工商行政管理网络通畅运行。网络运行日志应包括运行日期、各个端口运行状况、服务器工作状况、通信设备工作状况、故障处理排除情景、职责人员签名等资料。
(二)网络维护人员对要发送信息、数据应进行最终检查,对有缺、错、漏项的应要求录入部门进行补正,对违反网络安全有关规定或存在安全隐患的应拒绝发送。信息数据发送完成后,应及时通知接收方查收。
(三)接收方网络维护人员应及时对接收数据进行检查,发现数据益出、数据断点、接收失败应及时排除问题并通知发送方重新发送,确保数据库的完整。
(四)不经过网络维护人员处理的直报信息、数据,由发送部门和接收部门按照上述要求进行处理,网络维护人员应给予技术帮忙。
(五)在启动应急预案时,网络维护人员应按照应急预案要求,确保网络畅通并及时发送、接收信息数据。
五、数据检查
(一)各级信息中心应按照《贵州省工商行政管理机关数据质量检查制度》规定的办法,定期或不定期组织数据质量检查,经过坚持不懈的开展这项工作,促进工商行政管理机关数据质量的不断提高。
(二)数据检查项目,应根据上级金信工程建设要求和本地开展电子政务建设的实际,针对存在的问题具体拟订。
(三)对于在数据检查中发现的数据质量问题,应在三个工作日内及时通报相关单位进行补正和重传,相关单位接到通报后,应在七个工作日内完成补正和重传工作,确因工作量大等原因,不能在七个工作日内完成的,应及时报告上级信息中心,并组织力量在最短时光内完成补正和上传工作。
(四)对于在检查中发现的擅自改变数据指标体系,擅自违反或扩大数据指标逻辑内涵进行处理的数据,应比照前款规定及时予以纠正和补传。
(五)各有关部门对于数据质量检查和补正上传工作应当进取配合,不得设置人为障碍或无故拖延。
六、数据库管理
(一)各级工商行政管理机关信息中心应指定专人负责对数据库的管理,数据库管理人员应明确管理职责,定时对数据库进行检查,检查情景应记入运行日志。
(二)数据库管理人员应视工作量情景,以不影响工作为原则,每1~5天进行一次数据备份。不得因数据备份不及时、不完整造成工作损失。
(三)数据库管理人员发现数据库不安全隐患或xx威胁时,应采取措施加以预防或制止,必要时能够切断用户接入并向有关领导报告,安全隐患或xx威胁消除后,应及时将切断用户接入。
(四)计算机使用人员应自觉理解数据库管理人员的监督,不得在非涉密计算机上录入、传输、查询、保存涉密信息数据,不得在非涉密计算机上安装、运行涉密程序、软件,不得使用非涉密计算机联接、访问涉密信息网络。未经许可,不得擅自下载、安装、使用与工作无关的程序、软件。
(五)数据库批量录入、查询必须做好书面记录,如实记载录入查询的时光、数量、录入查询人姓名等有关情景。
(六)数据库中的过期、冗余数据每半年进行一次清理,清理中发现需要删除的数据,应书面报省局信息中心,经核对批准后方能进行。未经正式批准,不得擅自删除数据。
(七)数据库上传和接收数据,按照本规定第四条办理。
七、各级信息中心应采取切实有效的措施,保证工商行政管理数据标准的贯彻执行。在应用中发现数据指标体系有不满足、不适应工作需要的问题,应及时书面报省局信息中心,由省局信息中心统一做出修改。不得擅自增加、减少或改变数据结构。
八、数据管理职责
(一)因违反上述规定导致工商行政管理机关行政许可出现过错的,按照国家有关规定和《贵州省工商行政管理机关行政许可过错职责追究暂行办法》追究有关人员的职责;因违反上述规定导致工商行政管理机关行政执法出现过错的,按照国家有关规定和《贵州省工商行政管理机关执法过错职责追究办法》追究有关人员的职责。
(二)因违反上述第四条第(二)款、第六条第(三)款、第(四)款规定,造成泄密的,依据国家安全保密和计算机安全管理有关规定追究有关人员的职责。构成犯罪的,移送司法机关追究刑事职责。
(三)除以上情形以外,如违反上述规定,视情景每次扣减该单位绩效分1~5分,个人职责的追究办法,由被扣分单位研究决定。
九、本规定适用于我省各级工商行政管理机关的各类信息数据管理。
十、本规定自公布之日起执行。
篇8:数据管理制度
第一章 总则
1。1 目的
为规范公司数据备份及管理工作,合理存储历史数据及保证数据的安全性,防止因硬件故障、意外断电、xx等因素造成数据的丢失,保障公司正常的数据和技术资料的储备,物制订本管理制度。
2、适用范围
公司各部门有电脑使用权限的员工
第二章 备份制度和要求
2。1 根据公司情景备份的数据分为一般数据和重要数据两种: 一般数据主要指:个人或部门的各种信息及办公文档、电子邮件、人事档案、考勤管理、监控数据等;
重要数据主要包括:财务数据、服务器数据等;
2。2 各部门各岗位人员把电脑内的不可外泄的数据进行加密,设置10位以上的密码,密码3个月要进行更换;
2。3 除临时的文件外,其他文件要用文件夹的形式分类存放,即先建立好文件夹,然后把相应的文件放到不一样的文件夹中;
2。4 网络管理员将在服务器上为每个有电脑的员工建立文件夹,并分配用户名和密码(每人都有自我的用户名和密码),员工在自我电脑上经过网络,输入自我用户名和密码即可看到属于自我的文件夹,打开此文件夹后把自我电脑内整理出的文件夹全部拷贝到此文件中,拷贝的周期是每周至少一次;
2。5 各部门负责人应严格执行公司规定,如发现不及时上传资料、故意隐瞒资料等,将进行严肃处理;
2。6 网络管理员会抽查员工备份数据的日期,如发现一周以上未上传数据将进行警告,一个月未上传数据的将进行问责; 网络管理员把员工上传的数据进行备份,备份到另外介质,如硬盘、移动硬盘、光盘等;
2。7 系统工程师负责ERP、OA数据的每日备份,备份数据的副本会保存到安全介质中;
附则:
本制度的解释权归信息部。如有未尽事宜,报请公司总经理后执行。
篇9:数据管理制度
为规范对数据电脑的使用管理,保证中心数据计算机安全、高效地运行,加强对电脑资料与数据文件的保管、保密和电脑维护工作,特制定以下规定:
1、将数据电脑落实到职责人,数据电脑职责人负责设置进入电脑的密码和进入电脑文件的使用权限,负责人将要做好电脑数据的保密、保管和软硬件的维护工作,要定期或不定期的更换不一样保密方法或密码口令。
2、使用权限规定,本数据电脑,使用前需向该电脑负责人报告并说明理由。同时该机只允许本部门人员使用,严禁外人或外部门人员使用本中心数据电脑。因工作原因需要使用的,必须经中心领导许可,方可使用。
3、在使用该机作心理测评时,需登记“数据机使用备案单”经批准,方可使用。测评过程中应由中心工作人员全程陪同并给予指导。
4、电脑操作人员要定期进行xx库升级、补丁包更新,关掉不必要的端口。该机不能使用其他机子的存储介质(如MP3、U盘、移动硬盘等),并不允许联网(除需上传数据),为保证数据的安全,未经中心领导同意,任何人不得擅自删除、更改、拷贝、打印、输出各种保密数据和相关资料。
5、受测试人员需在教师的指导下使用,并听从中心教师相关安排。
6、受测试人员在做完测试后不得进行其他操作,应立即向教师报告并离开计算机,等待教师进行数据分析。
7、受测试人员有权知晓本人相关测试结果的解释,但要查看原始数据分析资料需经中心领导批准。
篇10:数据安全管理制度
一.目的
1.1为了提高公司网络系统的安全性,最大限度的防止资料流失。特制定本规定
二.范围
2.1电子文档向外发送时遵循此规定。
三.定义
3.1向外发送的数据:包括对外光盘的刻录,因工作需要向外发送的电子文件及通过其它途径传递的资料。
3.2有效数据:指工作所需的和各种文档,不包括音乐、影视、生活图片或其它与工作无关的文件。
四.权责
4.1计算机使用:各部门经(副)理指定人员;
4.2数据安全监管:人力资源部指定之人员;
五.作业内容
5.1所有申请使用电脑办公的同事需经过人力资源部网络中心的相关培训,培训日期按年度培训计划执行。考核合格后,网络中心分配相应的电脑使用权限,准许使用电脑办公。
5.2人力资源部根据办公系统的使用情况,将不定期的组织临时性的专项培训。
5.3公司对外的电子文档输出由人力资源部负责。包括刻录光盘,向外发送文件等。所有部门如有上述需要,请填写统一的<<申请单>>,经部门经理或直接上级审批后,由人力资源部相关岗位处理。申请单>
5.4电子邮件的使用由操作员自己负责。网络中心在总经理同意后,有权在不发布公告时对电子邮件系统进行监控。
5.5除总经理批准或有特殊用途的电脑外,锁定所有电脑的USB接口,拆除或禁用软驱、光驱。
5.6除人力资源部指定岗位外,所有电脑禁止安装刻录机或相关设备。
5.7除签订<<资料保密协议>>的同事外,未经事业部总经理同意,不得使用U盘、移动硬盘等设备,一经发现,立即没收。并记小过一次。资料保密协议>
5.8未经允许,员工不应将不属于公司的电脑整机或配件带入公司使用,也不允许接入公司网络系统。违者记大过一次。并对其设备进行检查,确认后归还给当事人。
5.9所有的电脑操作员最多每6天向服务器备份一次有效数据。人力资源部指定岗位每月3日前必须将所有数据备份到光盘存档。具体备份方式另行通知。
5.10在公司办公场所内需上网的同事请按正常程序申请,在学习公司的<
5.11在公司范围内不允许启用笔记本电脑自带的无线网卡。以避免对网络系统造成电磁干扰。
5.12员工应有相当强的保密意识,不允许将公司资料以任何形式发布到Internet上。一经发现,报总经办处理。并且公司保留送交公安机关的权利。
篇11:简单的数据
教学目标
1.使学生会进行简单的数据整理,能把整理的数据填入统计表.
