以下是小编收集整理的四年级数学积的变化规律优秀教案设计,本文共15篇,欢迎阅读与借鉴。
篇1:四年级数学积的变化规律优秀教案设计
教学内容:四年级上册教材58页例4,做一做,练习九第1―4题。
教学目标:
1. 知识技能:尝试用简洁的语言表达积的变化规律,培养学生初步的概括表达能力;
2. 过程方法:“让学生在感知问题――研究问题――归纳规律――验证规律――运用规律”的过程中感知数学学习方法,积极参与交流学习;
3. 情感态度:培养学生团结协作、敢于交流表达的学习精神,体会与人交流和学习成功的体验,培养学生集体荣誉感。
教学重难点:
1. 用简洁的语言概括“一个因数不变,另一个因数改变引起积的变化规律”;
2. 有序交流、表达自己的想法。
教学过程:
一、 探究“一个因数不变,另一个因数扩大几倍,积就扩大几倍”
1. 初步感受问题
8月,舟曲、汶川等地发生了严重的泥石流灾害,当地人民的生命和财产遭受了巨大的损失。为了帮助灾区人民渡过难关,4.1班的同学积极奉献自己的.爱心,踊跃捐款,平均每人捐款约3元,照这样计算:
2名同学捐款多少元?(3w2=6)
20名同学捐款多少元?(3w20=60)
200名同学捐款多少元?(3w200=600)
(1) 学生说出算式、口算;
(2) 教师板书算式;
(3) 进行德育。
2. 研究问题
观察算式,独立思考:以上算式有什么联系和规律?
3. 归纳规律
(1) 小组交流:在小组内发表自己的看法,大家商讨:怎样用清楚简洁的语言记录表达所发现的规律。
(2) 引导全班交流,归纳总结积的变化规律。
4. 验证规律
(1) 另外写一组算式,验证规律的正确性;
(2) 根据发现的规律,在上面的算式下面再写两个算式。
二、 探究“一个因数不变,另一个因数缩小几倍,积就缩小几倍”
1. 按从下往上的顺序观察刚才的算式组,感知问题;
2. 研究问题:思考,有什么规律;
3. 归纳规律:
(1) 在小组内用自己的话说说发现的规律;
(2) 全班交流。
4. 验证规律:
(1) 小组内举例验证;
(2) 按发现的规律把下面的算式再写两个:
80w4=320
40w4=160
20w4=80
三、 运用规律、解决问题
1. 做一做:学生独立完成;说出思考过程
2. 练习九第1题:独立完成;说明,补充
3. 练习九第2题:齐读题;独立思考;小组交流;讲解
4. 练习九第3题:独立完成;;小组交流;讲解
四、 补充练习
练习九第5题。供
五、 课堂总结
六、 作业:练习九第4题
七、 课后反思:
篇2:四年级上册《积的变化规律》教案设计
四年级上册《积的变化规律》教案设计
教学内容:教科书第58页例4及“做一做”,练习九第1~4题。
教学目标:
1.使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
3.初步获得探索规律的一般方法和经验,发展学生的推理能力。
教、学具准备:多媒体课件
教学过程:
一、研究“两数相乘,其中一个因数变化,它们的积如何变化的规律”。
1.研究问题。
(1)两数相乘,其中一个因数扩大若干倍时,积怎么变化。
请学生完成下列两组计算,想一想发现了什么,并把发现写出来。
6×2=8×125=()
6×20=()24×125=()
6×200=()72×125=()
(2)两数相乘,其中一个因数缩小若干倍时,积又怎么变化。
请学生完成下列两组计算,想一想又发现了什么?把发现也写出来。
80×4=()25×160=()
40×4=()25×40=()
20×4=()25×10=()
2.概括规律
(1)分层概括发现的.规律。
①组织小组交流,让每一个学生先把在第⑴组算式中独立发现的规律说给自己的同伴听。学生也许是就题说题,如,左边一组算式,发现的规律是:20是2的10倍,120也是12的10倍;右边一组算式,发现的规律是:24是8的3倍,3000也是1000的3倍。
②组织全班交流。在小组交流基础上,引导学生根据第(1)组算式中积随因数变化的情况,将发现的上述规律用一句话概括出来:“两数相乘,当其中一个因数扩大若干倍时,积也扩大相同的倍数。”
③再引导学生讨论第(2)组算式中积随因数变化的情况,与第(1)组算式的讨论过程相同,最后引导学生概括:“两数相乘,当其中一个因数缩小若干倍时,积也缩小相同的倍数。”
(2)整体概括规律。
问:“谁能用一句话将发现的两条规律概括为一条?”
