欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

数学必修三统计和概率知识点总结

时间:2022-05-22 12:11:08 其他范文 收藏本文 下载本文

【导语】以下是小编帮大家整理的数学必修三统计和概率知识点总结(共18篇),仅供参考,希望能够帮助到大家。

数学必修三统计和概率知识点总结

篇1:数学必修三统计和概率知识点总结

数学必修三统计和概率知识点总结

一.随机事件的概率及概率的意义

1、基本概念:

(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;

(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;

(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;

(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率

二.概率的基本性质

1、基本概念:

(1)事件的包含、并事件、交事件、相等事件

(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;

(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;

(4)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);若事件A与B为对立事件,则A∪B为必然事件,所以

P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)

2、概率的基本性质:

1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;

2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);

3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);

4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;

(2)事件A不发生且事件B发生;

(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;

(1)事件A发生B不发生;

(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。三.古典概型及随机数的产生

(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。

(2)古典概型的解题步骤;①求出总的基本事件数;

②求出事件A所包含的基本事件数,然后利用公式P(A)=

四.几何概型及均匀随机数的产生

基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;

(2)几何概型的概率公式:P(A)=;

(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;

2)每个基本事件出现的可能性相等

数学基本函数的概念及性质知识点

1.函数y=-8x是一次函数。

2.函数y=4x+1是正比例函数。

3.函数是反比例函数。

4.抛物线y=-3(x-2)2-5的开口向下。

5.抛物线y=4(x-3)2-10的对称轴是x=3.

6.抛物线的顶点坐标是(1,2)。

7.反比例函数的图象在第一、三象限。

数学直线和圆知识点

1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式((为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?

2.知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为.

(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等 直线的斜率为-1或直线过原点;直线两截距互为相反数 直线的斜率为1或直线过原点;直线两截距绝对值相等 直线的斜率为 或直线过原点.

(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.

3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是

4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.

5.圆的方程:最简方程 ;标准方程 ;

6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”

(1)过圆 上一点 圆的切线方程

过圆 上一点 圆的切线方程

过圆 上一点 圆的切线方程

如果点在圆外,那么上述直线方程表示过点 两切线上两切点的“切点弦”方程.

如果点在圆内,那么上述直线方程表示与圆相离且垂直于(为圆心)的直线方程, (为圆心 到直线的距离).

7.曲线与的交点坐标方程组的解;

过两圆交点的圆(公共弦)系为,当且仅当无平方项时,为两圆公共弦所在直线方程.

篇2:数学必修三统计和概率知识点总结

数学必修三统计和概率知识点总结

一.随机事件的概率及概率的意义

1、基本概念:

(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;

(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;

(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;

(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率

二.概率的基本性质

1、基本概念:

(1)事件的包含、并事件、交事件、相等事件

(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;

(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;

(4)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);若事件A与B为对立事件,则A∪B为必然事件,所以

P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)

2、概率的基本性质:

1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;

2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);

3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);

4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;

(2)事件A不发生且事件B发生;

(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;

(1)事件A发生B不发生;

(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。三.古典概型及随机数的产生

(1)古典概型的'使用条件:试验结果的有限性和所有结果的等可能性。

(2)古典概型的解题步骤;①求出总的基本事件数;

②求出事件A所包含的基本事件数,然后利用公式P(A)=

四.几何概型及均匀随机数的产生

基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;

(2)几何概型的概率公式:P(A)=;

(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;

2)每个基本事件出现的可能性相等

篇3:数学必修三概率知识点

【一】

简单随机抽样的定义:

一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

简单随机抽样的特点:

(1)用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为

;在整个抽样过程中各个个体被抽到的概率为

(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;

(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.

(4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样

简单抽样常用方法:

(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.(2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率.

【二】

一.随机事件的概率及概率的意义

1、基本概念:

(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;

(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;

(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;

(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率

二.概率的基本性质

1、基本概念:

(1)事件的包含、并事件、交事件、相等事件

(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;

(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;

(4)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);若事件A与B为对立事件,则A∪B为必然事件,所以

P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)

2、概率的基本性质:

1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;

2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);

3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);

4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;

(2)事件A不发生且事件B发生;

(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;

(1)事件A发生B不发生;

(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。三.古典概型及随机数的产生

(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。

(2)古典概型的解题步骤;①求出总的基本事件数;

②求出事件A所包含的基本事件数,然后利用公式P(A)=

四.几何概型及均匀随机数的产生

基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;

(2)几何概型的概率公式:P(A)=;

(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;

2)每个基本事件出现的可能性相等.