2.使学生能根据统计表或条形统计图回答简单的问题.培养学生整理数据的能力以及根据统计表、统计图进行数据分析的能力.
教学重点
使学生初步认识统计表和条形统计图,能根据统计表或统计图回答简单问题.
教学难点
能把不完整的统计表和条形统计图补充完整.
教学步骤
一、铺垫孕伏.
“你家有几口人?”
“我们班有多少学生?其中多少男生?多少女生”?
这些问题太简单了,通过数数就可以实现.但全市有多少人?全国有多少人?是怎样知道的呢?今天我们就共同了解一下“简单的数据整理”(板书).
二、探究新知.
1.教学统计表.
出示例1.学生住家的分布挂图(例1图).
教师指出:这张图是调查了四年级某班学生居住情况后制成的,通过这张图,一眼就可看出哪条街巷有这班学生.
2.老师进一步引导:每条街巷住了多少同学?哪条街巷的人多?最多的比最少的多几个?全班共多少同学?这时如果只看图,要准确回答以上几个问题,很不容易.
组织学生讨论,怎样做能使回答方便?(将各街人数分别记录下来)
我们可以用画表的方法进行整理.出示下表
街巷名称
学生人数
教师指出:第一栏不填写具体街巷名称,一般留做合计(一共多少人).
3.老师先带领学生填写两个街巷的数据,再让学生在其他街巷对应地方填写数据.然后将一共多少人.在合计栏中填写,形成完整的统计表.指出这样的表叫统计表.
街巷名称
合计
和平一巷
和平二巷
胜利一巷
胜利二巷
东大街
学生人数
41
7
8
6
9
11
4.组织学生根据表回答问题:
哪条街巷住的人最多,是多少?
哪条街巷住的人最少,是多少?
全班共多少人?
5.教学条形统计图.
为更加形象直观地表示数据的多少,常用条形统计图来表示.出示画有小方格的小黑板,说明:每一格代表一个人,有几个人,就用几个小格表示,并把这几个小格涂上色.
6.老师先在纵向上注明人数0,5,10(单位:人),再在横向上标明街巷名称,然后根据学生口述,老师在相应地方涂色,制成条形统计图.
7.看条形统计图,回答:住和平一巷的比住胜利二巷的少几个人.
8.反馈练习:
下图中是同学投垒球的成绩.
姓名
小芳
小丽
小玉
小红
小梅
成绩
14米
16米12米
18米
15米
(1)左图每格代表多少米?
(2)用图表示每人的成绩.
(3)谁投的最远?
(4)谁投的最近?
带领学生完成表示小芳的成绩的长方形条.其他人的成绩,要求同学们在书中填空完成,并集体订正.
三、巩固发展.
1.四年级一班同学,每人从家里带来一本课外书,办起小小图书室.共有连环画13本,故事书15本,科技书6本,其他书5本.把书的本数分别填在下面的统计表里.
种类
合计
连环画
故事书
科技书
其他
数量(本)
同学们一共拿来了多少本书?根据本数制成条形图,画在下面的方格图上.
回答下面问题:
(1)一个格代表多少本?
(2)哪种书最多?哪种书最少?
(3)科技书比连环画少多少本?
(4)故事书是其他书的几倍?
教师引导学生分组完成.重点引导:合计栏应该怎样填写?学生分组完成时,可以互相讨论研究.教师巡视时重点辅导学习有困难的`学生.
2.马拉松比赛的路程是42千米195米.一名运动员用2小时25分跑完全程.这名运动员平均每分钟跑多少米?
提示:先统一单位,利用此题复习“平均”的含义,为下节课学习“求平均数”做铺垫.
四、课堂小结.
引导学生总结,怎样整理数据,怎样填写统计表、统计图.用统计表、统计图进行数据整理有什么好处?(可以用统计表和统计图来整理数据.好处是清淅,直观)
五、布置作业 .
活动性作业 :调查一下四年级各班的人数,填入下面统计表.
班 别
合计
一班
二班
三班
人 数
(1)哪个班人数最多?
(2)二班和三班比,哪个班人数多?多多少?
板书设计
探究活动
小小采购员
活动目的
1.通过让学生小组活动,培养学生的交流、合作意识.
2.通过让学生实地调查等方式了解物价,提高学生收集数据、获取信息的实践能力.
3.进一步巩固乘法的计算、“单价×数量=总价”的数量关系等数学知识.
活动准备
结合班级开联欢会采购物品,设计一个购物清单.(下图可供学生参考)
物 品
单 价
数 量
总 价
苹果
3元
2千克
6元
香蕉
钢笔
日记本
……
总价
―――
―――
活动过程
1.将全班学生分成若干个小组.
2.对学生可以做出提示:
(1)在活动前,要确定需买些什么物品,买多少,为什么要买这么多,要了解各种物品的单价,计算出一共要花多少钱,手里有多少钱,够不够,等等.
(2)在活动中,怎样知道每种物品的单价,怎样能清楚、快捷地做出预算,小组内成员的意见如何统一,等等.