引导学生将发现的两条规律概括为一条,并用简明的话语表示出来:两数相乘,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。
3.验证规律。
(1)先用积的变化规律填空,再用笔算或计算器验算。
26×48=124817×12=204
26×24=()17×24=()
26×12=()17×36=()
(2)自己举例说明积的变化规律。每位学生各写两组算式,一组3个,展现积分别随一个因数扩大、缩小的变化情况。
4.应用规律。
完成例4下面的“做一做”和练习九第1~4题。
二、研究“两数相乘,两个因数都发生变化,它们的积变化的规律。”(这部分内容作为弹性要求,应视学生情况决定是否选用。)
(1)独立思考,发现规律。
①请学生完成下列计算,并在组内述说自己发现的规律。
18×24=105×45=
(18÷2)×(24×2)=(105×3)×(45÷3)=
(18×2)×(24÷2)=(105÷5)×(45×5)=
②组织全班交流,让学生用自己的话概括发现的规律,然后指导学生用数学语言进行概括:两数相乘,一个因数扩大(或缩小)若干倍,另一个因数缩小(或扩大)相同的倍数,它们的乘积不变。
(2)应用规律解决问题。
①在○中填上运算符号,在□中填上数。
24×75=180036×104=3744
(24○6)×(75×6)=1800(36×4)×(104○4)=3744
(24○3)×(75○□)=1800(36○□)×(104○□)=3744
②一个长方形的面积是256平方厘米,如果长缩小4倍,宽扩大4倍,这个长方形就变成了正方形,这个正方形的面积是多少?它的边长是多少?
篇3:数学四年级上册《积的变化规律》教案
数学四年级上册《积的变化规律》教案
教学内容:
探索当一个因数不变时,另一个因数与积的变化规律情况。(课文第58页的例4,“做一做”及相应的练习)
教学目标:
1、学生通过观察,能够发现并总结积的变化规律。
2、使学生经历变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
3、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
4、初步获得探索规律的一般方法和经验,发展学生的`推理能力。
5、培养学生初步的抽象、概括能力及善于观察、勤于思考、勇于探索的良好习惯。
教学重点:
引导学生自己发现并总结积的变化规律。
教学难点:
引导学生自己发现并总结积的变化规律。
教具准备:
课件、计算器。
教学过程:
一、研究“两数相乘,其中一个因数变化,它们的积如何变化的规律。
1、研究问题,概括规律。
(1)两数相乘,一个因数不变,另一个因数乘几时,积怎么变化。
课件一:为响应学校“节省零花钱,牵手好朋友”的号召,实验小学与希望小学开展了“手拉手,献爱心”的活动,学生们捐出了自己的零花钱,准备为希望小学的小朋友们买一些图书和学习用品。请你们帮忙算一算,一个美术颜料6元,买2盒要花多少钱?20盒呢?200盒呢?
学生完成计算,想一想发现了什么?你能根据每组算式的特点接下去再写两道算式吗?试试看
6×2=
6×20=
6×200=
组织小组交流。
教师出示课件二进行集体交流
教师出示课件三:根据8×50=400,直接写出积。
16×50=
32×50=
学生自做后教师演示
归纳规律:两数相乘,当一个因数不变,另一个因数乘几时,积也要乘几。
(2)两数相乘,一个因数不变,另一个因数除以几时,积有怎么变化?学生完成下列计算,想一想有发现了什么?
教师出示课件四,学生小组合作计算
80×4=
40×4=
20×4=
引导学生概括:两数相乘,当一个因数不变,另一个因数除以几时,积也要除以几。
(3)整体概括规律
问:谁能用一句话将发现的两条规律概括为一条?
引导学生总结规律。
教师出示课件五
两数相乘,一个因数不变,另一个因数乘(或除以)几,积也要乘(或除以)几。
2、验证规律
先用积的变化规律填空,再用笔算或计算器验算。
教师出示课件六:
12×8= 40×21=
12×16= 40×7=
12×32= 20×21=
12×64=
自己举例说明积的变化规律
3、应用规律
完成例4下面的做一做和练习9的1-――4题。
学生完成后,教师出示课件7―10进行集体订正
二、研究“两数相乘,两个因数都发生变化,积变化的规律“。
1、独立思考,发现规律
完成下列计算,说规律。
18×24=432
(18×2)×(24÷2)= (18÷2)×(24×2)=
2、组织全班交流,概括规律:两数相乘,一个因数乘(或除以)几,另一个因数除以(或乘)几,它们的乘积不变。
三、巩固新知
教师出示课件11根据12345679×9=111111111,直接写出下面各题的积。
集体订正
四、总结:
这节课有什么收获?