篇4:数学必修三统计知识点

数学必修三统计知识点

(一)

(1)分层抽样(类型抽样):

先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

两种方法:

①先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

②先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

(2)分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

分层标准:

①以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

②以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

③以那些有明显分层区分的变量作为分层变量。

(二)

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

奇偶性

定义

一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

(三)

1、柱、锥、台、球的结构特征

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:

①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

数学必修三学习方法

首先:课前复习。就是上课前花两三分钟把书本本节课要学的内容看一遍。仅仅是看一遍,过一遍。这样上课老师讲自己不但可以跟上老师节奏还可以再次巩固。其余不要干其他多余的事。

其次:上课时候一定要专心听讲,如果觉得老师这里讲得都懂了的话可以自己翻书看后面的内容。做习题的时候一定要一道一道往过做,不要越题做。因为对于课本来说这些都是基础,只有基础完全掌握后才能做难题。上课过程中第一次接触到的知识点概念等,一定一定要当堂背过。不然以后很难背过,不要妄想考前抱佛教再背

另外要把笔记记准确,知道自己需要记什么不需要记什么,憋一个劲地往书上搬。字不要求整齐,自己能看懂就行。课本资料书上有例题,多看多记方法。先看课本基础,在看资料书上着重的。例题的方法一定一定要理解,不要去背!接着下课再看笔记,只是略微巩固记住。

数学必修三学习技巧

重视改错错不重犯。

一定要重视改错的这份工作,做到错不再犯。初中数学教学中采用的方法是告诉学生所有可能的错误,只要有一个人犯了错误,就应该提出,以便所有的学生都能从中吸取教训。这叫“一人有病,全体吃药。”

高中数学课没有那么多时间,除了一小部分那几种典型错,其它错误,不能一一顾及。只能谁有病,谁吃药 。如果学生“生病”而忘了吃药,那么没有人会一次又一次地提醒他要注意什么。如果能及时改错,那么错误就可能转变为财富,成为预防针。但是,如果不能及时改错,这个错误就将形成一处“地雷”,迟早要惹祸。

有的学生认为,自己考试成绩上不去,是因为太粗心。其实,原因并非如此。打一个比方。比如说,学习开汽车。右脚下面,往左踩,是踩刹车。往右踩,是踩油门。其机械原理,设计原因,操作规程都可以讲的清清楚楚。如果初学驾驶的人真正掌握了这一套,请问,可以同意他开车上路吗?恐怕他知道他还缺乏练习。一两次你能正确地完成任务,但这并不意味着你永远不会犯错误。练习的数量不够,才是学生出错的真正原因。大家一定要看到,如果自己的基础知识漏洞百出、隐患无穷,那么,今后的数学将是难以学好的。

篇5:概率统计知识点总结

概率统计知识点总结

一.算法,概率和统计

1.算法初步(约12课时)

(1)算法的含义、程序框图

①通过对解决具体问题过程与步骤的分析(如,二元一次方程组求解等问题),体会算法的思想,了解算法的含义。

②通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中(如,三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。

(2)基本算法语句

经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句--输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。

(3)通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

3.概率(约8课时)

(1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。

(2)通过实例,了解两个互斥事件的概率加法公式。

(3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

(4)了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。

(5)通过阅读材料,了解人类认识随机现象的过程。

2.统计(约16课时)

(1)随机抽样

①能从现实生活或其他学科中提出具有一定价值的统计问题。

②结合具体的实际问题情境,理解随机抽样的必要性和重要性。

③在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。

④能通过试验、查阅资料、设计调查问卷等方法收集数据。

(2)用样本估计总体

①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会他们各自的特点。

②通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。

③能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释。

④在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。

⑤会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;能通过对数据的分析为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异。

⑥形成对数据处理过程进行初步评价的意识。

(3)变量的相关性

①通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。

②经历用不同估算方法描述两个变量线性相关的过程。知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。

二.常用逻辑用语

1。命题及其关系

①了解命题的逆命题、否命题与逆否命题。

②理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系。

(2)简单的逻辑联结词

通过数学实例,了解“或”、“且”、“非”的含义。

(3)全称量词与存在量词

①通过生活和数学中的丰富实例,理解全称量词与存在量词的意义。

②能正确地对含有一个量词的命题进行否定。

3.导数及其应用(约16课时)

