以下是小编整理的高压变频器在空压机上的应用,本文共9篇,希望能够帮助到大家。

篇1:高压变频器在空压机上的应用
一、 引言
空压机在工业生产中有着广泛地应用,它担负着为所有气动元件,包括各种气动阀门,提供气源的职责。因此它运行的好坏直接影响生产工艺。空压机的种类主要有活塞式、螺杆式、离心式,但其供气控制方式几乎都是采用进气口调节与加、卸载控制方式的控制模式。
首先来了解一下空压机的基本工作原理。空压机结构复杂,运转时间长,配备的功率大。以活塞式空压机为例,在空压机工作过程中,活塞在气缸内作往复运动,周期性地改变缸内的容积,从而使气缸内气体容积发生变化,并与气缸内气阀相应的开启和闭合动作相配合,通过吸气、压缩、排气等动作,将自然气体或较低压力的气体(一级缸气体)升压,最终输出到储气罐内。为了满足设备的用气需求,储气罐内气体必须保持一定的压力,以作缓冲作用,加上设备自身的原因,空气压力变化幅度必然很大,通常采用切断进气的调节方式来改变排气量。理想状态是供气压力刚好满足需求,保持压力不变,实际上通过进气门控制起来不太理想,通常是空压机排气量大于实际用气量,空压机保持恒速运转,此时储气罐内气体越积越多,直到压力上升到设定的最高压力。通常采取以下两种方法解决高压问题:一是使空压机卸荷运行,保持运转但不产生气体,此时空压机消耗的功率一般在额定功率的30%左右,全是无用功;二是停止空压机的运行,这样看起来是节约了电能消耗,但是大功率电动机的启动会带来诸多问题,而且空气储存的容积有限,当气压低于下限压力值时,空压机再次以额定转速给储气罐加压,直到压力达到上限压力而停止运行,如此循环,
二、空压机加、卸载供气控制方式存在的电能浪费
2(1)交流异步电动机的转速公式为:
n=60f(1-s)/p
其中 n―电机转速 f―运行频率;
p―电机极对数 s―转差率;
2(2) 空压机加、卸载供气控制方式存在的问题
2.1 能耗分析
加、卸载控制方式使得压缩气体的压力在Pmin~Pmax之间来回变化。Pmin是最低压力值,即能够保证用户正常工作的最低压力。一般情况下,Pmax、Pmin之间关系可以用下式来表示:
Pmax=(1+δ)Pmin
δ是一个百分数,其数值大致在15%~30%之间。
在加、卸载供气控制方式下的空压机,所浪费的能量主要在2个部分:
(1) 加载时的电能消耗
在压力达到最小值后,原控制方式决定其压力会继续上升直到最大压力值。在加压过程中,一定要向外界释放更多的热量,从而导致电能损失。另一方面,高于压力最大值的气体在进入气动元件前,其压力需要经过减压阀减压,这一过程同样是一个耗能过程。另外,空压机本身通过检测压力,自动调节进气门,一部分能量消耗在进气门上。
(2) 卸载时电能的消耗
当压力达到压力最大值时,空压机通过如下方法来降压卸载:关闭进气阀使电机处于空转状态,同时将分离罐中多余的压缩空气通过放空阀放空。这种调节方法要造成很大的能量浪费。据我们测算,空压机卸载时的能耗约占空压机满载运行时的10%~25%(这还是在卸载时间所占比例不大的情况下),
换言之,该空压机 20%的时间处于空载状态,在作无用功。很明显在自动调节进气门与加卸载供气控制方式下,空压机电机存在很大的节能空间。
2.2 其它不足之处
(1)靠机械方式调节进气阀,使供气量无法连续调节,当用气量不断变化时,供气压力不可避免地产生较大幅度的波动。用气精度达不到工艺要求。再加上频繁调节进气阀,会加速进气阀的磨损,增加维修量和维修成本。
(2) 频繁采用打开和关闭放气阀,放气阀的耐用性得不到保障。
三、 恒压供气控制方案的设计
电机型号:Y450-2
功率因数:0.87
额定电压:10KV
额定电流:35.1A
额定功率:500KW
额定转速:2975rpm
空气压缩机
额定流量:120 m3/min
额定压力:0.3MPa
变频器: 深圳市科陆变频器有限公司CL2700-10-0630-9QY高压变频器
控制模式:PID恒压控制
在以上PID恒压控制模式下,我们根据用户现场的需要,把压力设定值P0设定为0.25 Mpa,当用户生产用气量加大,管网压力低于0.25 Mpa时,变频器输出频率增加,电机转速加快,空气压缩量增大,压力随之上升;当生产用气量减少,管网压力高于0.25 Mpa时,变频器输出频率减小,电机转速减慢,空气压缩量减小,压力随之下降,始终使压力保持在0.25Mpa左右。
四、 改造效益
4.1 工频运行参数测量
电机运行参数:电压:10KV, 有功功率385KW,年运行时间约7200小时,电费0.8元/度;
空压机运行参数:进口阀门开度40%,出口阀门开度100%,出气口压力:0.25MPa。
4.2 变频运行参数测量
电机运行参数:运行频率46HZ, ,有功功率330KW,年运行时间约7200小时,电费0.8元/度;
空压机运行参数: 进口阀门开度80%,出口阀门开度100%,出气口压力0.25 Mpa。
4.3 经济效益
节约电功率:385-330=55(kW)
节电率:(385-330)÷385=14.28%
每年节约电能:55×7200÷10000=39.6(万度)
每年节约电费:39.6×0.8=31.68(万元)
4.4 附加经济效益
1) 解决压力波动幅度大,提高精度。