五、作业:
第59页4、5。
篇4:四年级数学上册《积的变化规律》教案
教学内容:积的变化规律《人教版四年级上册教材P51》
教学目标:1、经过探索的过程,理解和掌握积的变化规律
2、会运用积的变化规律写出有规律的算式的得数。
教学重点:理解两数相乘时,积的变化随其中一个因数的变化而变化
教学难点:自主思考探究、归纳出积的变化规律
教 具:多媒体设备,速塑纸
教学过程:如下表
教学过程
教师活动
学生活动
教学说明
时间设计
一、复习旧知、提出思考
回顾总结一位、两位、三位数与一位、两位数的乘法都是:因数×因数=积。那么同学们有没有想过,如果其中一个因数改变了,那么它的积会改变吗?又是怎么变?
跟随老师思路回忆 、思考。
通过回顾旧知识,培养学生总结、思考和发现规律的能力
2min
二、探究得新知
一、PPT展示下列算式,让学生自主思考几个算式的规律
1、(1)6×2=
(2)6×20=
(3)6×200=
从(1)到(2),一个因数(不变),另一个因数(乘10),积就(乘10)
从(2)到(3),一个因数(不变),另一个因数(乘10),积就(乘10)
从(1)到(3),一个因数(不变),另一个因数(乘100),积就(乘100)
发现:两数相乘,一个因数不变另一个因数乘几,积就乘几。
先口算,再让学生自主观察得到发现规律(下题同上)
2、(1)20×4=
(2)10×4=
(3) 5×4=
从(1)到(2),一个因数(不变),另一个因数(除以2),积就(除以2)
从(2)到(3),一个因数(不变),另一个因数(除以2),积就(除以2)
从(1)到(3),一个因数(不变),另一个因数(除以4),积就(除以4)
发现:两数相乘,一个因数不变另一个因数除以几,积就除以几。
二、带领学生对今天的发现进行验证
先用今天的规律填空,再列竖式验算。
(1)26×24= (2)17×6=
26×12= 17×12=
26×6= 17×24=
跟随老师的思路,口算简单的算式,并认真观察发现积的变化规律。并跟着老师的要求对规律进行验证。
通过自主口算和发现,学生能更深入地理解积的变化规律。这是这次教学的关键环节。另外,让学生验证规律,可以让学生清楚运用规律所得的结果和列竖式笔算的结果是一样的。并让学生感受到,使用规律解决更简单方便
15min
三、巩固训练、加强理解
PPT演示例题做题要求
25 × 4 = 100
不变 ×2 ×2
25 × 8 = 200
针对练习:
1、(基础练习)根据8×50=400,直接写出下列各题的积
16×50=
32×50=
8×25=
2、(基础练习)
(1)两数相乘,一个因数不变,另一个因数( ),积就乘5.
(2)两数相乘, 一个因数不变, 另一个因数缩小3倍,积就( ).(3)18×25=450,第一个因数缩小2倍,第二个因数不变,这时积是( )。
(4)两数相乘,积是300,一个因数不变,另一个因数乘3,这时积是( )。
3、(巩固练习)先找规律再填空
125×4= 48×15=
125×8= 24×15=
125×12= 12×15=
125×16= 6×15=
125×28= 18×15=
4、综合练习
下面这块长方形绿地的宽要增加到24米,长不变.扩大后的绿地面积是多少?
5、知识拓展
两数相乘,一个因数乘(或除以)几,另一个因数除以(或乘)相同的数,积不变。
学生要认真听课,用心思考问题,在未给出解题步骤前自行探讨解题过程,再根据与教师的解题步骤进行对比,加深理解
通过做题,得出做题步骤规律,总结解题经验,巩固新知识,从而达到随学随记得效果
20min
四、归纳小结、布置作业
归纳本节课学习的内容,根据学习的内容以及学生的掌握情况,布置相关课后习题
学生课后认真完成作业
加深理解,巩固记忆
篇5:四年级数学上册《积的变化规律》教学反思
本节课的教学内容是四年级上册第三单元的例4---“积的变化规律”。在乘法运算中探索积的变化规律是整数四则运算中内容结构的一个重要方面。教材例题以两组乘法算式为载体,引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律。在这个过程的探索中,我让学生理解两数相乘时,积的变化随其中一个因数(或两个因数)的变化而变化,同时体会事物间是密切相关的,受到辨证思想的启蒙教育。
在教学过程中,有以下几点感觉还不错的地方:
1、我设计了让学生自己举例像书上那样写出2组算式,还设计了让学生写出自己的发现,这样让学生有自己的独立思考,也对后面规律的揭示起到铺垫的作用。
2、通过规律过程的探索,不但让学生理解两数相乘时积的变化随其中一个因数的变化而变化,同时体会事物间是密切联系的,培养学生迁移类推的能力。
3、练习的设计能由易到难,让学生在学习中感到轻松自如,并且重视每次练习的反馈,及时掌握学生的学习情况。
这节课也有一些不足之处:
1、教师的语言不够简练,在教学2的.规律时让学生探究规律的时间太多,有的时候学生已经说的很好了就不要让其他学生再说了。
2、教师的提问要精练,例如教师提问“你能用我们今天学的知识来解决下面的问题吗?”可以换成“这节课我们用积的变化规律来解决下面的问题。”
篇6:四年级数学上册《积的变化规律》的教学反思
人教版四年级数学上册《积的变化规律》的教学反思
核心提示:积的变化规律是在学生已经掌握了三位数乘两位数的口算和笔算方法的基础上进行教学的,信息窗呈现了筛沙车清理海水浴场的情景。通过介绍筛沙车每分钟清洁沙滩的面积数量,引导学生提出问题,引入对积的变化规律的探索...
