欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

三角形外心性质

时间:2023-12-24 08:34:00 其他范文 收藏本文 下载本文

下面是小编帮大家整理的三角形外心性质,本文共4篇,希望对大家的学习与工作有所帮助。

三角形外心性质

篇1:外心的性质和定义

外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。

证明:

注意到外心到三角形的三个顶点距离相a等,结合垂直平分线性质,外心定理其实极好证。

计算外心的重心坐标是一件麻烦的事。先计算下列临时变量:

d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

外心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。

设O是三角形ABC的外心则∠AOC=2∠ABC,∠AOB=2∠ACB

与多边形各角都相交的圆叫做多边型的外接圆。

三角形一定有外接圆,其他的图形不一定有外接圆。

三角形的`外接圆圆心是三条中垂线的交点,直角三角形的外接圆圆心在斜边的中点上。

三角形外接圆圆心叫外心。

有外心的图形,一定有外接圆(各边中垂线的交点,叫做外心)

三角形外心的性质:

性质1:锐角三角形的外心在三角形内; 直角三角形的外心在斜边上,与斜边中点重合; 钝角三角形的外心在三角形外。

性质2:三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心,外心到三顶点的距离相等。

性质3:点G是平面ABC上一点,那么点G是⊿ABC外心的充要条件:(向量GA+向量GB)·向量AB= (向量GB+向量GC)·向量BC=(向量GC+向量GA)·向量CA=向量0。

篇2:三角形中线定理和性质

性质:

设⊿ABC的角A、B、C的对边分别为a、b、c。

1、三角形的三条中线都在三角形内。

2、三角形的三条中线长:ma=(1/2)√2b+2c-a。

mb=(1/2)√2c+2a-b;mc=(1/2)√2a+2b-c。

(ma,mb,mc分别为角A,B,C所对的中线长)

3、三角形的三条中线交于一点,该点叫做三角形的重心。

4、直角三角形斜边上的'中线等于斜边的一半。

5.三角形中线组成的三角形面积等于这个三角形面积的3/4。

篇3:三角形中线的性质

△中线性质

设△ABC的角A、角B、角C的对边分别为a,b,c。

1、三角形的三条中线都在三角形内。

2、三角形的三条中线长:

ma=(1/2)√(2b2+2c2-a2)

mb=(1/2)√(2a2+2c2-b2)

mc=(1/2)√(2a2+2b2-c2)

(ma、mb、mc分别为角A,B,C所对边的中线长)

3、三角形的三条中线交于一点,该点叫做三角形的重心。

4、直角三角形斜边上的中线等于斜边的1/2。

5、角形中线组成的`三角形面积等于这个三角形面积的3/4。

6、三角形重心将中线分为长度比为1:2的两条线段。

三角形都有什么线

三角形有四线,分别为中线,高,角平分线,中位线。

1、中线定义:三角形的中线是连接三角形的一个顶点及其对边中点的线段,一个三角形有3条中线。

2、高定义:从一个顶点向它的对边所在的直线画垂线,顶点和垂足之间的线段。

3、角平分线定义:三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段。

4、中位线定义:三角形的三边中任意两边中点的连线。

篇4:三角形内切圆的性质

性质

三边与圆相切

圆心与三顶点连线分辨平分三角

半径x三边和/2=三角形面积

三角形内切圆概念

三角形一定有内切圆,其他的图形不一定有内切圆(一般情况下,n边形无内切圆,但也有例外,如对边之和相等的四边形有内切圆。),且内切圆圆心定在三角形内部。

在三角形中,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。

内切圆的半径为r=2S/C,当中S表示三角形的'面积,C表示三角形的周长。

三角形内切圆半径公式

1、三角形内切圆半径:r=2S/(a+b+c);

2、三角形外接圆的半径:R=abc/4S。

其中,S为三角形的面积,a,b,c分别为三角形的三边。

三角形的性质教案

相似三角形的性质

三角形中线的性质

三角形的性质教案优秀

相似三角形的性质教案设计讲解

相似三角形的判定和性质教案设计

相似三角形的性质 第2课时

相似三角形的性质八年级数学教学设计

数学教案-相似三角形的性质 第2课时

三角形重心

《三角形外心性质(共4篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档