(1)导数概念及其几何意义

①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见例2、例3)。

②通过函数图像直观地理解导数的几何意义。

(2)导数的运算

①能根据导数定义,求函数y=c,y=x,y=x2,y=1/x的导数。

②能利用给出的'基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。

③会使用导数公式表。

(3)导数在研究函数中的应用

①结合实例,借助几何直观探索并了解函数的单调性与导数的关系(参见例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。

②结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及在给定区间上不超过三次的多项式函数的最大值、最小值。2.圆锥曲线与方程(约12课时)

(1)了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。

(2)经历从具体情境中抽象出椭圆模型的过程(参见例1),掌握椭圆的定义、标准方程及简单几何性质。

(3)了解抛物线、双曲线的定义、几何图形和标准方程,知道它们的简单几何性质。

(4)通过圆锥曲线与方程的学习,进一步体会数形结合的思想。

(5)了解圆锥曲线的简单应用。

三.统计案例(约14课时)

通过典型案例,学习下列一些常见的统计方法,并能初步应用这些方法解决一些实际问题。

①通过对典型案例(如“肺癌与吸烟有关吗”等)的探究,了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用。

②通过对典型案例(如“质量控制”、“新药是否有效”等)的探究,了解实际推断原理和假设检验的基本思想、方法及初步应用(参见例1)。

③通过对典型案例(如“昆虫分类”等)的探究,了解聚类分析的基本思想、方法及初步应用。

④通过对典型案例(如“人的体重与身高的关系”等)的探究,进一步了解回归的基本思想、方法及初步应用。

2.推理与证明(约10课时)

(1)合情推理与演绎推理

①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用(参见例2、例3)。

②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单推理。

③通过具体实例,了解合情推理和演绎推理之间的联系和差异。

(2)直接证明与间接证明

①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。

②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点。

篇6:高二数学必修三知识点统计

(一)基本概念

必然事件

确定事件

1、事件不可能事件

不确定事件(随机事件)

2、什么叫概率?

表示一个事件发生可能性的大小,记为P(事件名称)=a;

练习一:判断下列事件的类型

(1)今天是星期二,明天是星期三;

(2)掷一枚质地均匀的正方体骰子,得到点数7;

(3)买彩票中了500万大奖;

(4)抛两枚硬币都是正面朝上;

(5)从一副洗好的牌中(54张)中抽出红桃A。

(二)预测随机事件的概率

1、步骤:

(1)找出所有机会均等的结果,作为概率的分母

注:不能仅凭主观判断,而应利用列举法、树状图、列表法等方法找。

(2)明确关注结果,作为分子

2、用列表法或树状图分析复杂情况下机会均等结果

篇7:数学必修三统计知识点提纲

数学必修三统计知识点提纲

简单随机抽样

1.总体和样本

在统计学中 , 把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体 的有关性质,一般从总体中随机抽取一部分: 研究,我们称它为样本.其中个体的个数称为样本容量.

2.简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

3.简单随机抽样常用的方法:

(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

4.抽签法:

(1)给调查对象群体中的每一个对象编号;

(2)准备抽签的工具,实施抽签

(3)对样本中的每一个个体进行测量或调查

例:请调查你所在的学校的学生做喜欢的体育活动情况。

5.随机数表法:

例:利用随机数表在所在的班级中抽取10位同学参加某项活动。

2.1.2系统抽样

1.系统抽样(等距抽样或机械抽样):

把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。

K(抽样距离)=N(总体规模)/n(样本规模)

前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。

2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简单。更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。

2.1.3分层抽样

1.分层抽样(类型抽样):

先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

两种方法:

1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

分层标准:

(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

(3)以那些有明显分层区分的变量作为分层变量。

3.分层的比例问题:

(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

2.2.2用样本的数字特征估计总体的数字特征

1、本均值:

2、样本标准差:

3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。

虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。

4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变

(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍

(3)一组数据中的最大值和最小值对标准差的影响,区间 的应用;

“去掉一个最高分,去掉一个最低分”中的科学道理

2.3.2两个变量的线性相关

1、概念:

(1)回归直线方程

(2)回归系数

2.最小二乘法

3.直线回归方程的应用

(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系

(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。

(3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标。如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。

4.应用直线回归的注意事项

(1)做回归分析要有实际意义;

(2)回归分析前,最好先作出散点图;