积的变化规律是在学生已经掌握了三位数乘两位数的口算和笔算方法的基础上进行教学的',信息窗呈现了筛沙车清理海水浴场的情景。通过介绍筛沙车每分钟清洁沙滩的面积数量,引导学生提出问题,引入对积的变化规律的探索。课堂教学的重点是让学生自己探索出积的变化规律,并灵活运用这个规律解决问题。
在探究积的变化规律时,我注重学生的观察、分析、比较,让学生在充分经历中感悟,在充分感悟中提炼。新课标注重学生的“过程与方法”的探究,提倡学生充分地经历问题的产生、发现、探索的过程。整个过程,学生主动参与,借助统计表和乘法算式探究积的变化规律,在大量的举例、充分地观察中去感悟积的变化与不变的规律,初步构建自己的认知体系,充分经历了知识的发生过程。较好的培养了学生的观察能力、分析能力和概括能力,培养学生的探究意识。
为了让学生感受数学与生活的密切联系,提高学习数学的兴趣。在课堂练习中,我再次出示本课信息窗情境图。让学生继续探究:5辆筛沙车每分钟清洁沙滩多少平方米?15辆呢?30辆呢?“这个练习回归生活实践,让学生感受到积的变化规律存在于生活的各个角落。引导学生联系生活实际,学以致用。
不足之处:
教学过程中我发现,学生在描述积的变化规律时,语言总是不够准确、表述总是不够完整。于是,我发挥了教师的主导作用,引导学生逐步完整、准确地描述出积变化的规律。今后我们应该注重学生概括能力的培养。
篇7:四年级《积的变化规律》说课稿
一、学情分析
本节课内容是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上进行的,因此这节课中,我放手让孩子们自己去计算,去比较,再通过我的适时引导,让孩子用简洁的语言概括出积的变化规律。
二、教学目标
根据对教材和学情的分析,我制定了以下三维目标:
知识目标:
使学生结合具体情境,通过计算、观察、比较,发现积随因数变化而变化的规律,并在此基础上放手探讨积的变化规律。
能力目标:
培养学生初步的抽象概括能力和数学语言表达数学结论的能力。
情感目标:
体验探索和发现数学规律的过程,进一步产生对数学的好奇心与兴趣。
三、教学重难点
教学重点:
积随因数的变化规律。
教学难点:
引导学生自己发现规律、验证规律、应用规律。
四、教法
我引导学生在具体的情境中通过观察、猜想、验证来自主探索概括出积的变化规律。
五、学法
学生经历观察思考、提出猜想、验证猜想、表述规律、应用规律的自主探索过程,获得探索教学规律的一般经验。
六、教学具及相关资料
小黑板
七、教学流程
谈话导入猜想规律验证规律表述规律,小结探索方法应用规律拓展延伸课堂小结。
八、教学设计过程
1、谈话导入
课的开始我与孩子进行谈话学校为了奖励参加大扫除的学生,每人发一本笔记本,每本笔记本6元,买2本需要多少元钱?买20本,200本呢?孩子你们算算。
2、根据学生的回答,我板书三个算式及其结果:
62=12(元)
620=120(元)
6200=1200(元)
设计理念:我创造性地利用教材,将纯粹的算式赋予一定的生活意义,让孩子感受数学知识就在身边,从而更大地激发学生的学习兴趣。
(1)我提出问题:观察这三个算式,你会发现什么规律呢?
我引导孩子从上向下观察:因数到因数,积到积有什么规律。
(2)小组交流,集体汇报。让孩子把自己发现的规律讲给同伴听,经过小组内交流,孩子不难提出猜想:一个因数不变,另一个因数乘以几,积就乘以几。
(3)我引导孩子再次从下向上观察,这次孩子很快提出新的规律:一个因数不变,另一个因数除以几,积就除以几。
设计理念:孩子通过独立观察,小组交流,使学生真正体验自主探索和发现数学规律的过程。同时,我活用教材,用一组算式揭示两条规律,先后有序,主次分明。
3、验证规律
孩子都看出规律来了,那么这些规律是不是适合所有的算式呢?下面请孩子自己来验证一下。
我出示小黑板,男生女生分为两组,一组应用规律直接写出结果,另一组用笔算或计算器验证。两组交换角色再次验证。
设计理念:通过学生分组协作,体验验证数学规律的过程。
4、表述规律,小结探索方法。
我首先让学生说规律,趁势解释说明乘以几=扩大几倍,除以几=缩小几倍,学生在以往的基础之上,很容易接受这点。然后引导学生如何把两条规律归纳成一条,得出积的变化规律:两个因数相乘,一个因数不变,另一个因数扩大(或缩小)几倍,积就扩大(或缩小)几倍。我板书规律,揭示本课主题。最后我让孩子们说说这规律是如何得来的?