篇12:《大数据》读后感
《大数据》读后感
《大数据》读后感现代社会是一个技术奔腾、信息爆炸的社会,大数据这个新概念一出现就受到了人们极大的热捧。每天都身处网络的信息海洋中,常常会有被数据、信息“淹没”的窒息感和无力感。涂子沛的《大数据》一书,通过讲述美国半个多世纪信息开放、技术创新的历史,以别开生面的经典案例――奥巴马建设“前所未有的开放政府”的雄心、公共财政透明的曲折、背后的隐情、全民医改法案的波澜、统一身份证的百年纠结、街头警察的创新传奇、美国矿难的悲情历史、商务智能的前世今生、数据开放运动的全球兴起,以及云计算、Facebook和推特等社交媒体、Web3.0与下一代互联网的未来图景等等,详细诠释了数据技术变革与权力合法性、执政正义以及公民社会之间的关系。全面阐述了信息时代数据的重要性,如何加强数据的收集、分析和使用以及通过数据开放改进政府治理等问题。这本书给了我一个全新的阅读主题,让我感受到了作为一名教师必须拥有但却正是我们目前缺乏的两种态度。
目前,人类已进入信息社会。人类文明已处于信息时代,人们在因特网上传和下载数据,传统的台式电脑上网更新成了移动终端浏览和传播信息。QQ、微信等通讯软件已然实现手机版,人人、微博、脸谱能够分享即刻心情,电讯服务商正大张旗鼓地争夺客户资源,网络通讯商也大力渲染云服务和大数据时代。不管你愿不愿意,我们已经处在大数据时代。如何在新的时代争取话语权,如何在新的时代维护自身权益,如何在新的时代实现利益最大化,必将成为这个时代中每个国家,甚至每个公民应当思考并付诸实践的重大问题。
一、从美国的发展看美国发展的不足。美国,世界最大的发达国家,借助其自身的优势,已然处于信息时代的领头羊位置。到底是什么原因使得这个建国才两百多年的年轻国家具备如此强大的实力和创新的活力呢?他们具备什么优势?他们成功的秘诀是什么?结合书中分析和历史实践不难得出:适合自身的体制制度、法律、科技、人才、监督是这个年轻国家领跑世界的关键因素。
首先、美国结合本国实际选择“三权分立”的体制制度。政府执法、法院司法、国会立法。政府首脑总统可以提名法官,法院可以宣布总统行为违宪;总统能够否决国会的立法,国会批准总统提名,并可以弹劾、罢免总统;法院可以宣布国会某项法律违宪,国会也有权限弹劾、罢免法官。这种源于法国思想家孟德斯鸠的“三权分立”民主制度适用美国,并契合美国文化社会生态,为美国的发展提供了社会基础。然而,“没有任何一项民主制度是完美的或者万能的,甚至在别的国家成为一种糟糕的制度。(原英国首相丘吉尔)”因此,别的国家必须结合自身国情、民情进行参考,选择符合自身条件和社会发展需要的制度,而决不能照抄。这样,才能满足自身人民需求,推动社会发展。这个观点的论述将在后文讲述“我国国情”中提到。
其次、法律保障。《数据质量法》和《信息自由法》的颁布为美国成为大数据帝国提供了基础的法律保证,也唤醒了美国民众对自身数据权益保护的意识。
第三、美国具备发达的科技支持和广泛的人才支撑。早在上世纪四十年代,第一台电子计算机诞生在美国,二战后大量工程师移民美国等诸多因素为美国的高速发展夯实了人才基础。
第四、美国拥有完善的、职责分明的社会监督体系。民众、社团、新闻媒体时刻注视着政府的一举一动,阳光般的注视成为防治腐败最好的.消毒剂。
世事无绝对。美国虽然借助民主制度、法律保证等优势条件成为信息时代的领头羊,也正是这些“优势”成为了阻碍其发展的“劣势”。突出表现在:(一)“三权分立”的民主权衡看似给美国社会带来了民主、公平、自由的管理体制,实质存在不足,甚至是缺陷。举个简单例子,当政府执法时遇到法律障碍,总统就会递交良法于国会讨论,力争通过。而国会集结的是各党派、各团体、各企业,甚至是各说客的利益集团,各部分之间产生的利益纠纷必然成为良法通过的掣肘。就算是投票表决法案通过,在呈交总统签署的法案里也会放入短时间内难以解决的问题,即“掺沙子”。“沙子法案”必将成为社会发展过程中的阻碍;同时,“旋转门”前后串场的说客们背后强大的利益集团在国会山上说话的语气也是制约民主的制度硬伤。(二)美国严谨却冗杂的司法程序造成了民众不满。上大支矿难便是这一硬伤的突出表现。
二、中国的快速发展与发展中的不足。中国,世界最大的发展中国家,拥有世界最多的人口,最智慧的人民,最悠久的历史。中国的文化吸引着世界的目光。上世纪七十年代末,()中国进行的“改革开放”使中国人民和政府深受裨益。经过三十五年的大胆创新,科学发展,中国已超越日本,成为世界第二大经济体,中国政府在世界的发言权已得到足够的重视,中国人民的聪明才干也得到充分挖掘,中华民族已斗志昂扬地屹立在世界民族之林。
但是,我们不能不承认在大数据时代,中国暂时处于靠后的位置,并且行动相对迟缓。主要表现在:(一)不少地方政府为表政绩,存在“邀功寻赏”、谎报数据行为,导致数据大范围失真。《焦点访谈》曾经报道过多地基层政府的类似行为。例如,国家退耕还林政策涉及资金补贴,某地村干部连续三年虚报数据,最终竟导致所报耕地面积大于该村行政村面积。(二)存在大量应当公开、公布的数据实际并未及时公之于众。就拿近年来炒的沸沸扬扬的晒“三公经费”问题来说,目前仅是一线或二、三线城市才敢于公开,而落实到地、市、县级却姗姗来迟。(三)精确的数据测量与统计工作起步晚,差距大。数据收集方法多以基层上报、被动接受为主,容易“掺水”。
三、结合自身工作和生活实际,发现存在的问题。作为一名从事经济研究工作者,身处于我国经济工作的一线,在进行调查研究的过程中发现了一些机制中或许存在的漏洞或缺陷,正巧反映出我国在大数据时代中所处的不利地位。举例一:如果M先生想在A地购置房产(普通住房),若是首次购房,那么根据税法规定,该项经济活动买方将涉及契税优惠,但是必须要求M先生提供房产局出示的家庭唯一住房证明。漏洞便出现了:假设M先生已经在B地事先拥有一套房产,而M先生身份证件登记在A地,那么M先生便有了在A地成功领取家庭唯一住房证明的可能(前提是A、B两地房产部门信息无法共享)。
这样,“聪明”的M先生在已拥有一套房产的前提下,再次在异地购房仍可享受契税优惠。这将直接导致税款的流失和税赋的不公平,不利于我国税收征管工作,不利于“两度”的提升。堵住这一漏洞的前提条件只有一个房产部门全国信息联网。然而,现实并非如此。举例二:我国正大力兴起的“全民医保”在大数据时代同样不尽如人意。医保卡无法在全国通用,甚至无法在本省内、本市(州)内通用,仍然存在指定医院刷卡。这直接给一些出差在外的居民,亦或是离指定刷卡医院较远的居民带来不便。
四、中国面临发展的机遇与挑战。问题与机遇并存。中国在大数据时代中正面临着巨大的挑战和重大的机遇。问题的存在和挑战的并行必然构成我们在这个时代迎头追赶的机遇:
第一、体制条件。我国是社会主义国家,我国采取的是民族集中制。也就是说,在绝大多数公民认可的良法在立法过程中不会出现像美国那样的利益集团间的博弈,或是“掺沙子”。亦即,被广泛民众认可的良法在我国立法过程中受到的阻碍相对较小。
第二、政策机遇。党的十八大报告明确把“信息化水平大幅提升”纳入全面建设小康社会的目标之一,并提出了走中国特色新型工业化、信息化、城镇化、农业现代化道路。明确要坚持信息化和工业化深度融合,工业化和城镇化良性互动、城镇化和农业现代化相互协调,促进工业化、信息化、城镇化、农业现代化同步发展。从此,信息化本身(包括大数据发展)不再只是一种手段,而将成为发展的目标和途径;同时提出建设下一代信息基础设施,发展现代信息技术产业体系,健全信息安全保障体系,推出信息网络技术广泛运用作为“推进经济结构战略性调整”方案。信息化建设和大数据时代已纳入国家重点战略层面,中国信息化建设正处于巨大的历史机遇期和转折点。
第三、客观因素。我国是互联网大国、手机大国,我国是世界上网民人数最多的国家,巨大的数据产生、消费、使用给我国大数据信息技术的发展提供了坚实的客观条件,我们千万不可停滞不前,相反,要主动出击,迎头赶上。
第四、技术优势。相对于美国,我国拥有充分的客观技术优势----身份证。美国因其文化或历史原因,公民使用的身份标识不统一,这为美国政府进行管理和施行政策提出难题。中国却有着便利的解决方法,因为每位合法中国公民都拥有唯一的身份标识,有了这一技术优势作保障,我国大数据推行拥有巨大便捷。
这就从一定意义上说明了大数据时代已经来临,收集数据,使用数据,开放数据,都是我们需要一一面对的挑战,我们该如何从容应对?我想,唯有积极参与其中,才能紧跟时代脚步,成为社会发展的受益者。综上所述,我认为美国是一个值得我们认真学习的国家。“中国崛起”要求我们有正确的学习态度和敏锐的学习能力。不要有桥不走,硬要下河摸石头。要学习、要上路是我们的当务之急。我们应该以全世界的文明为基础,客观洞悉西方世界,理性思考自身问题,刻苦落实解决方案,才能实干兴邦,才能实现中华儿女心中伟大的民族复兴之梦!诚然,人心、真情、给予、奉献……等等,这些也许很难用数据来衡量,但面对社会未来之世界走向,中国如何应对大数据时代的挑战,我们自己又该从自身、从自己的岗位做哪些改变、哪些突破,这是我们需要,也可以认真思考的问题(注:本文系中国绿色经济博客博主和中国绿色经济圈圈主陈玉荣博士撰写,特此说明)。
篇13:简单的数据
简单的数据整理
教学目标1.使学生会进行简单的数据整理,能把整理的数据填入统计表.