2) 解决阀门磨损成本和降低维修量。
篇2:普传变频器在空压机上的应用
空压机,全名为空气压缩机,是一种工矿企业中最常用的空气动力提供设备,通常,空压机分为螺杆式空压机、活塞式空压机等。
空压机内部结构
空气压缩机恒压供气使用变频器与压力控制构成闭环控制系统,使压力波动减少到1.5%,降低噪音,减少振动,保证设备稳定运行。使用变频器后,空压机可在任何压力下随意启动,打破了以前不允许带压启动的规定,启动电流较以前大大降低。使用变频器后,节电率普遍达到20% 左右,它较风机,水泵类负载节电率低。但电机功率都比较大,其节电量值较大,经济效益比较显著。总之,采用恒压供气智能控制系统后,不但可节约 30~40%的电力费用,延长压缩机的使用寿命,并可实现“恒压供气”的目的,提高生产效率和产品质量。
现场用45KW空压机
深圳市某电子有限公司成立于7月,总投资4000多万元港币,公司以FPC柔性电路板贴片加工为主,现有全新贴片线11条,其中中速线4 条,中高速线3条,高速线4条,并设有SMT手印、手摆和手机组装线。依托广州总部AKM(安捷利电子实业有限公司)和ZTE(中兴通讯股份有限公司)的强大财务支持,公司现已发展为拥有占地面积3000多平米,在职员工400余人的高新技术产业龙头企业,挤身于深圳SMT柔性电路板贴片行业前列。
根据厂方要求,我司产品要达到以下几点要求:
1. 现场为37KW空压机,用我司PS7800 055G3节能柜。在工频启动时,要保留星三角降压启动方式。
2. 需要加装24VDC变压器给压力传感器供电源,传感器输出4-20MA模拟信号,需将其串联在电源与变频器之间。
3. 需要加电流表,以便用户观察节电效果。
4. 现场的走线工艺:保证无误,美观。
5. 现场在楼顶,如下雨,容易漏水到柜子里,保证机器正常工作。
现场的PS7800 045F3 电机环保节能器
我司从以下几方面满足客户需求:
1. 要保留星三角降压启动,
将3相380V电源线直接接到PS柜的输入端,将柜子的输出接到星三角启动第一个吸合的交流接触器前端,将FWD与COM接到星三角启动最后吸合的交流接触器的常开触点,则工频启动时星三角降压启动有效。另外,需要从柜子的输入端给星三角启动的三个交流接触器和空压机操作面板提供工作电压。
2. 压力传感器需要24VDC工作电压,变压器为220V变直流24V。从柜子的变频指示灯两端取220V电压,通过变压器给压力传感器供电。接法:24V正极接传感器正极;传感器负极接变频器的VF端子;变频器的V3端子接24V负极。利用变频器的PID功能实现现场的应用要求。
3. 加装普通电流表,串联在电源与PS柜之间,三进三出。
4. 现场的走线工艺。从线管里穿线、走线。
5. 订作了一个底座,防止下雨时雨水漏入设备内部。
参数设置如下:
F04=7 PID调节方式控制频率运行
F05=3 端子控制变频器运行
F09=35 加速时间为35秒
F10=35 减速时间为35秒
F16=25 下限频率为25秒
F44=2 在上电时先检测电机运行速度
F72 P02=1 反馈信号选择4~20mA电流信号
P04=67 键盘给定反馈值为量程的67%
P06=0.300 PID积分时间为0.3秒
P07=400 PID比例增益为70%
P08=0 PID故障检测时间为0
其他参数为出厂值设置。
此工况变频器的日常保养和维护、注意事项等:
1. 注意电磁干扰。
2. 注意环境温度。
3. 注意灰尘、粉尘的进入。
4. 注意雨天防水漏入、流入设备内部。
篇3:高压变频器在发电厂凝结水泵上的应用
本文以国产多电平型高压变频器在国电滦河发电厂凝结水泵的应用为例,分别对凝结水泵应用高压变频器前后的运行工况、基本原理及注意事项进行阐述,并通过电耗对比试验,对凝结水泵变频调节和传统的挡板调节的节能效果比对,近而说明,发电厂采用国产高压变频器对凝结水泵等设备进行调速节能改造的应用方法,并具有投资省,见效快等特点。
国电滦河发电厂位于河北省承德市,拥有二台100M W国产凝汽式汽轮发电机组。分别于1993、投入运行。203月,国电滦河发电厂对大批设备进行变频改造。采用北京HARSVERT- A06/130高压变频器,用于二台100M W机组的凝结水泵改造项目。目前,凝结水泵变频器运行稳定,节能效果明显。
1 凝结水泵的运行工况
在汽轮机内做完功的蒸汽在凝汽器冷却凝结之后,集中在热水井中,这时凝结水泵的作用是把凝结水及时地送往除氧器中。维持凝结水泵连续、稳定运行是保持电厂安全、经济生产的一个重要方面。
监视、调整凝汽器内的水位是凝结水泵运行中的一项主要工作。在正常运行状态下,凝汽器内的水位不能过高或过低。当机组负荷升高时,凝结水量增加,凝汽器内的水位相应上升。当机组负荷降低时,凝汽器内水位相应降低。
凝结泵电机为6KV/1000KW电机,设计有一定裕量。每台机组配备二台凝结泵,一台运行,一台备用。
没有使用变频器之前,凝汽器内的水位调整是通过改变凝结水泵出口阀门的开度进行的,调节线性度差,大量能量在阀门上损耗。同时由于频繁的对阀门进行操作,导致阀门的可靠性下降,影响机组的稳定运行。
使用高压变频器后,凝结水泵出口阀门全部打开,通过调节变频器的输出频率改变电机的转速,达到调节出口流量满足运行工况的要求。