设计理念:孩子通过对探索过程的反思,逐步形成自己的思维策略。
5、应用规律
孩子自己完成教材1—4题。指明孩子自己说说如何得出结果的。个别孩子可能会提出:我用笔算也挺简单的,那我今天学的有什么用呢。好问题出来了,进入下一环节。
6、拓展延伸。
(1)一个数乘以18积是270,如果这个数乘以54,积是。
(2)3610=360
(362)(362)=
(363)(363)=
设计理念:通过层次分明,形式多样的练习,可以有效地激发学生学习兴趣,拓展学生的思维空间,使不同的学生得到不同的发展。
7、课堂总结,内化规律。
这节课你学到了什么?学的高兴吗?
设计理念:培养学生自我总结、自我反思的学习能力。
九、教学效果分析
本节课我创造性地活用教材,营造了宽松、自主的学习氛围,孩子们通过看、想、说、做等数学活动,去经历主动观察独立思考小组交流提出猜想验证规律运用规律的过程,丰富了学生学习的体验,培养学生的数学思维。
篇8:《积的变化规律》数学评课稿
《积的变化规律》数学评课稿
今天听了赵艳波老师的一节数学课,受益匪浅。赵老师在教学中以两组乘法算式为载体,引导学生探索当一个因数不变,另一个因数与积的变化规律。通过这个过程的探索,学生经历了研究问题——归纳发现规律——解释说明规律——举例验证规律四个层次的学习过程。在这一系列学习过程中老师非常重视学生的.自主学习善于引导学生通过观察、计算、说理、交流等活动,归纳积的变化规律。过程的设计很紧凑,老师的讲解清晰、简洁,设问、追问都处理的恰如其分。学生的思维在一个个追问中得到开启,不失为一堂很实的课。一环扣一环的层层剖析,让学生知其然更知其所以然。在巩固练习中,可以看出教师平时非常重视对学生进行审题能力的训练。让学生的观察能力、推理能力得到充分发展。年轻教师在课堂中能把问题的设置运用自如,确实难得。我比较欣赏。
小建议:
1.小结时,可先让学生试着用自己的语言说说,再整理完善。
2.板书再工整些更加完美了。
如果是我执教这一内容。我会这样设计:
1.出示两组乘法试题。
2.提问:你能根据上面每组算式的特点接下去再写两道算式吗?试试看。
让学生在尝试写算式的过程中自己发现规律。这个过程,手脑并用,使规律的探索落到实处。
篇9:数学积的变化规律教学反思
今天教学了积的变化规律,昨天布置了预习作业:计算、再观察比较下列算式30*24=720(30*2)*24=(30*4)*24=30*(24*5)=后面三个算式等号左边与第一个算式左边比,什么发生了什么变化,算出后三题的积再与第一题的积比一比,你有什么发现?30*24=720(30÷2)*24=(30÷5)*24=30*(24÷6)=后面三个算式等号左边与第一个算式左边比,什么发生了什么变化,算出后三题的积再与第一题的积比一比,你有什么发现?学生在课始交流计算结果与自己的人发现时,习惯于表述成:一个因数不变,另一个因数扩大几倍,积也扩大相同的`倍数;一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。为了验证大家的发现,我们首先让大家用书中的例题验证,再让大家各举一个例子验证得出积得变化规律。
但遗憾的是在后面的练习中学生还是习惯于直接计算积却不用所学的积得变化规律去求积,在我的追问下好的学生想到根据记得变化规律直接用原来的积乘几求到现在的积。我也反思我的教学中是否有导致学与用剥离的现象,可能在开始的教学中教师只注重学生得出规律的结果反而削弱了学生对规律本身的理解与实际应用,于是在课即将结束前我出示了题目:根据275*46=12650直接写出275*92=的结果并说明解题思路,到此学生才全部理解了记得变化规律的有用性。虽然是后知后觉但毕竟是真正有了“知觉”了。
篇10:四年级《积的变化规律》评课稿
1、新课伊始,出现有趣的思维体操题目,来启迪学生思维,来诱发学生的猜想,激发学生求知的欲望,扣住学生的心弦,产生良好的学习动机。
2、大胆地将教材提供的两组算式重新改编并打乱以口算的形式呈现,让学生在分类整理中初步感悟两组算式的特征,再让学生根据算式的特征从上往下观察、从下往上观察,在观察的过程中学生自然会去思考其中隐藏的规律,从而形成探究规律的冲动,再通过研究交流得出“一个因数变化时积的变化规律”,并适时进行验证。让学生在猜想验证中逐步概括提升。之后对研究出来的规律进行解释与应用。最后总结归纳本课的学习过程,让学生初步获得探索规律的一般方法和经验。