2.使学生能根据统计表或条形统计图回答简单的问题.培养学生整理数据的能力以及根据统计表、统计图进行数据分析的能力.
教学重点
使学生初步认识统计表和条形统计图,能根据统计表或统计图回答简单问题.
教学难点
能把不完整的统计表和条形统计图补充完整.
教学步骤
一、铺垫孕伏.
“你家有几口人?”
“我们班有多少学生?其中多少男生?多少女生”?
这些问题太简单了,通过数数就可以实现.但全市有多少人?全国有多少人?是怎样知道的呢?今天我们就共同了解一下“简单的数据整理”(板书).
二、探究新知.
1.教学统计表.
出示例1.学生住家的分布挂图(例1图).
教师指出:这张图是调查了四年级某班学生居住情况后制成的,通过这张图,一眼就可看出哪条街巷有这班学生.
2.老师进一步引导:每条街巷住了多少同学?哪条街巷的人多?最多的比最少的多几个?全班共多少同学?这时如果只看图,要准确回答以上几个问题,很不容易.
组织学生讨论,怎样做能使回答方便?(将各街人数分别记录下来)
我们可以用画表的方法进行整理.出示下表
街巷名称
学生人数
教师指出:第一栏不填写具体街巷名称,一般留做合计(一共多少人).
3.老师先带领学生填写两个街巷的数据,再让学生在其他街巷对应地方填写数据.然后将一共多少人.在合计栏中填写,形成完整的统计表.指出这样的表叫统计表.
街巷名称
合计
和平一巷
和平二巷
胜利一巷
胜利二巷
东大街
学生人数
41
7
8
6
9
11
4.组织学生根据表回答问题:
哪条街巷住的人最多,是多少?
哪条街巷住的人最少,是多少?
全班共多少人?
5.教学条形统计图.
为更加形象直观地表示数据的多少,常用条形统计图来表示.出示画有小方格的小黑板,说明:每一格代表一个人,有几个人,就用几个小格表示,并把这几个小格涂上色.
6.老师先在纵向上注明人数0,5,10(单位:人),再在横向上标明街巷名称,然后根据学生口述,老师在相应地方涂色,制成条形统计图.
7.看条形统计图,回答:住和平一巷的比住胜利二巷的`少几个人.
8.反馈练习:
下图中是同学投垒球的成绩.
姓名
小芳
小丽
小玉
小红
小梅
成绩
14米
16米
12米18米
15米
(1)左图每格代表多少米?
(2)用图表示每人的成绩.
(3)谁投的最远?
(4)谁投的最近?
带领学生完成表示小芳的成绩的长方形条.其他人的成绩,要求同学们在书中填空完成,并集体订正.
三、巩固发展.
1.四年级一班同学,每人从家里带来一本课外书,办起小小图书室.共有连环画13本,故事书15本,科技书6本,其他书5本.把书的本数分别填在下面的统计表里.
种类
合计
连环画
故事书
科技书
其他
数量(本)
同学们一共拿来了多少本书?根据本数制成条形图,画在下面的方格图上.
回答下面问题:
(1)一个格代表多少本?
(2)哪种书最多?哪种书最少?
(3)科技书比连环画少多少本?
(4)故事书是其他书的几倍?
教师引导学生分组完成.重点引导:合计栏应该怎样填写?学生分组完成时,可以互相讨论研究.教师巡视时重点辅导学习有困难的学生.
2.马拉松比赛的路程是42千米195米.一名运动员用2小时25分跑完全程.这名运动员平均每分钟跑多少米?
提示:先统一单位,利用此题复习“平均”的含义,为下节课学习“求平均数”做铺垫.
四、课堂小结.
引导学生总结,怎样整理数据,怎样填写统计表、统计图.用统计表、统计图进行数据整理有什么好处?(可以用统计表和统计图来整理数据.好处是清淅,直观)
五、布置作业.
活动性作业:调查一下四年级各班的人数,填入下面统计表.
班 别
合计
一班
二班
三班
人 数
(1)哪个班人数最多?
(2)二班和三班比,哪个班人数多?多多少?
板书设计
探究活动
小小采购员
活动目的
1.通过让学生小组活动,培养学生的交流、合作意识.
2.通过让学生实地调查等方式了解物价,提高学生收集数据、获取信息的实践能力.
3.进一步巩固乘法的计算、“单价×数量=总价”的数量关系等数学知识.
活动准备
结合班级开联欢会采购物品,设计一个购物清单.(下图可供学生参考)
物 品
单 价
数 量
总 价
苹果
3元
2千克
6元
香蕉
钢笔
日记本
……
总价
―――
―――
活动过程
1.将全班学生分成若干个小组.
2.对学生可以做出提示:
(1)在活动前,要确定需买些什么物品,买多少,为什么要买这么多,要了解各种物品的单价,计算出一共要花多少钱,手里有多少钱,够不够,等等.
(2)在活动中,怎样知道每种物品的单价,怎样能清楚、快捷地做出预算,小组内成员的意见如何统一,等等.