2 HARSVERT-A06/130型高压变频器原理及特点
Harsvert-A系列高压变频器采用单元串联多电平PWM拓扑结构(简称CSML)。由若干个低压P W M变频功率单元串联的方式实现直接高压输出,高压主回路与控制器之间为光纤连接,安全可靠;精确的故障报警保护;具有电力电子保护和工业电气保护功能,保证变频器和电机在正常运行和故障时的安全可靠。
采用功率单元串联,而不是功率器件串联,器件承受的最高电压为单元内直流母线的电压,器件不必串联,不存在器件串联引起的均压问题。直接使用低压IG BT功率模块,器件工作在低压状态,不易发生故障;6kv变频器共使用42对1200V低压I G BT,低压IG BT门极驱动功率较低,驱动电路非常简单,开关频率很低,不必采取均压电路和浪涌吸收电路,系统效率高,同时功率单元采用电容滤波的结构,总体技术成熟可靠。 变频器可以承受30%的电源电压下降而继续运行,变频器的6K V主电源完全失电时,变频器可以在3秒内不停机,能够全面满足变频器动力母线切换时不停机的需要。另外6KV主电源欠压时可不停机,自动降额,电压正常后再恢复到原来速度。采用二极管不可控整流电路结构,变频器对浪涌电压的承受能力较强,雷击或开关操作引起的浪涌电压可以经过变压器(变压器的阻抗一般为 8%左右)产生浪涌电流,经过功率单元的整流二极管,给滤波电容充电,滤波电容足以吸收进入到单元内的浪涌能量,另外变压器一次侧安装了压敏电阻浪涌吸收装置,起到进一步保护作用,
功率单元为多极模块串联,某个模块发生故障时自动旁路运行,便于现场采取对应措施;即在每个功率单元输出端之间并联旁路电路,当功率单元故障时,封锁对应功率单元IGBT的触发信号,然后让旁路SCR导通,保证电机电流能通过,仍形成通路,大大提高了系统运行的可靠性。
电机可实现软启动、软制动,转速自动控制;启动电流小于电机的额定电流;电机启动时间可连续可调,减少了对电网影响。变频器预装具有自主版权的全中文操作和监控软件,本机及远程启停操作、功能设定、参数设定、故障查询、运行记录查询等均采用全中文的WINDOWS操作界面;配备12.1"彩色液晶触摸显示屏,可实现完整的通用变频器参数设定功能,可打印输出运行报表;调整触摸式面板,可随时显示电压及电流波形、频率和电机转速,可非常直观地显示电机在任何时间的实时状态;具有很强的诊断、指示能力:可检测变频器各部分的运行状态,完整的故障监测电路、精确的故障定位,所有的功率模块均为智能化设计,当有故障发生时,将故障信息返回到主控单元中,主控单元会及时将主要功率元件I G BT关断,保护主电路,同时在中文人机界面上精确定位显示故障位置、类别,使故障点一目了然,适应于一般操作工人和维护人员的技能水平。
采用外部模拟信号控制变频器输出频率时(变频器作为DCS的执行机构),如果发生模拟信号掉线或短路时,变频器可以提供报警信号,同时保持原有输出频率不变。变频器控制电源可接收交流220V和直流220V输入,并配备有UPS,在控制电源发生故障时可以继续运行,同时提供报警。
3 应注意的问题
凝结水母管压力不能过低,以防止空气由排水阀经凝结水再循环管进入凝汽器中,而破坏真空。在凝结水再循环管处,当除氧器侧的压力大于凝结水母管水压时,则除氧器内的汽、水要通过再循环管返回凝汽器,这将使凝结水母管发生水击。因此。变频运行时凝结泵出口阀门调整门开度不能为100%。
4 节能效果
为比较变速调节和传统的挡板调节凝结泵电耗情况,确定其节能效果,于年5月17日对#6机组的#1凝结泵变频装置作了电耗对比试验,机组在 100MW、75MW、50MW负荷下运行时,变频调节比传统的挡板调节分别节电470k W、611k W、631kW,节电幅度为47.4%、70.8%、78.4%。变频调节节能效果明显,具体数值见下表:试验数据表。
根据试验结果计算,#6机组凝结泵变频器全年节电量为4639MWh,按照每1MWh上网电量310元计算,全年可获经济效益143.8万元,一年半即可收回全部投资,经济效益十分显著。而且减少了对截门的冲刷,保持了系统恒定的水压。
5 总结
高压交流变频调速技术是90年代迅速发展起来的一种新型电力传动调速技术,应用了先进的电力电子技术、计算机控制技术、现代通信技术和高压电气、电机拖动技术等综合性学科领域的最新成果,其技术和性能胜过以往其它任何一种调速方式。通过多年的不断努力,国产高压变频器的性能、可靠性已经有了很大提高,今后必将有更宽阔的舞台。
篇4:浅谈变频器在空压机节能改造中的应用
1、空压机在工业生产中有着广泛的应用,
空压机的种类有很多,有活塞式空压机、螺杆式空压机、离心式空压机,但其供气控制方式几乎都是采用加、卸载控制方式。该供气控制方式虽然原理简单、操作简便,但存在能耗高,进气阀易损坏、供气压力不稳定等诸多问题。随着社会的发展和进步,高效低耗的技术已愈来愈受到人们的关注。在空压机供气领域能否应用变频调速技术,节省电能同时改善空压机性能,提高供气品质就成为我们关心的一个话题。
2、空压机工作原理目前空压机上都采用两点式控制(上、下限控制)或启停式控制(小型空气压缩机)
也就是当压缩气体气缸内压力达到设定值上限时,空压机通过本身气压或油压关闭进气阀,小型空气压缩机则停机。