3、在研究规律时,因为张老师提供了大量的有规律的算式。学生建立在充分的感知上,所以水到渠成的总结出一个因数不变,另一个因数乘几,积也乘几。接着又请同学们讨论验证一下这个结果是否正确?这样,既调动了学生的积极性,又充分的体现了新课改的精神。 然后让学生在大量的`例子的基础上,验证积的变化规律的正确性。尤其是在探索第二组题由下往上观察时,能放手让学生探讨积随因数缩小而缩小的规律,让学生用刚才掌握的研究过程,实现方法的迁移运用,再让学生根据规律举例,充分开阔了学生的思路,使学生在动脑,动手,动口,相互交流中,培养了学生自主探索能力与合作交流意识。
4、数学是思维的体操,课堂上必须要让学生亲历知识的形成过程,要养成善于用所学知识解决实际问题的习惯,这样才能激发学生的学习兴趣,拓宽学生的思维,从而掌握牢固的数学知识。这节课中张老师在这方面做的特别好,给学生提供了大量的时间和空间去探索、去发现、去创新、去总结积变化的规律,不急不燥。让学生充分自由的发挥,体验知识形成的过程,而不是急于让学生跟着教案走。跟着老师走。虽然没有完成自己预定的教学设计,但是落实了知识点,真正体现了以生为本的教学理念。
篇11:四年级《积的变化规律》评课稿
《积的变化规律》是整数四则运算内容中的一个重要内容,本节课教材以两组较为简单的乘法算式为载体,引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律,使学生在探索的过程中理解两个因数相乘时,积随着基中的一个因数的变化而变化。本节教学流程是:“研究具体问题——引导发现规律——举例验证规律——总结规律——应用规规律”。通过这个过程的探索,不但让学生理解两数相乘时,积的变化随着其中一个因数或两个因数的变化而变化,同时体会事物间是密切相关的,受到辩证思想的启蒙教育。
把课本表格的数字编成应用题,请学生列式计算,注重让学生充分参与积的变化这个规律的发现,充分调动学生参与的主动性,让学生在大量的举例、充分地观察中去感悟积的变化的规律,初步构建自己的认知体系。一是引导学生从上往下观察算式,研究一个因数不变另一个因数变大,积的变化情况;二是引导学生从下往上观察算式,研究一个因数不变,另一个因数变小,积的变化情况;三是引导学生将两个发现总结到一起形成积的变化规律,形成板书,并揭示课题。
注重了练习的层次性和开放性,让学生在练习中不但学会运用积的变化规律解决问题,同时训练了思维的广度与深度,体验到发现规律是一件快乐的事情。
篇12:因数和积的变化规律(人教版二年级教案设计)
课题:因数和积的变化规律
教学目标
1.知道“扩大”、“缩小”的含义.
2.理解乘法里一个因数不变,另一个因数扩大(或缩小)若干倍积也扩大(或缩小)相同倍数的规律.
3.能运用积的变化规律进行简便计算.
教学重点
理解“一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数”这一数学规律.
教学难点
理解因数和积的变化规律并运用规律计算.
教学步骤
一、铺垫孕伏.
1.口算:
420×2 9×40 23×30 0×700
600×3 80×90 35×20 800×10
200×30 70×60 1×190 18×40
2.下面两题,用竖式怎样计算比较简便?
28×40 2800×30
二、探究新知.
1.教“扩大”或“缩小”几倍的含义.
(1)讲授把一个数“扩大”几倍就是把这个数乘几.如5扩大3倍就是5×3=15,板书: ,把一个数缩小几倍就是把这个数除以几.如15缩小3倍就是15÷3=5,板书:
(2)练习:
① 6扩大4倍是多少? ② 3扩大10倍是多少?
③ 200缩小20倍是多少? ④ 8缩小8倍是多少?
2.教例6.
(1)出示表格:
因数 16 16 16 16 16
因数 2 4 10 20 100
积 32
(2)学生口算填表:
(3)想:发现了什么?分组讨论.
① 第2、3、4、5组的第二个因数同第一组比较,分别扩大2倍、5倍、10倍、50倍,积也随着扩大2倍、5倍、10倍、50倍.
② 一个因数不变,另一个因数扩大若干倍,积也扩大相同的倍数.