篇14:数据科普
大部分的网站,在营销监控上,都采用广告跳转页面的方式,一个空的页面,通过广告代码来表示广告的来源,
数据科普 - 网站数据的营销应用1
。
例如:www.kuqin.com/ ad?=1122334455 这类型是广告页面url常见的链接,这个页面的作用就是记录下自己的URL,自然是包含广告来源的参数,然后页面将其跳转到活动的页面,这个页面几乎不花任何成本。和直接打开目的页面差不多。
当然,也有采用写用户cookie记录的方式,这样的方式虽然可以记录到营销的效果,但是其他数据将少的可怜,所以这里只是这里以这类方式讨论。
为什么不用页面上直接加参数的方式呢?这样还多一次跳转。
相比之下,还是有一些差别的,如果仅仅是很小的静态的html页面或者分析的是存日志的文件,这个差别还不太重要,但是对于大部分活动页面,这个还是有影响到分析结果的差别的。
主要受到影响的,还是记录的准确性,我们采用的都是第三方记录的方式,这段记录的代码是被放在页面最底部的,这就使得页面的记录会有或多或少的丢失,对于早期以静态页面为主的新闻页面上,这个丢失的比例很低,但是在现在各类技术不停的发展的情况下,JS记录的丢失已经增加了,甚至对于普通的动态页面,这个丢失率都可能影响到分析的结果。
不巧的是,营销的页面,富媒体的方式被应用的越来越多,这就使得页面上充满了各类的flash,JS等等,并且页面的大小体积越来越大,同时大部分时候,页面的实现方式也多样化起来,这就使得JS记录的丢失会更加严重。笔者曾经见过很多JS数据记录比apache日志记录少上30%的情况。
总体监控:
1、从某个渠道过来的了多少用户,有多少是成功的,从这个角度看,总体的数据能直接告诉我们,这个活动花了多少成本,赢得了多少利益,
《数据科普 - 网站数据的营销应用1》()。
2、对这个数据的一个细分是,可以把每个活动的一个入口细分,看看每一个投放点的效果,是可以达到什么样的效果。
3、还有一类的监控是某类产品用什么活动推广好,比较集中是是,查询出每个活动销售了几件这个产品。
通过广告进入页面和成功页面记录下来的cookie_ID进行对比,如果这两个cookie_id相同,就至少说明用户用广告进入页面进来,并且完成了操作,而根据广告进入页面的中包含广告代码的参数,就可以知道用户进入的时候, 是从哪家网站进来的,看的是哪个活动的宣传,
通过这样连带的关系,自然也就知道了上面所列出的三个内容。
第一个内容比较简单。只需要查询到广告页面上,参数中包含某个广告代码的量的cookie_id的次数和数量。就能知道该渠道带来了多少的用户,而查询广告页面打开时间之后,cookie_id相同,并且当前页面是设定的成功页面的次数,就能知道这些广告带来了多少浏览上的收益。
第二个内容和第一个内容一样,区别只是将一个渠道的多个入扣广告分成不同的广告代码。
第三个内容则是先查询出设定的成功页面的cookie_id,之后反向去查询,这些cookie_id中有哪些是访问了广告跳转页面的,并且分解出其中的广告代码是什么。
这里要注意的有两个要注意的事情:
一个是营销时效问题,一个营销活动到底有多长时间的效果,是一次的浏览,还是当天,还是一周,后者是一个月,全站的营销活动是不是相同。当然,所有人都能理解,如果用户在持续时间内清楚了cookie,不能别记录到是没问题。
另一个问题是活动的优先方式,如果一个用户有了行为结果,但是却在两个营销活动有效的营销时效内有营销活动代码的记录,究竟如何区分,到底算哪个活动的效果,是按着那个先记录算哪个,还是按着哪个后记录算哪个,还有按着活动的优先级计算,还是两个活动都算等等。
篇15: 数据分析
微博数据分析可深可浅,要想推测博主的经营策略则需要数据跟踪一段时间,最少的时间是一个星期,
数据分析
。微博要实行实名制,这一举措对微博的健康发展作用很大,网络文化受到重视,微博营销也势必会越来越受重视,对微博进行数据分析有利于我们更好的去做微博,那么收集微博数据具体收集什么呢?从数据上看又能看出什么呢?
1 粉丝:从粉丝来看,粉丝数多的人自然能引起人注意,如果增长快的又能说明什么问题?
2 内容:从博主的微博内容来看,都是什么类型的微博呢?是单纯的原创,还是活动类的比如投票,有奖转发?博主每天发内容的频率如何?微博内容的来源,是原创的产品资讯还是各类的分享,还是说来自PP内容库呢?
3 转发:从微博转发来看,什么样的微博转发高,转发数多少,在转发的同时评论的人多吗?如果说转发多而且评论的人多的话能说明什么问题,转发高的微博的内容是什么类型,为什么转发高?还有其他一些细小的,比如是否可以私信,企业认证版的微博版块上有什么不同?
4 关注:从关注来看,博主都关注了些什么人,什么行业的,是否是同业呢?关注的人里,加V认证的人多吗?多的话能说明什么问题呢?
经过上述数据的收集后不难看出,博主最主要的策略是提高微博的转发数,来提高微博的影响力,
那么怎么样提高微博的转发数呢,最重要的还是微博的内容,从收集的数据来看,往往活动内容的转发非常高,一般都会有几百。比如说:转发词条微博并且@3位好友,就有机会获得奖品。更甚者,博主会将某一条微博置顶,那么这条微博的转发数自然而 然就会提高了。
有部分企业博主的策略也值得借鉴,特别是对新建不久的企业微博来说。那就是先发大量有趣的微博分享,吸引大家来转发,那么有些人会固定的来访问微博, 就好比蜘蛛很有规律的来爬网站。然后过一段时间后,有了稳定的访客量后,适当的发些企业本产品的资讯,这条关于企业的微博转发数虽然没有其他的分享类高,但是其转发数也是可观的。
微博私信有什么作用?大部分企业微博都留有私信功能。笔者认为留有私信功能会更好。私信对于博主和网友的互动非常好,新版微博的私信有一个类似于聊天 窗口的版块,用过的人都很清楚,非常的方便。和网友沟通交流并不一定要@谁,@之后的语句是所有人都可见的,而私信则是私密的。作为一个粉丝数上了几十万 的博主和一个很普通的粉丝进行对话时,粉丝会非常乐于互动。这就增加了粉丝的黏性和忠实度。
微博的发展被很多人看好,特别是实名制后,分析对手的微博或者是排名在前的微博将有助于我们的微博潮流中站稳脚跟。
篇16:浅谈数据挖掘
摘要:在电子商务中运用数据挖掘技术,对服务器上的日志数据、用户信息和访问链接信息进行数据挖掘,有效了解客户的购买欲望,从而调整电子商务平台,最终实现利益更大化。本文旨在了解电子商务中的数据源有哪些,发掘数据挖掘在电子商务中的具体作用,从而为数据挖掘的具体设计奠定基础。
关键词:数据挖掘电子商务数据源
一、电子商务中数据挖掘的数据源
1.服务器日志数据客户在访问网站时,就会在服务器上产生相应的服务器数据,这些文件主要是日志文件。而日志文件又可分为Ser-vicelogs、Errorlogs、Cookielogs。其中Servicelogs文件格式是最常用的标准公用日志文件格式,也是标准组合日志文件格式。标准公用日志文件的格式存储关于客户连接的物理信息。标准组合日志文件格式主要包含关于日志文件元信息的指令,如版本号,会话监控开始和结束的日期等。在日志文件中,Cookielogs日志文件是很重要的日志文件,是服务器为了自动追踪网站访问者,为单个客户浏览器生成日志[1]。
2.客户登记信息
客户登记信息是指客户通过Web页输入的、并提交给服务器的相关用户信息,这些信息通常是关于用户的常用特征。
在Web的数据挖掘中,客户登记信息需要和访问日志集成,以提高数据挖掘的准确度,使之能更进一步的了解客户。
3.web页面的超级链接
辅之以监视所有到达服务器的数据,提取其中的HTTP请求信息。此部分数据主要来自浏览者的点击流,用于考察用户的行为表现。网络底层信息监听过滤指监听整个网络的所有信息流量,并根据信息源主机、目标主机、服务协议端口等信息过滤掉垃圾数据,然后进行进一步的处理,如关键字的搜索等,最终将用户感兴趣的数据发送到给定的数据接受程序存储到数据库中进行分析统计。
二、Web数据挖掘在电子商务中的应用通过对数据源的原始积累、仔细分析,再利用数据发掘技术,最终达到为企业为用户服务的目的,而这些服务主要有以下几种。
1.改进站点设计,提高客户访问的兴趣对客户来说,传统客户与销售商之间的空间距离在电子商务中已经不存在了,在Internet上,每一个销售商对于客户来说都是一样的,那么如何使客户在自己的销售站点上驻留更长的时间,对销售商来说将是一个挑战。为了使客户在自己的网站上驻留更长的时间,就应该对客户的访问信息进行挖掘,通过挖掘就能知道客户的浏览行为,从而了解客户的兴趣及需求所在,并根据需求动态地调整页面,向客户展示一个特殊的页面,提供特有的一些商品信息和广告,以使客户能继续保持对访问站点的兴趣。
2.发现潜在客户