(3)回归直线不要外延。

如何作作业

数学学习往往是通过做作业,以达到对知识的巩固、加深理解和学会运用,从而形成技能技巧,以及发展智力与数学能力。

(1)先复习后做作业

在做作业前需要先复习,在基本理解与掌握所学教材的基础上进行,否则事倍功半,花费了时间,得不到应有的效果。

(2)必须独立完成培养良好的习惯,在作业中要做得整齐、清洁,要注重解题格式。书写规范。作业必须独立完成。高质量的完成作业可以培养一种独立思考和解题正确的责任感。

(3)短时高效

规定一个具体时间,在此期间什么除了写作业,其他都不允许干。思维松散、精力不集中的作业习惯,对提高数学能力是有害而无益的。

(4)认真核查

准备一个红笔,正确的打对号,不一样的再做一遍,检查是自己做的对还是答案对,一些不会的题或叫不准的题问老师、问同学。

自然数的性质和特点

1、有序性。自然数的有序性是指,自然数可以从0开始,不重复也不遗漏地排成一个数列:0,1,2,3,…这个数列叫自然数列。

2、无限性。自然数集是一个无穷集合,自然数列可以无止境地写下去。

3、传递性:设 n1,n2,n3 都是自然数,若 n1>n2,n2>n3,那么 n1>n3。

4、三岐性:对于任意两个自然数n1,n2,有且只有下列三种关系之一:n1>n2,n1=n2或n1

5、最小数原理:自然数集合的任一非空子集中必有最小的数。

篇8:高中数学必修三概率知识点

条件概率的定义:

(1)条件概率的定义:对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示.

(2)条件概率公式:

称为事件A与B的交(或积).

(3)条件概率的求法:

①利用条件概率公式,分别求出P(A)和P(A∩B),得P(B|A)=

②借助古典概型概率公式,先求出事件A包含的基本事件数n(A),再在事件A发生的条件下求出事件B包含的基本事件数,即n(A∩B),得P(B|A)=

P(B|A)的性质:

(1)非负性:对任意的A∈Ω,

; (2)规范性:P(Ω|B)=1;

(3)可列可加性:如果是两个互斥事件,则

P(B|A)概率和P(AB)的区别与联系:

(1)联系:事件A和B都发生了;

(2)区别:a、P(B|A)中,事件A和B发生有时间差异,A先B后;在P(AB)中,事件A、B同时发生。

b、样本空间不同,在P(B|A)中,样本空间为A,事件P(AB)中,样本空间仍为Ω。

篇9:高中数学必修三概率知识点

互斥事件:

事件A和事件B不可能同时发生,这种不可能同时发生的两个事件叫做互斥事件。

如果A1,A2,…,An中任何两个都不可能同时发生,那么就说事件A1,A2,…An彼此互斥。

对立事件:

两个事件中必有一个发生的互斥事件叫做对立事件,事件A的对立事件记做

注:两个对立事件必是互斥事件,但两个互斥事件不一定是对立事件。

事件A+B的意义及其计算公式:

(1)事件A+B:如果事件A,B中有一个发生发生。

(2)如果事件A,B互斥时,P(A+B)=P(A)+P(B),如果事件A1,A2,…An彼此互斥时,那么P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)。

(3)对立事件:P(A+

)=P(A)+P(

)=1。

概率的几个基本性质:

(1)概率的取值范围:[0,1].

(2)必然事件的概率为1.

(3)不可能事件的概率为0.

(4)互斥事件的概率的加法公式:

如果事件A,B互斥时,P(A+B)=P(A)+P(B),如果事件A1,A2,…An彼此互斥时,那么P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)。

如果事件A,B对立事件,则P(A+B)=P(A)+P(B)=1。

互斥事件与对立事件的区别和联系:

互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生。因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,即“互斥”是“对立”的必要但不充分条件,而“对立”则是“互斥”的充分但不必要条件。

篇10:高中数学必修三概率知识点

随机事件的定义:

在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,随机事件通常用大写英文字母A、B、C等表示。

必然事件的定义:

必然会发生的事件叫做必然事件;

不可能事件:

肯定不会发生的事件叫做不可能事件;

概率的`定义:

在大量进行重复试验时,事件A发生的频率

总是接近于某个常数,在它附近摆动。这时就把这个常数叫做事件A的概率,记作P(A)。

m,n的意义:事件A在n次试验中发生了m次。

因0≤m≤n,所以,0≤P(A)≤1,必然事件的概率为1,不可能发生的事件的概率0。

随机事件概率的定义:

对于给定的随机事件A,随着试验次数的增加,事件A发生的频率

总是接近于区间[0,1]中的某个常数,我们就把这个常数叫做事件A的概率,记作P(A)。

频率的稳定性:

即大量重复试验时,任何结果(事件)出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这个常数的偏差大的可能性越小,这一常数就成为该事件的概率;

“频率”和“概率”这两个概念的区别是:

频率具有随机性,它反映的是某一随机事件出现的频繁程度,它反映的是随机事件出现的可能性;概率是一个客观常数,它反映了随机事件的属性。

篇11: 必修三数学知识点总结

一、直线与方程高考考试内容及考试要求:

考试内容:

1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;

2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;

考试要求:

1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程;

2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系;

二、直线与方程

课标要求:

1.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;

2.理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;

3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;

4.会用代数的方法解决直线的有关问题,包括求两直线的交点,判断两条直线的位置关系,求两点间的距离、点到直线的距离以及两条平行线之间的距离等。

要点精讲:

1.直线的倾斜角:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角。特别地,当直线l与x轴平行或重合时,规定α= 0°.

倾斜角α的取值范围:0°≤α<180°. 当直线l与x轴垂直时, α= 90°.

2.直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα

(1)当直线l与x轴平行或重合时,α=0°,k = tan0°=0;

(2)当直线l与x轴垂直时,α= 90°,k 不存在。

由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在。

3.过两点p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式:

(若x1=x2,则直线p1p2的斜率不存在,此时直线的倾斜角为90°)。

4.两条直线的平行与垂直的判定

(1)若l1,l2均存在斜率且不重合:

①;②

注:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立。

(2)

若A1、A2、B1、B2都不为零。

注意:若A2或B2中含有字母,应注意讨论字母=0与0的情况。

两条直线的交点:两条直线的交点的.个数取决于这两条直线的方程组成的方程组的解的个数。

5.直线方程的五种形式

确定直线方程需要有两个互相独立的条件,确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。

直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。

6.直线的交点坐标与距离公式

(1)两直线的交点坐标

一般地,将两条直线的方程联立,得方程组

若方程组有唯一解,则两条直线相交,解即为交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行。

(2)两点间距离

两点P1(x1,y1),P2(x2,y2)间的距离公式

特别地:轴,则、轴,则

(3)点到直线的距离公式

点到直线的距离为:

(4)两平行线间的距离公式:

若,则:

注意点:x,y对应项系数应相等。

篇12:必修三数学知识点总结

必修三数学知识点总结

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1.元素的确定性;

2.元素的互异性;

3.元素的无序性

说明:

(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的`元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N_或N+整数集Z有理数集Q实数集R

关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式_-3>2的'解集是{_?R_-3>2}或{__-3>2}

4、集合的分类:

1.有限集含有有限个元素的集合

2.无限集含有无限个元素的集合

3.空集不含任何元素的集合例:{__2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系(5≥5,且5≤5,则5=5)

实例:设A={__2-1=0}B={-1,1}“元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

①任何一个集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

③如果AíB,BíC,那么AíC

④如果AíB同时BíA那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集

反比例函数

形如y=k/_(k为常数且k≠0)的函数,叫做反比例函数。

自变量_的取值范围是不等于0的一切实数。

反比例函数图像性质:

反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-_)=-f(_),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

如图,上面给出了k分别为正和负(2和-2)时的函数图像。

当K>0时,反比例函数图像经过一,三象限,是减函数

当K<0时,反比例函数图像经过二,四象限,是增函数

反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

知识点:

1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

2.对于双曲线y=k/_,若在分母上加减任意一个实数(即y=k/(_±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

锐角三角函数公式

sinα=∠α的对边/斜边

cosα=∠α的邻边/斜边

tanα=∠α的对边/∠α的邻边

cotα=∠α的邻边/∠α的对边

数学中什么叫棱

物体上的条状突起,或不同方向的两个平面相连接的部分。棱柱是几何学中的一种常见的三维多面体,指上下底面平行且全等,侧棱平行且相等的封闭几何体。在正方体和长方体中,具有12个棱长,且棱长在不同的几何体中有不同的特点。

篇13:数学必修3统计知识点总结

数学必修3统计知识点总结

随机抽样

简单随机抽样

一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n<=N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

1.简单随机抽样常用的方法:

(1)抽签法;⑵随机数表法;