(4)练习:
12×3= 48×5=24×5=
120×3= 48×50= 24×25=
1200×3= 48×500=24×75=
小结:启发学生把发现的规律进行概括:一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数.
(5)填空练习:
① 在4×5=20中,如果4不变,5扩大2倍,那么积也( )倍.
② 在6×8=48中,如果8不变,6缩小3倍,那么积也( )倍.
三、课堂总结.
这堂课你学到了什么?
四、随堂练习.
1.填表:观察每次计算同前一次比较,因数有什么变化?积有什么变化?
因数 20 40 40 200 200
因数 50 50 100 100 200
积
2.填空:
(1)一个因数不变,另一个因数( ),积也( ).
(2)一个因数不变,另一个因数扩大5倍,积( );一个因数缩小7倍,另一个因数不变,积( );一个因数不变,要想使积扩大24倍,另一个因数( ).
五、布置作业.
(207+99)×32 130×(560-490) 400×(225÷9) (798+486)÷6
板书设计
因数和积的变化规律
因数 16 16 16 16 16
因数 2 4 10 20 100
积 32 64 160 320 1600
一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数.
篇13:《积的变化规律》教案设计孙雅琴
《积的变化规律》教案设计(孙雅琴)
《积的变化规律》教案设计 黑龙江省通河县实验小学 孙雅琴 教学内容:人教版99―100页积的变化规律 教学目标:1、使学生经历积的变化规律的发现过程,感受发现数学中规律是一件十分有趣的事情。 2、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。 3、初步获得探索规律的`一般方法和经验,发展学生的推理能力。 教学重点:经历感受积的变化规律 教学过程: 一、复习旧知、引入新课。 1、口算下面各题: 45×8 6×2 40×6 6×200 32×3 26×5 2、你们能找出这几道题的共同特点分分类吗? 归为一类的是:6×2=12 6×40=240 6×200=1200 3、师:观察这几道乘法算式,你有什么发现? 学生回答。 师:一个因数不变,另一个因数不断变化,积又是怎样变化呢?这节课我们就来研究“积的变化规律”。 [本节课数学内容的情境并非来源生活,,而是来源于数学本身。因此,应从数学角度的角度提出引发学生积极思考的问题,尽可能让每个学生都投入到问题的探索当中。 二、观察分析、探索新知 师:为了观察方便,我们给算式标上序号(1)6×2=12 (2) 6×40=240 (3) 6×200=1200 1、从上往下观察: 师:为了观察便于比较,以第一算式做标准,让(2)(3)两个乘法算式和它相比看因数和积有什么变化? 学生观察后指名说。教师重点引导学生观察第二个算式因数和积的变化特点(指名说―自己练说―同桌互相说),自己独立观察第三个算式因数和积的变化特点,同桌再互相说一说。 2、从下往上观察 师:请同学们从下往上观察,要想观察方便,以第几算式为标准呢?(第三个算式做标准) 那么(1)(2)两个算式和第三个算式比因数和积有什么变化呢?先独立观察后在小组内交流。 学生汇报,教师引导学生语言要规范、有条理。 3、初步判断:通过从上到下和从下到上的观察你发现了一个因数不变时,另一因数和积怎样变化呢?你能用一句简单的话把两个发现总结在一起吗? 学生汇报时,教师引导学生把重复的话只说一次,乘以、除以用一个“或”字连接,注重数学语言的简洁美。 学生汇报:一个因数不变,另一个因数乘(或除以)几,积也要乘(或除以)几。 4、合作探究,验证判断: 师:这只是一个初步的判断,是不是其它乘法算式也具备这个特点呢?要想知道怎样去研究呢?(任意出乘法算式验证) (1)师出一个算式:60×8=480 你能根据一个因数不变因数和积的变化特点写出几道算式吗? 学生汇报说出因数和积的变化特点。然后再横着算看结果是否正确。 (2)学生合作相互出一道题,根据因数和积的变化特点再写出几道乘法算式。 教师巡视适当引导点拨。 师:通过师生合作学习,我们验证了许许多多乘法算式都具备了这个特点,证明了这个初步判断是正确的,这才把它确定为积的变化规律。 【通过研究问题、归纳规律、验证规律这三个层次的学习,使学生不但发现了积的变化规律,而且学会了研究问题的一般方法:研究具体问题―归纳发现的规律--(或模型)--解释说明规律―举例验证规律。并从正反两方面的观察中受到辩证思想的启蒙教育。】 三、应用规律、解决问题 1、根据8×50=400,直接写出下面各题的积。 