在对web的客户访问信息的挖掘中,利用分类技术可以在Internet上找到未来的潜在客户。获得这些潜在的客户通常的市场策略是:先对已经存在的访问者进行分类。对于一个新的访问者,通过在Web上的分类发现,识别出这个客户与已经分类的老客户的一些公共的描述,从而对这个新客户进行正确的归类。然后从它所属类判断这个新客户是否为潜在的购买者,决定是否要把这个新客户作为潜在的客户来对待。
客户的类型确定后,就可以对客户动态地展示Web页面,页面的内容取决于客户与销售商提供的产品和服务之间的关联。
对于一个新的客户,如果花了一段时间浏览市场站点,就可以把此客户作为潜在的客户并向这个客户展示一些特殊的页面内容。
3.个性化服务
根据网站用户的访问情况,为用户提供个性化信息服务,这是许多互联网应用,尤其是互联网信息服务或电子商务(网站)所追求的目标。根据用户的访问行为和档案向使用者进行动态的推荐,对许多应用都有很大的吸引力。Web日志挖掘是一个能够出色地完成这个目标的方式。通过Web数据挖掘,可以理解访问者的动态行为,据此优化电子商务网站的经营模式。通过把所掌握的大量客户分成不同的类,对不同类的客户提供个性化服务来提高客户的满意度,从而保住老客户;通过对具有相似浏览行为的客户进行分组,提取组中客户的共同特征,从而实现客户的聚类,这可以帮助电子商务企业更好地了解客户的兴趣、消费习惯和消费倾向,预测他们的需求,有针对性地向他们推荐特定的商品并实现交叉销售,可以提高交易成功率和交易量,提高营销效果。
例如全球最大中文购物网站淘宝网。当你购买一件商品后,淘宝网会自动提示你“购买过此商品的人也购买过……”类似的信息,这就是个性化服务的代表。
4.交易评价
现在几乎每一个电子商务网站都增加了交易评价功能,交易评价功能主要就是为了降低交易中的信息不对称问题。
电子商务交易平台设计了在线信誉评价系统,对买卖双方的交易历史及其评价进行记录。在声誉效应的影响下,卖家也更加重视买家的交易满意度,并且也形成了为获取好评减少差评而提高服务质量的良好风气。交易中的不满意(或者成为纠纷)是产生非好评(包括中评和差评)的直接原因。那么,交易中一般会产生哪些交易纠纷,这些交易纠纷的存在会如何影响交易评价结果,这些问题的解决对卖家的经营具有重要的指导价值。
总结
数据挖掘是当今世界研究的热门领域,其研究具有广阔的应用前景和巨大的现实意义。借助数据挖掘可以改进企业的电子商务平台,增加企业的经营业绩,拓宽企业的经营思路,最终提高企业的竞争力。
参考文献:
[1].赵东东.电子商务中的web数据挖掘系统设计[J].微计算机信息20xx,23(10-3):168[2].刘晔.Web数据挖掘在电子商务中的应用[J].中国市场20xx,39(9):178
篇17:浅谈数据挖掘
摘 要:高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技
关键词:客户关系管理毕业论文
高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技术和信息技术的发展,客户关系管理如何能结合数据挖掘技术和数据仓库技术,增强企业的核心竞争力已经成为企业亟待解决的问题。因为,企业的数据挖掘技术的运用能够解决客户的矛盾,为客户设计独立的、拥有个性化的数据产品和数据服务,能够真正意义上以客户为核心,防范企业风险,创造企业财富。
关键词:客户关系管理毕业论文
一、数据挖掘技术与客户关系管理两者的联系
随着时代的发展,银行客户关系管理的发展已经越来越依赖数据挖掘技术,而数据挖掘技术是在数据仓库技术的基础上应运而生的,两者有机的结合能够收集和处理大量的客户数据,通过数据类型与数据特征,进行整合,挖掘具有特殊意义的潜在客户和消费群体,能够观察市场变化趋势,这样的技术在国外的银行业的客户关系管理广泛使用。而作为国内的银行企业,受到国外银行业市场的大幅度冲击,显得有些捉襟见肘,面对大量的数据与快速发展的互联网金融体系的冲击,银行业缺乏数据分析和存储功能,往往造成数据的流逝,特别是在数据的智能预测与客户关系管理还处于初步阶段。我国的银行业如何能更完善的建立客户关系管理体系与数据挖掘技术相互融合,这样才能使得企业获得更强的企业核心竞争力。
二、数据挖掘技术在企业客户关系管理实行中存在的问题
现今,我国的金融业发展存在着数据数量大,数据信息混乱等问题,无法结合客户关系管理的需要,建立统一而行之有效的数据归纳,并以客户为中心实行客户关系管理。
1.客户信息不健全
在如今的银行企业,虽然已经实行实名制户籍管理制度,但由于实行的年头比较短,特别是以前的数据匮乏。重点体现在,银行的客户信息采集主要是姓名和身份证号码,而对于客户的职业、学历等相关信息一概不知,极大的影响了客户关系管理体系的构建。另外,数据还不能统一和兼容,每个系统都是独立的系统,比如:信贷系统、储蓄系统全部分离。这样存在交叉、就不能掌握出到底拥有多少客户,特别是那些需要服务的目标客户,无法享受到银行给予的高质量的优质服务。
2.数据集中带来的差异化的忧虑
以客户为中心的客户关系管理体系,是建立在客户差异化服务的基础上的,而作为银行大多数以数据集中,全部有总行分配,这样不仅不利于企业的差异化服务,给顾客提供优质得到个性化业务,同时,分行也很难对挖掘潜在客户和分析客户成分提供一手的数据,损失客户的利益,做到数据集中,往往是不明智的选择。
3.经营管理存在弊端
从组织结构上,我国的银行体系设置机构庞杂,管理人员与生产服务人员脱节现象极其普遍,管理人员不懂业务,只是一味的抓市场,而没有有效的'营销手段,更别说以市场为导向,以客户为核心,建立客户关系管理体系。大多数的人完全是靠关系而非真正意义上靠能力,另外,业务流程繁琐,不利于客户享受更多的星级待遇,这与数据发掘的运用背道而驰,很难体现出客户关系管理的价值。
三、数据挖掘技术在企业的应用和实施
如何能更好的利用数据挖掘技术与客户关系管理进行合理的搭配和结合是现今我们面临的最大问题。所有我们对客户信息进行分析,利用模糊聚类分析方法对客户进行分类,通过建立个性化的信息服务体系,真正意义的提高客户的价值。
1.优化客户服务
以客户为中心提高服务质量是银行发展的根源。要利用数据挖掘技术的优势,发现信贷趋势,及时掌握客户的需求,为客户提高网上服务,网上交易,网上查询等功能,高度体现互联网的作用,动态挖掘数据,通过智能化的信贷服务,拓宽银行业务水平,保证客户的满意度。
2.利用数据挖掘技术建立多渠道客户服务系统
利用数据挖掘技术整合银行业务和营销环节为客户提供综合性的服务。采用不同的渠道实现信息共享,针对目标客户推荐银行新产品,拓宽新领域,告别传统的柜台服务体系,实行互联网与柜台体系相结合的多渠道服务媒介体系。优化客户关系管理理念,推进营销战略的执行。提高企业的美誉度。
四、数据挖掘技术是银行企业客户关系管理体系构建的基础
随着信息技术的不断发展,网络技术的快速推进,客户关系管理体系要紧跟时代潮流,紧密围绕客户为中心,利用信息优势,自动获取客户需求,打造出更多的个性化、差异化客户服务理念,使得为企业核心竞争能力得到真正意义的提高。
篇18:浅谈数据挖掘
首先现在是大数据时代,所以美国计算机数据挖掘专业就业前景肯定的越来越好的,全世界每天都有几十亿人使用计算机、平板电脑、手机和其它数字设备产生海量数据。在这个各个行业和领域都已经被数据给渗透,数据已成为非常重要的生产因素的大数据时代,对于大数据的处理和挖掘将意味着新一波的生产率不断增长和消费者盈余浪潮的到来。
美国计算机数据挖掘专业就业前景:
美国计算机数据挖掘专业很有前途,因为几乎所有公司都会用到数据库,而数据挖掘时从数据库上挖去有用的信息,比数据库更高一级,IT就业市场竞争已经相当激烈,而数据处理的核心技术---数据挖掘更是得到了前所未有的重视。数据挖掘和商业智能技术位于整个企业 IT-业务构架的金字塔塔尖,目前国内数据挖掘专业的人才培养体系尚不健全,人才市场上精通数据挖掘技术、商业智能的供应量极小,而另一方面企业、政府机构和和科研单位对此类人才的潜在需求量极大,供需缺口极大,所以如果美国计算机数据挖掘专业的毕业生在国内和国外都是非常容易就业的。
美国计算机数据挖掘专业薪资:
一般来说具有三年以上工作经验的数据挖掘人才年薪可以达到30到50万人民币/年,应届毕业生起薪在20万人民币/年左右。
篇19:数据挖掘
数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。Data mining (the analysis step of the “Knowledge Discovery in Databases” process, or KDD), an interdisciplinary subfield of computer science, is the computational process of discovering pattern...