当压力下降到设定值下限时,空压机打开进气阀,小型空压机则又启动。传统的控制方式容易对电网造成冲击,对空压机本身也有一定的损害,当用气量频繁波动时,尤其明显。
正常工作情况下,空气被压缩到储气罐。空压机各点的检测(包括压缩空气温度、压力,镙杆温度、冷却水压力、温度和油压、油温等等)和整体控制由主控制单板机控制。
当空压机出口压力达到设定值上限时,通过油压分路阀关闭进气口,同时打开内循环管路,作自循环运行。此时用气单位继续用气。
当压力下降到设定值下限时,油压分路阀关闭循环管路,打开空气进口,空气又由过滤器经压缩到储气罐中。在静态,原起动方式(Y-△),及加载、卸载时对电网供配电设备及镙杆都会造成极大的冲击。尤其是能源的严重浪费。
主电机转速下降,轴功率将下降很多。节能潜力相当大。)变频节能的效果是十分显著的,特别是调节范围大的系统及设备,通过实际应用可以直观的看出在流量变化时只要对转速(频率)稍作改变就会使轴功率有更大程度上的改变,就因有此特点使得变频调速(节能)方式成为一种趋势并且不断深入的应用于各行业及其各种调整领域。
3、加、卸载供气控制方式存在的问题
3.1耗能分析我们知道,加、载控制方式使得压缩气体的压力在Pmin~Pmax之间来回变化。Pmin是最低压力值,即能够保证用户正常工作的最低压力。一般情况下,Pmin、Pmax之间关系可以用下式来表示:CPmax=(1 δ)Pmin是一个百分数,其数值大致在10%~25%之间。而若采用变频调速技术可连续调节供气量的话,则可将管网压力始终维持在能满足供气压力上,即 Pmin附近。由此可知,在加、卸载供气控制方式下的空压机较之变频系统控制下的空压机,所浪费的能量主要在2个部分:
(1)压缩空气压力超过Pmin所消耗的能量在压力达到Pmin后,原控制方式决定其压力会继续上升(直到Pmax)。这一过程同样是一个耗能过程。
(2)卸载时调节方法不合理所消耗的能量通常情况下,当压力达到Pmax时,空压机通过如下方法来降压卸载:关闭进气阀使电机处于空转状态,同时将分离罐中多余的压缩空气通过放空阀放空。这种调节方法要造成很大的能量浪费。
3.2其它不足之处
(1)靠机械方式调节进气阀,使供气量无法连续调节,当用气量不断变化时,供气压力不可避免地产生较大幅度的波动,
用气精度达不到工艺要求。再加上频繁调节进气阀,会加速进气阀的磨损,增加维修量和维修成本。
(2)频繁采用打开和关闭放气阀,放气阀的耐用性得不到保障。
4、恒压供气控制方案的设计
针对原有供气控制方式存在的诸多问题,经过上述分析,应用变频调速技术进行恒压供气。通过压力变送器采集实际压力P送给PID智能调速器,与压力设定值P0作比较,并根据差值的大小按既定的PID控制模式进行运算,产生控制信号送变频调速器VVVF,通过变频器控制电机的工作频率与转速,从而使实际压力P始终接近设定压力P0。
同时,该方案可增加工频与变频切换功能,并保留原有的控制和保护系统,另外,采用该方案后,空压机电机从静止到旋转工作可由变频器来启动,实现了软启动,避免了启动冲击电流和启动给空压机带来的机械冲击。
5、技术指标和配置
磁场定向矢量控制,电机变量完全解耦,电流闭环。采用美国TI公司最新款高性能32位电机控制专用DSP,高速完成复杂准确的控制算法,国内首家产品化应用。
调速精度:0.01HZ
调速范围:0.5-600.00HZ
冲击负载:180%电机额定转矩,2秒内不跳脱。
低频转矩:0.5Hz,150%额定转矩输出。
150%额定转矩加速和减速。
内置多功能组合数字PID调节器。
内置标准485数据接口。
可编程开关量输入端口:8位,输出端口:2位,。
可编程继电器输出端口:1路,常开/常闭可选。
可编程模拟量输入端口:4通道,输出端口:1通道。
电压可设定电源:1路。
端子控制电源:1路。
独立风道、无触点软启动开关、低电感直流母线排高可靠性设计。
6、改造效果
(1)整套改造装置并不改变空压机原有控制原理,也就是说原空压机系统保护装置依然有效。并且工频/变频切换采用了电气及机械双重联锁,从而大大的提高了系统的安全、可靠性。
(2)空压机改造工程安装完毕后,一次试车成功,运行稳定,空压机振动和噪声大减低。
(3)除缓冲缸压力在部分频率时增大0.2公斤外,油压、油温及各点的检测数据均在安全数值内被优化。
(4)变频改造后,起动为软起动,运行时无卸载和加载冲击电流现象,空压机本身的机械性冲击大大减小。
(5)在保证管网供气的情况下,电流大大降低,基本不出现满载现象,一般在40Hz左右,和以前相比,节电率在30%以上,约10个月可以收回投资。
(6)空压机、供配电设备及机械设备因供气稳定,维修量大大减小,综合效益明显。
(7)改造后空压机的运行安全、可靠,同时达到了用气的工艺要求。
篇5:高压变频器在电厂水泵节能改造上的应用
1 引言
采用新型高压大功率电力电子器件、直接“高-高”方式的高压变频器,具有体积小、效率高、结构简单、运行可靠等特点,变频器装置采用不可控24脉冲移相整流和全控器件进行开关调制,具有很高的输入侧功率因数、优良的调速性能和转矩控制性能。高压变频器通过改变电动机运行频率,在很宽的转速范围内进行高效率的转速调节,可以取得很好的节电效果,在风机和水泵的节能改造上已经得到广泛验证。