16×50 32×50 8×25 2、卡车在普通公路上,以40千米/小时的速度行驶,4小时权以行( )千米,小汽车在高速公路上行驶的速度是卡车的2倍,小汽车用同样的时间可行( )千米。 3、找出规律填空: 48×75=3600 48×( )=1200 ( )×75=7200 24×150=( ) 【习题设计以阶梯式呈现的,从易到难,不断变换着形式。既体现了这一规律在计算中的应用,又体现了它在应用题中的简便。将课内延伸到课外,激发学生的学习热情,培养探究精神。】 四、师生共同总结: 通过这节课的学习你有哪些感受? 【回顾课堂谈所学知识,谈合作情况,也可谈你的突发奇想。培养学生归纳总结能力,捕捉学生灵动的思维火花形成自己的学习方法。】 板书设计: 6×2=12 200÷100=2 1200÷100=12 2×20=40 12×20=240 6×40=240 200÷5=40 1200÷5=240 2×100=200 12×100=1200 6×200=1200 一个因数不变,另一个因数乘(或除以)几,积也要乘(或除以)几。篇14: 《积的变化规律》优秀教学反思
《积的变化规律》是人教版教材数学四年级上册第3单元的内容。在以前计算的过程中就已经初步感悟过,但是没有总结成规律,它是在学生掌握了三位数乘两位数的计算方法的基础上进行教学的。本节课主要引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律。通过这个过程的探索,不但让学生理解两数相乘时积的变化随其中一个因数的变化而变化,同时体会事物间是密切联系的,培养学生迁移类推的能力。
“探索规律”是数与代数领域要教学的主要内容之一。本节课的教学目标是让学生探索因数变化引起积的变化规律,感受发现数学中的规律。在教学中我引导学生通过观察、口算、计算、说理、交流等活动,归纳出积的变化规律。并会用数学语言刻画这个规律,感悟函数的思想方法。同时,让学生通过观察、比较、分析、概括、等思维活动体验归纳规律的方法,从面获得一定的价值体验。
成功之处:
1.引导学生经历规律发现的过程,让过程在孩子的经历中变得清晰。教学中要让学生充分经历规律的发现过程,把发现的过程细化、广泛化,让每个学生都参与。在起初的观察里思维灵活的学生尝试说出“两个数相乘,一个因数不变,另一个因数乘几,积也乘几”,接着引导学生理解“也”的含义,强化“一个因数不变,另一个因数和积的变化是相同的”。在这里学生的已有水平已经达到了初步认识“积的变化规律”,接下来让学生举例,深化规律。这个过程,让学生感悟到规律的得出要经过探索、猜想、验证,归纳。培养了学生各方面能力。
2.体验成功,让每个孩子都有所收获。每个孩子都期待成功,每个孩子都能成功,数学要让不同的人得到不同的发展。在教学中让每个孩子都参与在举例子的过程中,举不同的例子来验证规律,运用规律,这个过程就是学生消化知识、运用知识的过程,孩子在数学活动中得到了成功的喜悦。
3.体会快乐的同时感受数学的严谨性。数学和其他学科不同,它是一门逻辑性非常强非常讲究严谨性的学科,因此在教学中要注意特点,突出教学的严谨性。这节感受数学严谨性就是渗透在各个环节。比如发现了“两个数相乘,因数乘几,积也乘几”再让学生说说理解;老师也展示自己的想法与学生的想法产生冲突;这些都是数学严谨性的体现。
不足之处:
教学第一个规律时,呈现的材料太少,让学生一下子由初步的感悟总结提炼规律,不符合学生的认知规律。应该在初步感悟的基础上让学生尝试举例,再去总结提炼,这样既加深学生的理解,也符合认知规律。
篇15:小学数学积的变化规律教学设计
小学积的变化规律教学设计
小学数学积的变化规律教学反思
本节课通过三个层次的学习使学生不但发现了积的变化规律,而且学会了研究问题的一般方法:研究具体问题——归纳发现的规律(或模型)——解释说明规律——举例验证规律。创设让每个学生自主探索的问题情境。例题创设的情境并非来源于生活,而是来源于数学本身。因此应从数学的角度提出引发学生积极思考的问题,尽可能让每个学生都投入到问题的探索当中。以小组为单位,交流自己写的算式,并说一说是怎样想的,让学生尝试用自己的语言说明写算式的理由,也就是解释自己发现的规律,让学生充分经历学习的过程,学生动手、动脑、动口,相互交流进一步培养学生自主探究能力及合作交流意识。通过让学生进行不同类型的练习,可以有效激发学生的学习兴趣,拓展学生的思维空间,使不同的学生得到不同的发展。
本节课我始终围绕学生转,挖掘学生已有的数学知识,使学生充分经历了知识的产生,形成过程,能根据教学反馈信息及时调整教学活动,顺利完成了教学任务。
本节课的不足之处:语言组织不严密,有些地方和个别学生的理解有分歧。课堂气氛不够活跃,应该积极引导学生参与课堂学习并应该根据学生不同课堂表现给予恰当的有针对性的激励评价。
文档为doc格式