(1).抽签法:

第一步:将总体的所有N个个体从0至(N-1)编号;

第二步:准备N个号签分别标上这些编号,将号签放在容器中搅拌均匀后每次抽取一个号签,不放回地连续取n次;

第三步:将取出的n个号签上的号码所对应的n 个个体作为样本。

(2).随机数表法:

第一步:将总体的所有N个个体从0至(N-1)编号

第二步:在随机数表中选出开始的数字;

第三步:从选定的数开始,按一定方向读数,若得到的号码大于总体编号或与前面所取出的号码重复的去掉,取出N以内

的数,如此进行下去,直到取满为止,将这n个号码所对应的个体作为样本。

系统抽样

当总体中的个体数较多时,将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这样的抽样叫做系统抽样.

(1)先将总体中的N个体编号.有时可直接利用个体自身所带的号码.

(2)确定分段间隔k。对编号均衡地分段,K(抽样距离)=N(总体规模)/n(样本规模)

当K不是整数时,从N中剔除一些个体,使得其为整数为止。

(3)第一段用简单随机抽样确定起始号码l

篇14:考研数学概率统计三大知识点

考研数学概率统计三大知识点

一、随机事件和概率

考试要求

1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。

2.理解概率、条件概率的概念,掌握概率的'基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式。

3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。

二、随机变量及其分布

考试要求

1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率。

2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用。

3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。

4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为

5.会求随机变量函数的分布。

三、多维随机变量及其分布

考试要求

1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率。

2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件。

篇15:考研数学概率统计重要知识点

考研数学概率统计重要知识点

一、重视基本概念、基本性质、基本方法的理解和掌握

基本概念、基本性质和基本方法一直是考研数学的重点,线性代数更是如此。从多年的阅卷情况和经验看,有些考生对基本概念掌握不够牢固,理解不够透彻,在答题中对基本性质的应用不知如何下手,造成许多本可以避免的失分现象,甚为可惜。所以,考生在复习中一定要重视基本概念、基本性质和基本方法的理解与掌握,同时配合基本题的练习巩固基本知识。

二、加强综合能力的训练,培养分析问题和解决问题的能力

从近十年特别是近两年的研究生入学考试试题看,对考生分析和解决问题能力的考核有所增强。线性代数部分的两个大题中基本上都是多个知识点的综合考查,从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的全面考查。因此,在打好基础的同时,通过做一些综合性较强的习题,边做边总结,加深对概念、性质内涵的理解和应用方法的掌握。

三、注重分析一些重要概念和方法之间的联系和区别

线性代数部分的基本概念和性质较多,并且它们之间存在着千丝万缕的联系,同学们要特别注意根据每年线性代数考试的两个大题内容找出所涉及到的概念与方法之间的联系与区别。例如:向量的线性表示与非齐次线性方程组解的`讨论之间的联系;向量的线性相关(无关)与齐次线性方程组有非零解(仅有零解)的讨论之间的联系;实对称阵的对角化与实二次型化标准型之间的联系等。掌握它们之间的联系与区别,对大家做线性代数部分的大题在解题思路、方法、技巧方面会有很大的帮助。

篇16:初中数学统计与概率知识点

初中数学统计与概率知识点

统计

科学记数法:一个大于10的数可以表示成A_10N的形式,其中1小于等于A小于10,N是正整数。

扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。

各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

近似数字和有效数字:①测量的结果都是近似的。②利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。③对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X(上边一横)。

加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

中位数与众数:①N个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。②一组数据中出现次数最大的那个数据叫做这个组数据的众数。③优劣:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。

调查:①为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。②从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。③抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。

频数与频率:①每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。②当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。

概率

可能性:①有些事情我们能确定他一定会发生,这些事情称为必然事件;有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的。②有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。③一般来说,不确定事件发生的可能性是有大小的。

概率:①人们通常用1(或100%)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。②游戏对双方公平是指双方获胜的可能性相同。③必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0〈P(A)〈1。