目录概述使用成功案例经典算法收缩展开概述数据挖掘(Data Mining,DM)是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。 知识发现过程由以下三个阶段组成:(1)数据准备,(2)数据挖掘,(3)结果表达和解释。数据挖掘可以与用户或知识库交互。 数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。 数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析,等等。 并非所有的信息发现任务都被视为数据挖掘。例如,使用数据库管理系统查找个别的记录,或通过因特网的搜索引擎查找特定的Web页面,则是信息检索(information retrieval)领域的任务。虽然这些任务是重要的,可能涉及使用复杂的算法和数据结构,但是它们主要依赖传统的计算机科学技术和数据的明显特征来创建索引结构,从而有效地组织和检索信息。尽管如此,数据挖掘技术也已用来增强信息检索系统的能力。 起源 需要是发明之母。近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。获取的信息和知识可以广泛用于各种应用,包括商务管理,生产控制,市场分析,工程设计和科学探索等。 数据挖掘利用了来自如下一些领域的思想:(1) 来自统计学的抽样、估计和假设检验,(2)人工智能、模式识别和机器学习的搜索算法、建模技术和学习理论。数据挖掘也迅速地接纳了来自其他领域的思想,这些领域包括最优化、进化计算、信息论、信号处理、可视化和信息检索。一些其他领域也起到重要的支撑作用。特别地,需要数据库系统提供有效的存储、索引和查询处理支持。源于高性能(并行)计算的技术在处理海量数据集方面常常是重要的。分布式技术也能帮助处理海量数据,并且当数据不能集中到一起处理时更是至关重要。 发展阶段 第一阶段:电子邮件阶段 这个阶段可以认为是从70年代开始,平均的通讯量以每年几倍的速度增长。 第二阶段:信息发布阶段 从1995年起,以Web技术为代表的信息发布系统,爆炸式地成长起来,成为目前Internet的主要应用。中小企业如何把握好从“粗放型”到“精准型”营销时代的电子商务。 第三阶段: EC(Electronic Commerce),即电子商务阶段 EC在美国也才刚刚开始,之所以把EC列为一个划时代的东西,是因为Internet的最终主要商业用途,就是电子商务。同时反过来也可以说,若干年后的商业信息,主要是通过Internet传递。Internet即将成为我们这个商业信息社会的神经系统。1997年底在加拿大温哥华举行的第五次亚太经合组织非正式首脑会议(APEC)上美国总统克林顿提出敦促各国共同促进电子商务发展的议案,其引起了全球首脑的关注,IBM、HP和Sun等国际著名的信息技术厂商已经宣布1998年为电子商务年。 第四阶段:全程电子商务阶段 随着SaaS(Software as a service)软件服务模式的出现,软件纷纷登陆互联网[5],延长了电子商务链条,形成了当下最新的“全程电子商务”概念模式。
使用分析方法: ・ 分类 (Classification) ・ 估计(Estimation) ・ 预测(Prediction) ・ 相关性分组或关联规则(Affinity grouping or association rules) ・ 聚类(Clustering) ・ 描述和可视化(Description and Visualization) ・ 复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等) 方法简介: ・分类 (Classification) 首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类。 例子: a. 信用卡申请者,分类为低、中、高风险 b. 故障诊断:中国宝钢集团与上海天律信息技术有限公司合作,采用数据挖掘技术对钢材生产的全流程进行质量监控和分析,构建故障地图,实时分析产品出现瑕疵的原因,有效提高了产品的优良率。 注意: 类的个数是确定的,预先定义好的 ・ 估计(Estimation) 估计与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的输出;分类的类别是确定数目的,估值的量是不确定的。 例子: a. 根据购买模式,估计一个家庭的孩子个数 b. 根据购买模式,估计一个家庭的收入 c. 估计real estate的价值 一般来说,估值可以作为分类的前一步工作。给定一些输入数据,通过估值,得到未知的连续变量的值,然后,根据预先设定的阈值,进行分类。例如:银行对家庭贷款业务,运用估值,给各个客户记分(Score 0~1)。然后,根据阈值,将贷款级别分类。 ・ 预测(Prediction) 通常,预测是通过分类或估值起作用的,也就是说,通过分类或估值得出模型,该模型用于对未知变量的预言。从这种意义上说,预言其实没有必要分为一个单独的类。预言其目的是对未来未知变量的预测,这种预测是需要时间来验证的,即必须经过一定时间后,才知道预言准确性是多少。 相关性分组或关联规则 (Affinity grouping or association rules) 决定哪些事情将一起发生。 例子: a. 超市中客户在购买A的同时,经常会购买B,即A => B(关联规则) b. 客户在购买A后,隔一段时间,会购买B (序列分析) ・ 聚类(Clustering) 聚类是对记录分组,把相似的记录在一个聚集里。聚类和分类的区别是聚集不依赖于预先定义好的类,不需要训练集。 例子: a. 一些特定症状的聚集可能预示了一个特定的疾病 b. 租VCD类型不相似的客户聚集,可能暗示成员属于不同的亚文化群 聚集通常作为数据挖掘的第一步。例如,“哪一种类的促销对客户响应最好?”,对于这一 类问题,首先对整个客户做聚集,将客户分组在各自的聚集里,然后对每个不同的聚集,回答问题,可能效果更好。 ・ 描述和可视化(Description and Visualization) 是对数据挖掘结果的表示方式。一般只是指数据可视化工具,包含报表工具和商业智能分析产品(BI)的统称。譬如通过Yonghong Z-Suite等工具进行数据的展现,分析,钻取,将数据挖掘的分析结果更形象,深刻的展现出来。 挖掘分类 以上七种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘・ 直接数据挖掘 目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。 间接数据挖掘 目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系 。 ・ 分类、估值、预言属于直接数据挖掘;后四种属于间接数据挖掘
成功案例数据挖掘帮助Credilogros Cía Financiera S.A.改善客户信用评分 Credilogros Cía Financiera S.A. 是阿根廷第五大信贷公司,资产估计价值为9570万美元,对于Credilogros而言,重要的是识别与潜在预先付款客户相关的潜在风险,以便将承担的风险最小化。 该公司的第一个目标是创建一个与公司核心系统和两家信用报告公司系统交互的决策引擎来处理信贷申请。同时,Credilogros还在寻找针对它所服务的低收入客户群体的自定义风险评分工具。除这些之外,其他需求还包括解决方案能在其35个分支办公地点和200多个相关的销售点中的任何一个实时操作,包括零售家电连锁店和手机销售公司。 最终Credilogros 选择了SPSS Inc.的数据挖掘软件PASWModeler,因为它能够灵活并轻松地整合到 Credilogros 的核心信息系统中。通过实现PASW Modeler,Credilogros将用于处理信用数据和提供最终信用评分的时间缩短到了8秒以内。这使该组织能够迅速批准或拒绝信贷请求。该决策引擎还使 Credilogros 能够最小化每个客户必须提供的身份证明文档,在一些特殊情况下,只需提供一份身份证明即可批准信贷。此外,该系统还提供监控功能。Credilogros目前平均每月使用PASW Modeler处理35000份申请。