国电双鸭山发电厂3、4号机为210MW火电机组,和3、4号机组配备有6台6kV/570kW灰浆泵电机,电机型号JS512-8,额定电流69A,额定转速730r/min。其中,6#灰浆泵是二级泵,和5#灰浆泵配合使用。在安装变频器之前,6#灰浆泵是根据前池液面的高度决定启、停电机。这样就存在两方面问题:一方面为了适应生产工艺要求,需要每天根据前池液位和冲灰管的需要不断切换、启停电机,前池液位高度得不到很好控制,而且频繁工频启动电机对电机造成很大冲击; 另一方面存在节流损失,造成电能的浪费。为了进一步优化灰浆泵运行工况,节省电能,所以对6#灰浆泵电机进行高压变频改造。
6#灰浆泵电机在高压变频器改造之后,通过调整6#灰浆泵变频器的运行频率(电机转速)来调整前池液面的高度,这样5#灰浆泵可以一直在最佳效率下工频运行,从而减少了操作6#灰浆泵开关的分合次数,减小了电机工频启动造成的冲击,进一步优化了生产工艺,并且节省了电能。
2 灰浆泵运行工艺和变频改造技术方案
2.1 6#灰浆泵运行情况及变频改造技术方案
(1) 在灰浆泵运行现场,变频器到电机之间的高压电缆经常发生单相对地放电或单相直接接地的情况。在这种情况下,要保证不能损坏变频器,并且变频器要能发出报警停机信号以便现场人员及时处理。因此,要求变频器输出能承受单相接地的能力,相应变频器的输出滤波器电容中性点不能直接接地,而是需要通过电容接地。
(2) 由于6#灰浆泵属于二级泵,所以在启动6#灰浆泵变频器运行之前,5#一级灰浆泵通常已经在运行,将会推动6#灰浆泵电机运转,变频器相当于飞车启动。所以变频器启动时需实时检测电机运行频率,根据该运行频率带动电机启动。
(3) 6#灰浆泵变频运行要求能对前池液位高度闭环控制,自动调节电机的转速。
(4) 由于灰浆泵运行时,在前池液位很低的时候有可能造成负荷过大甚至堵转的情况,因此要求变频器有过载能力以及过流保护措施。
综合上述因素,从目前国内、外主要的两种高压变频器拓扑结构中,选择基于IGCT的三电平中性点箝位的拓扑结构。三电平拓扑结构具有以下优点:开关功率器件数少、IGCT开关电流大、过流能力强、结构简单、可靠性高、适合负载冲击较大的应用场合。
在控制方面,灰浆泵前池液位设置压力式水位传感器,将测量得到水位高度信号,变换为4~20mA标准信号,由电流环接口送给变频器; 变频器计算出当前水位与控制水位之间的偏差,通过变频器内置的数字PID调节器改变变频器的输出频率,调节电动机的转速,进而控制灰浆泵前池液位的高度。
2.2 三电平中点箝位电路原理结构图
基于IGCT的三电平中性点箝位的高压变频器结构简单,主体由整流器、逆变器和滤波器组成。如图1所示,整流器采用24脉冲不控整流,由移相15°的24 脉波移相整流变压器和四重三相整流桥构成,这样可以满足对输入端的电流谐波要求,
直流环节由共模电抗、IGCT保护及充电限流电阻和直流电容(C1、 C2)构成。
三电平逆变器由di/dt吸收电路(由阳极电抗及嵌位电路组成)和12个IGCT组件构成的三电平逆变桥组成。
三电平结构的变频器需要拖动6kV电机,所以变频器直流母线电压需要10kV。实际运行时,两个处于关断状态的功率组件需要承受10kV的电压,这样每个组件要承受5kV。在主开关功率器件IGCT工作耐压只有4.5kV的条件下,需要采用两只串联的方式组成一个功率组件。
变频器内置输出滤波器由三相滤波电抗(La、Lb、Lc)和三相滤波电容(Ca、Cb、Cc、Cn)构成。滤波器使变频器输出到电机的电压和电流波形更加接近正弦波,而不需要电动机降容使用。
高压变频器内部采用无熔断器结构,电路的主保护主要由保护IGCT来实现,其动作时间在μs级。
2.3 新一代高压变频器控制系统的改进
我公司第一代变频器采用工控机进行信号处理,控制的实时性得不到保证。由于变频器要采用优化的PWM控制算法控制电机,需要主控系统控制器具有更高的运行速度和处理能力、更大的存储器和外部信号处理端口、具备浮点运算的能力。因此,新一代的变频器控制器选用浮点数字信号处理器DSP和大规模集成电路的 FPGA相结合的方案,DSP主要负责采集的信息和运算处理,FPGA根据处理结果转化为相应的控制脉冲,控制实时性大大提高。图2是新一代高压变频器主控板的硬件框图,它与第一代控制器相比,更能适应高性能的矢量控制算法的要求。
3 II期6#灰浆泵高压变频器现场调试运行和节能分析
3.1 变频器系统的控制调试
灰浆泵的流量是根据机组的负荷大小和冲灰工艺需求控制的,水流量的变化较大,有时呈阶梯状特性,水位波动比较大。水位压力式传感器需要选择合适的测量点,否则会因为水池内水流因素和水面波动引起测量的不稳定性。经过现场测试,选择了水流变化不大的靠池壁位置。经过调试,建立了一个合适的模型和PID控制参数,通过闭环跟踪水位变化,稳定控制前池液面的高度,优化了生产工艺。
另外,变频器还可以选择运行在开环状态,通过电厂DCS信号控制变频器的输出频率。
3.2 变频器节能分析
II期6#灰浆泵进行变频改造的一个重要原因是节约电能。电机变频运行节能的原理在许多资料均有论述,这里不做讨论。通过II期6#灰浆泵的工频旁路运行和变频运行的实际数据来说明变频的节能效果。