对于概率类问题特别要注意以下几点

01 注意概率、机会、频率的共同点和不同点。

02 注意题目中隐含求概率的问题。

03 画树状图及其它方法求概率。

04 摸球模型题注意放回和不放回。

05 注意在求概率的问题中寻找替代物,常见的替代物有:球,扑克牌,骰子等。

统计与概率会在中考中以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查。

解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等。

学好数学的方法有哪些

1学好初中数学课前预习是重点

数学解题思路和能力的培养主要在于课堂上,所以想要学好初中数学一定要重视数学的学习效率和提前预习。只有提前预习才知道自己哪里不会,这样在课堂上才会注意力集中不走神。同时在初中数学的课上,学生也要紧跟老师的解题思路,注意自己的解题思路和老师的有什么不同。尤其是基础知识和最基本的技能学习,课上数学老师讲完后,初中生要在课后及时复习,争取老师讲完每一节的知识后,学生都不要留下疑问。

2独立完成初中数学作业

在完成老师布置的作业时,初中生要学会自己能够独立完成,想要学好初中数学就要勤于思考,千万不能偷懒。平时对于自己弄不懂的题目和解题思路,不要放弃,静下心来认真分析和研究,尽量做到自己能够解决,实在是想不出来在问同学或者老师。对于初中数学的每一个学习阶段,都要学会进行整理和归纳。

3多做题是学好初中数学的关键

想要学好初中数学,就要多做数学题。只有学生掌握了各种各样的题型,那么你对于初中数学的解题思路才能够了解,这样通过积累就会使自己的解题思路和思维丰富。在刚开始的时候,可以从最简单的基础题入手,学生最好是以课本上的习题为主,一定要将课本上的习题弄懂,这样打好基础,才会为接下来的做其他类型的题最好准备。然后在开始做一些课外的有难度的习题,目的是为了帮助学生开拓自己的思路,提高自己分析能力。

4正确的对待初中数学考试

初中学生数学想要打高分,就要把大部分的精力放在基础知识和解题的基本技能上面,因为在初中数学的考试中,基础题占了试卷的大部分,所以基础知识一定要记牢固。另外还要摆正自己的心态,这样在答初中数学题的时候思路才能清晰。

N是指什么数学

数学中的N表示的是集合中的自然数集,这是数学集合中的相关概念,需要掌握的还有:N+表示的是正整数集,Z表示的是集合中的整数集,Q表示的是有理数集,R表示的是实数集。

篇17:高二数学必修三知识点总结

【一】

(一)基本概念

必然事件

确定事件

1、事件不可能事件

不确定事件(随机事件)

2、什么叫概率?

表示一个事件发生可能性的大小,记为P(事件名称)=a;

练习一:判断下列事件的类型

(1)今天是星期二,明天是星期三;

(2)掷一枚质地均匀的正方体骰子,得到点数7;

(3)买彩票中了500万大奖;

(4)抛两枚硬币都是正面朝上;

(5)从一副洗好的牌中(54张)中抽出红桃A。

(二)预测随机事件的概率

1、步骤:

(1)找出所有机会均等的结果,作为概率的分母

注:不能仅凭主观判断,而应利用列举法、树状图、列表法等方法找。

(2)明确关注结果,作为分子

2、用列表法或树状图分析复杂情况下机会均等结果

【二】

一、随机事件

主要掌握好(三四五)

(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。

(2)四种运算律:交换律、结合律、分配律、德莫根律。

(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。

二、概率定义

(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;

(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;

(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。

三、概率性质与公式

(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);

(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);

(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);

(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.

(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.

【三】

1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法.

2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.

3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.

4.秦九韶算法是一种用于计算一元二次多项式的值的方法.

5.常用的排序方法是直接插入排序和冒泡排序.

6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.

7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.

8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.

篇18:高二数学必修三知识点总结

随机事件的概率

平面直角坐标系

证明不等式的方法

绝对值不等式

均匀随机数的产生

随机事件的概率

概率的基本性质

古典概型

不等式与不等关系

基本不等式

等差数列

简单的逻辑连接词

全称量词与存在量词

基本不等式的证明

正弦定理

充要条件

三角函数的诱导公式

函数y=Asin(wx+φ)的图像

正弦函数、余弦函数的图象

等比数列

四种命题

三角函数模型的简单应用

任意角的三角函数

《随机数的产生》

不等式

等差数列的前N项和

任意角的三角函数

函数y=Asin(ωx+ψ)的图象

任意角和弧度制

正弦函数、余弦函数的图象

高中生物必修三知识点总结

生物必修三知识点总结

数学必修一知识点总结

数学必修二知识点总结

数学必修四知识点总结

数学必修五知识点总结

高三概率知识点总结

高中数学概率知识点总结

高二生物必修三知识点总结

高中政治必修三知识点

《数学必修三统计和概率知识点总结(锦集18篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档