仅在实现 3 个月后就帮助Credilogros 将贷款支付失职减少了 20%. 数据挖掘帮助DHL实时跟踪货箱温度 DHL是国际快递和物流行业的全球市场领先者,它提供快递、水陆空三路运输、合同物流解决方案,以及国际邮件服务。DHL的国际网络将超过220个国家及地区联系起来,员工总数超过28.5万人。在美国 FDA 要求确保运送过程中药品装运的温度达标这一压力之下,DHL的医药客户强烈要求提供更可靠且更实惠的选择。这就要求DHL在递送的各个阶段都要实时跟踪集装箱的温度。 虽然由记录器方法生成的信息准确无误,但是无法实时传递数据,客户和DHL都无法在发生温度偏差时采取任何预防和纠正措施。因此,DHL的母公司德国邮政世界网(DPWN)通过技术与创新管理(TIM)集团明确拟定了一个计划,准备使用RFID技术在不同时间点全程跟踪装运的温度。通过IBM全球企业咨询服务部绘制决定服务的关键功能参数的流程框架。DHL获得了两方面的收益:对于最终客户来说,能够使医药客户对运送过程中出现的装运问题提前做出响应,并以引人注目的低成本全面切实地增强了运送可靠性。对于DHL来说,提高了客户满意度和忠实度;为保持竞争差异奠定坚实的基础;并成为重要的新的收入增长来源。 基本步骤 数据挖掘的步骤会随不同领域的应用而有所变化,每一种数据挖掘技术也会有各自的特性和使用步骤,针对不同问题和需求所制定的数据挖掘过程也会存在差异。此外,数据的完整程度、专业人员支持的程度等都会对建立数据挖掘过程有所影响。这些因素造成了数据挖掘在各不同领域中的.运用、规划,以及流程的差异性,即使同一产业,也会因为分析技术和专业知识的涉入程度不同而不同,因此对于数据挖掘过程的系统化、标准化就显得格外重要。如此一来,不仅可以较容易地跨领域应用,也可以结合不同的专业知识,发挥数据挖掘的真正精神。 数据挖掘完整的步骤如下: ① 理解数据和数据的来源(understanding)。 ② 获取相关知识与技术(acquisition)。 ③ 整合与检查数据(integration and checking)。 ④ 去除错误或不一致的数据(data cleaning)。 ⑤ 建立模型和假设(model and hypothesis development)。 ⑥ 实际数据挖掘工作(data mining)。 ⑦ 测试和验证挖掘结果(testing and verification)。 ⑧ 解释和应用(interpretation and use)。 由上述步骤可看出,数据挖掘牵涉了大量的准备工作与规划工作,事实上许多专家都认为整套数据挖掘的过程中,有80%的时间和精力是花费在数据预处理阶段,其中包括数据的净化、数据格式转换、变量整合,以及数据表的链接。可见,在进行数据挖掘技术的分析之前,还有许多准备工作要完成。 行业应用 价格竞争空前激烈,语音业务增长趋缓,快速增长的中国移动通信市场正面临着前所未有的生存压力。中国电信业改革的加速推进形成了新的竞争态势,移动运营市场的竞争广度和强度将进一步加大,这特别表现在集团客户领域。移动信息化和集团客户已然成为未来各运营商应对竞争、获取持续增长的新引擎。 随着国内三足鼎立全业务竞争态势和3G牌照发放,各运营商为集团客户提供融合的信息化解决方案将是大势所趋,而移动信息化将成为全面进入信息化服务领域的先导力量。传统移动运营商因此面临着从传统个人业务转向同时拓展集团客户信息化业务领域的挑战。如何应对来自内外部的挑战,迅速以移动信息化业务作为融合业务的竞争利器之一拓展集团客户市场,在新兴市场中立于不败之地,是传统移动运营商需要解决的紧迫问题。 IBM全球企业咨询服务部经过研究认为,传统移动运营商在拓展集团客户信息化市场的过程中所面临的外部挑战主要来自三个方面,即市场需求不成熟,技术与业务融合,全业务的竞争。同时,运营商在自身发展上也存在诸多问题,例如目标市场细分不清晰,信息化需求挖掘与评估不足;产品规划和管理难以满足客户信息化需求;渠道较为单一,无法有效覆盖客户;对合作伙伴吸引力较弱,尚未形成共赢的价值链;在运营管理层面,业务流程、销售团队能力以及IT支撑上都不适应集团信息化业务的发展。 从目前网络招聘的信息来看,大小公司对数据挖掘的需求有50多个方面(来源见参考资料): 1、数据统计分析 2、预测预警模型 3、数据信息阐释 4、数据采集评估 5、数据加工仓库 6、品类数据分析 7、销售数据分析 8、网络数据分析 9、流量数据分析 10、交易数据分析 11、媒体数据分析 12、情报数据分析 13、金融产品设计 14、日常数据分析 15、总裁万事通 16、数据变化趋势 17、预测预警模型 18、运营数据分析 19、商业机遇挖掘 20、风险数据分析 21、缺陷信息挖掘 22、决策数据支持 23、运营优化与成本控制 24、质量控制与预测预警 25、系统工程数学技术 26、用户行为分析/客户需求模型 27、产品销售预测(热销特征) 28、商场整体利润最大化系统设计 29、市场数据分析 30、综合数据关联系统设计 31、行业/企业指标设计 32、企业发展关键点分析 33、资金链管理设计与风险控制 34、用户需求挖掘 35、产品数据分析 36、销售数据分析 37、异常数据分析 38、数学规划与数学方案 39、数据实验模拟 40、数学建模与分析 41、呼叫中心数据分析 42、贸易/进出口数据分析 43、海量数据分析系统设计、关键技术研究 44、数据清洗、分析、建模、调试、优化 45、数据挖掘算法的分析研究、建模、实验模拟 46、组织机构运营监测、评估、预测预警 47、经济数据分析、预测、预警 48、金融数据分析、预测、预警 49、科研数学建模与数据分析:社会科学,自然科学,医药,农学,计算机,工程,信息,军事,图书情报等 50、数据指标开发、分析与管理 51、产品数据挖掘与分析 52、商业数学与数据技术 53、故障预测预警技术 54、数据自动分析技术 55、泛工具分析 56、互译 57、指数化 其中,互译与指数化是数据挖掘除计算机技术之外最核心的两大技术。
经典算法1. C4.5:是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。 2. K-means算法:是一种聚类算法。 3.SVM:一种监督式学习的方法,广泛运用于统计分类以及回归分析中 4.Apriori :是一种最有影响的挖掘布尔关联规则频繁项集的算法。 5.EM:最大期望值法。 6.pagerank:是google算法的重要内容。 7. Adaboost:是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器然后把弱分类器集合起来,构成一个更强的最终分类器。 8.KNN:是一个理论上比较成熟的的方法,也是最简单的机器学习方法之一。 9.Naive Bayes:在众多分类方法中,应用最广泛的有决策树模型和朴素贝叶斯(Naive Bayes) 10.Cart:分类与回归树,在分类树下面有两个关键的思想,第一个是关于递归地划分自变量空间的想法,第二个是用验证数据进行减枝。 关联规则规则定义 在描述有关关联规则的一些细节之前,我们先来看一个有趣的故事: “尿布与啤酒”的故事。 在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家所津津乐道。沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。一个意外的发现是:“跟尿布一起购买最多的商品竟是啤酒!经过大量实际调查和分析,揭示了一个隐藏在”尿布与啤酒"背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。 按常规思维,尿布与啤酒风马牛不相及,若不是借助数据挖掘技术对大量交易数据进行挖掘分析,沃尔玛是不可能发现数据内在这一有价值的规律的。 数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。Agrawal等于1993年首先提出了挖掘顾客交易数据库中项集间的关联规则问题,以后诸多的研究人员对关联规则的挖掘问题进行了大量的研究。他们的工作包括对原有的算法进行优化,如引入随机采样、并行的思想等,以提高算法挖掘规则的效率;对关联规则的应用进行推广。关联规则挖掘在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。
★数据报告
文档为doc格式