根据以上数据,采用变频运行后,24h可节约电量9380-6360=3020kWh。采用变频器后节能32%。由以上实际运行数据可以看出:电机变频运行不仅满足了工艺要求,同时能节约大量电能。经过几个月的连续运行,II期6#灰浆泵的变频改造后,节能效果显著。灰浆泵属于火电机组的公用设备,年运行时间长,可以为电厂节约15~30%左右的能源。
4 结束语
双鸭山电厂II期灰浆泵经过变频改造后,优化了灰浆泵的运行状况和生产工艺,更好地稳定了前池液位的高度,实现了闭环自动控制,同时节约了大量电能,节能效果明显。高压变频器的控制系统和控制技术发展很快,对电机更好性能的控制需要性能更高的主控系统平台。虽然新一代控制系统的高压变频器首先运用到风机、水泵的变频驱动上,但它比以前更可靠、更能提高高压变频器的控制性能。
篇6:高压变频器在循环流化床锅炉中应用
一、概述
高压交流变频调速技术是上个世纪90年代迅速发展起来的一种新型电力传动调速技术,主要用于交流电机的变频调速,其技术和性能远远胜过以前采用的调速方式(如串级调速、液力耦合器调速、转子水阻调速等),高压变频以其显著的节能效益、完善的保护功能、方便的通信功能以及高调速精度、宽调速范围,得到了广大用户的认可,成为企业电机节电方式的首选方案。
江苏森达沿海热电有限公司现有三台循环流化床锅炉,三大风机采用液力耦合器调速,三大风机的稳定运转对正常生产至关重要,对设备要求特别苛刻,因此在高压变频器的选用上非常谨慎,12月15日我公司扩建一台4#炉UG-130/5.3-M8采用了北京合康HIVERT-Y06/096高压变频器2台和HIVERT-Y06/048高压变频器1台在公司4#炉安装调试,稳定运行至今,为国产高压变频器赢得了荣誉。
二、循环流化床锅炉工艺
循环流化床是一种适于固体燃料的清洁高效燃烧技术。固体颗粒(燃料、石灰石、砂粒、炉渣等)在炉膛内以一种特殊的气固流动方式(流态化)运动,离开炉膛的颗粒又被分离并送回炉膛循环燃烧。炉膛内固体颗粒的浓度高,燃烧、传质、传热、混合剧烈,温度分布均匀,固体颗粒在炉膛内的内循环和外循环十分强烈,在炉膛内的停留时间较长,保证了较高的燃烧效率。
循环流化床燃烧技术是近二十多年来发展的洁净煤燃烧技术,其燃烧方式特别适用于高灰分低挥发的煤矸石、洗中煤等劣质煤,具有较好的燃料适应性,可变废为宝,体现节能要求。另外,循环流化床锅炉在燃烧过程采用炉内加石灰石、低温燃烧,可同时达到脱硫脱硝的目的,具有较好的环保特性。
燃料由给煤机送入炉膛;一次风由锅炉底部送入,主要用于维持燃料粒的流化;二次风沿燃烧室侧壁多点送入,主要用于增加燃烧室的氧量,提高燃烧效率;燃烧后的大量颗粒随烟气进入旋风分离器,与烟气分离;分离出来的颗粒经回料阀回到燃烧室继续燃烧;分离出来的烟气则经过除尘器除尘后,由引风机引入烟囱排出。实际运行中,循环流化床的燃烧效率可高达97%~99%。
三、技术方案分析
由于其独特的燃烧特性,与传统的煤粉炉相比,循环流化床锅炉对风量、风压的控制有更高的要求:为了保证锅炉燃烧的经济性,当燃料量改变时,必须相应地调节送风量,使之与燃料量匹配;为了保证锅炉运行的安全性,必须使引风量与一次风量相配合以保证炉膛压力在正常范围内;通过一次风量及风压的调节以保证炉膛内物料的正常流化。
与常规煤粉炉相比,循环流化床锅炉配置的风机压头较高,目前调节风量的主要是通过调节风门开启度或采用变频调速技术控制风机转速。当采用调节风门开启度的方式进行风量控制时,容易出现这样几个问题:(1)节流损失大;(2)系统响应速度慢、调节品质差,自动投入率低,难以满足实际要求;(3)执行机构易出问题,维修费用高;(4)电机启动时会产生过电流,影响电机绝缘性能和使用寿命。变频调速技术由于较好地解决了上述问题,正逐步在循环流化床机组中得以运用。
由于循环流化床锅炉中的一次风机、二次风机、引风机均属于二次方转矩负载,在忽略风道变化因素后,有风量与转速成正比、风压与转速二次方成正比、机械轴功率与转速立方成正比的关系。当采用高压变频器对这些电机进行变频调速控制时,仅通过相对小范围内的频率改变,调节电机转速,即可实现风量的控制,而且调节精度及响应速度有很大改善。同时,当电机转速降低时,由于轴功率与转速三次方成正比的对应关系,电机的轴功率显著下降,节能效果明显,
四、高压变频装置特点
高压变频技术的具体实现有多种方式,国内外的高压变频器厂家目前主要采用如下一些解决方案:高-低-高方案、三电平-多电平方案、电流源方案、功率单元串联方案等等。高-低-高方案需要输入、输出变压器,存在中间低压环节电流大、效率低、可靠性下降、体积大等缺点,只适合很小容量的高压电动机;三电平-多电平方案存在控制复杂、需要加滤波器等缺点,只有少数国外厂家采用。电流源存在输入功率因数低,维护成本高等缺点。
在实际运行中,性能优良的高压变频器对电网谐波污染小,北京合康亿盛科技有限公司采用多重化的脉宽调制技术,输出波形为非常完美的正弦波。噪音低,发热低,不会引起电机转矩脉动,对电机没有特殊要求。由于使用移相技术和二极管整流,在整个调速范围内功率因数达到95%以上,且整机效率R97%,无需进行功率因数补偿。电压输入范围较大,输入电压在-20%~15%,频率在45Hz~55Hz波动范围内设备均能正常工作。采用空间矢量PWM控制方式,单元叠波输出,有效抑制输出谐波含量,避免输出共模电压过大。采用双电源切换技术,独特的供电设计,特有的过电压保护技术,保证高压变频器稳定、可靠运行。实践证明采用单元串联、直接高-高方式的拓朴结构的高压变频器在负载连续运转要求严格的环境中应用具有独到的优势。
五、变频前后耗电情况对比
我公司于月起开始将高压变频器应用4#炉UG-130/5.3-M8的三大风机(引风机,一次风机,二次风机),目前高压变频运转稳定,平均节电率达到20%以上,取得了显著的经济效益。以下为我公司安装高压变频前后数据对比:
节能计算:
工频条件下:4#炉三台风机平均每小时耗电量为:1558.1 kWh
变频条件下:4#炉三台风机平均每小时耗电量为:1185.9 kWh
平均每小时的节电量:1558.1-1185.9=372.2kWh
年节电量:372.2×6500=2419300kWh(按年运行6500小时计算)
年节电收益:2419300×0.45=108.8万元(按每度电0.45元计算)
成本回收时间: 4#炉三台风机年节电收益108.8万元情况下,具有显著的经济效益。短期内就能回收成本。
除了明显的节电效益,采用变频器还有以下优点:(1)高压变频器优良的软启动/停止功能(可以零转速启动),启动过程最大电流小于额定电流,大大减小了启动冲击电流对电动机合电网的冲击,有效减少了电机故障,从而大大延长了电机的检修周期和使用寿命,同时还可有效避免冲击负荷对电网的不利影响;(2)使用变频后,原调节风门全开,大大减少其磨损,延长了风门使用寿命,降低检修维护费用,进一步降低了风道阻力;(3)使用变频后,原液力耦合器取消,节省了液力耦合器的维护费用;(4)高压变频器特有的平滑调节减少了风机以及电机的机械磨损,同时降低了轴承、轴瓦的温度,有效减少了检修费用,延长了设备的使用寿命。
六、结论
高压变频调速器已经在多家电厂、水泥厂、化工厂、金属冶炼厂的风机和离心式水泵中得到实际应用,并取得良好的运行效果和节能效益。作为未来大型节能锅炉的发展趋势,循环流化床锅炉中包含大量能应用高压变频调速技术的设备,由于循环流化床燃烧介质多样性,风系统、水系统设计选型时比煤粉炉偏大,实际节能效果比煤粉炉明显。因此,将高压变频调速技术应用于循环流化床锅炉的设计和改造,对于降低损耗、节约能源、减少成本、提高自动化控制水平,具有十分重要的意义和广阔的前景。
篇7:变频器在油田上的应用
油田作为一个特殊行业,有其独特的背景,油田中变频器的应用主要集中在:游梁式抽油机控制(俗称“磕头机”)、电潜泵控制、注水井控制和油气集输控制等几个场合,本文主要介绍变频器在游梁式抽油机上的应用。
一、磕头机的工作原理
目前,在油田抽油设备中,以游梁式磕头抽油机应用最为普遍,数量也最多,但是,传统的磕头机普遍存在着启动冲击大,运行耗电多,大马拉小车、效率低下等诸多问题,加之油井情况复杂,稠油、结蜡、沙卡现象较多,断杆、烧电机等现象经常发生,对电动机没有可靠的保护功能,设备维修量大,为此,急需对现有的抽油机设备进行改造。
当磕头机工作时,驴头悬点上作用的载荷是变化的。上冲程时,驴头悬点需提起抽油杆柱和液柱,在抽油机未进行平衡的条件下,电动机就要付出很大的能量。在下冲程时,抽油机杆柱转而对电动机做功,使电动机处于发电机的运行状态。抽油机未进行平衡时,上、下冲程的载荷极度不均匀,这样将严重地影响抽油机的四连杆机构、减速箱和电动机的效率和寿命,恶化抽油杆的工作条件,增加它的断裂次数。为了消除这些缺点,一般在抽油机的游梁尾部或曲柄上或两处都加上了平衡重。这样一来,在悬点下冲程时,要把平衡重从低处抬到高处,增加平衡重的位能。为了抬高平衡配重,除了依靠抽油杆柱下落所释放的位能外,还要电动机付出部分能量。在上冲程时,平衡重由高处下落,把下冲程时储存的位能释放出来,帮助电动机提升抽油杆和液柱,减少了电动机在上冲程时所需给出的能量。目前使用较多的游梁式抽油机,都采用了加平衡配重的工作方式,因此在抽油机的一个工作循环中,有两个电动机运行状态和两个发电机运行状态。当平衡配重调节较好时,其发电机运行状态的时间和产生的能量都较小。
游梁式抽油机的变频改造主要有以下3个方面
(1)大大提高了功率因数(可由原来的0.25~0.5提高到0.9以上),大大减小了供电电流,从而减轻了电网及变压器的负担,降低了线损,可省去大量的“增容”开支.这主要集中在供电企业对电网质量要求较高的场合,为避免电网质量的下降,需引入变频控制,其主要目的就是减小抽油机工作过程对电网的影响。在前期井中,由于刚开采,储油量大,使用变频器运行至65HZ,频率提高了1/3,相应地电机转速提高了30%,其采用油量也相应提高,其综合采油率可比工频情况下多采油20%,工效提高了1.2倍,很受油田采油工的欢迎。
(2)以节能为第一目标的变频改造,
这点较普遍,一方面,油田抽油机为克服大的起动转矩,采用的电动机远远大于实际所需功率,工作时电动机利用率一般为 20%~30%,最高不会超过50%,电动机常处于轻载状态,造成资源浪费。另一方面,抽油机工作情况的连续变化,取决于地底下的状态,若始终处于工频运行,也会造成电能浪费。为了节能,提高电动机工作效率,需进行变频改造。在中、后期井中,由于井储量减少,电机若仍工频行,势必浪费电能,造成不必要的损耗,因而我们采用降低转速的方式,减少冲程,一般将变频器的频率运行至35-40HZ之间,这样电机转速下降了30%,加之采油设备一般负荷较轻,节电率可达25%左右,而且提高了功率因数,减少了无功损耗。
(3)变频器具有软启/软停功能,在电机启动时,减少了对抽油杆的机械冲击,对稠油、结蜡、沙卡、等都能效地进行保护停机,以保护电机及机械设备,减少维修量,防止断杆,变频器对过压、欠压,过载、短路及电机失速都能可靠地保护,对延长电机的寿命,减少机械设备的磨损等,都具有很好的作用。
由于实现了真正的“软起动”,对电动机、变速箱、抽油机都避免了过大的机械冲击,大大延长了设备的使用寿命,减少了停产时间,提高了生产效率。以提高电网质量和节能为目的的变频改造。这种情况综合了上面两种改造的优点,是应用中的一个重要发展方向。
二、抽油机的技术发展
第一代:最先的抽油机主马达主要是采用三相异步电机启动,三相异步电动机启动运行缺点就是没有调速功能,只能保持一个恒速,严重影响产油量。这种不带保护的抽油机电机控制方式已经退出了历史舞台。
第二代:由于直流电动机的面世,也加快了直流电机在抽油机上的应用,从而替代了异步电机的使用。采用直流调速的方法明显的优胜三相异步电机,产油量也高了许多;但直流电动机成本比较高,其调速性能也不是很理想。
第三代:采用变级电机调速,就是改变电机极对数来达到调速的目的,常采用4/8/32极多速电机实现。但其装置比较复杂,占用空间也比较大,设备寿命短,稳定性不太好。
第四代:变频调速技术,由于变频调速技术已成为节能及提高产品效益质量的有效措施,油田中变频器应用在游梁式抽油机已经非常广泛。由于油井的类型和工况千差万别,井下渗油和渗水量每时每刻都在变.抽油机的负载变化是无规律的,故采用变频调速技术,使抽油机的运动规律适应油井的变化工况,实现抽油系统效率的提高,达到节能增产的目的。
总而言之,变频调速技术作为高新技术、基础技术和节能技术,其应用已经渗透到石油行业的各个技术部门,发挥着越来越重要的作用。
篇8:变频与传动:高压变频器原理及应用
变频与传动——高压变频器原理及应用,1.引言电机是工业生产中主要的耗电设备,高压大功率电动机的应用更为突出,而这些设备大部分都存在很大的
1.引言
电机是工业生产中主要的耗电设备,高压大功率电动机的应用更为突出,而这些设备大部分都存在很大的节能潜力,所以大力发展高压大功率变频调速技术具有时代的必要性和迫切性。
目前,随着现代电力电子技术和微电子技术的迅猛发展,高压大 功率变频调速装置不断地成熟起来,原来一直难于解决的高压问题,近年来通过器件串联或单元串联得到了很好的解决。其应用领域和范围也越来越为广范,这为工矿企业高效、合理地利用能源(尤其是电能)提供了技术先决条件。
2.几种常用高压变频器的主电路分析
(1)单元串联多重化电压源型高压变频器
单元串联多重化电压源型高压变频器利用低压单相变频器串联,弥补功率器件IGBT的耐压能力的不足。所谓多重化,就是每相由几个低压功率单元串联组成,各功率单元由一个多绕组的移相隔离变压器供电,用高速微处理器实现控制和以光导纤维隔离驱动。但其存在以下缺点:
a)使用的功率单元及功率器件数量太多,6kV系统要使用150只功率器件(90只二极管,60只IGBT),装 置的体积太大,重量大,安装位置和基建投资成问题;
b)所需高压电缆太多,系统的内阻无形中增大,接线太多,故障点相应的增多;
c)一个单元损坏时,单元可旁路,但此时输出电压不平衡中心点的电压是浮动的,造成电压、电流不平衡,从而谐波也相应的增大,勉强运行时终 究会导致电动机的损坏;
d)输出电压波形在额定负载时尚好,低于25Hz以下畸变突出;
d)输出电压波 形在额定负载时尚好,低于25Hz以下畸变突出;
e)由于系统中存在着变压器,系统效率再提高不容易实现;移相变压器中,6kV 三相6绕组×3(10kV时需12绕组×3)延边三角形接法,在三相电压不平衡(实际上三相电压是不可能绝对平衡的)时,产生的内部环流,必将引起内阻的 增加和电流的损耗,也相应的就造成了变压器的铜损增大。此时,再加上变压器的铁芯的固有损耗,变压器的效率就会降低,也就影响了整个高压变频器的效率。这 种情况在越低于额定负荷运行时,越是显著。10kV时,变压器有近400个接头、近百根电缆。在额定负荷时效率可达96%,但在轻负荷时,效率低于 90%。
(2)中性点钳位三电平PWM变频器
该系列变频器采用传统的电压型变频器结构,
中性点钳位三电平PWM变频器的逆变部 分采用传统的三电平方式,所以输出波形中会不可避免地产生比较大的谐波分量,这是三电平逆变方式所固有的。因此在变频器的输出侧必须配置输出LC滤波器才 能用于普通的鼠笼型电机。同样由于谐波的原因,电动机的功率因数和效率、甚至寿命都会受到一定的影响,只有在额定工况点才能达到最佳的工作状态,但随着转速的下降,功率因数和效率都会相应降低。
多电平多重化高压变频器。多电平 多重化高压变频器的本意是想解决高压IGBT的耐压有限的问题,但此种方式,不仅增加了系统的复杂性,而且降低了多重化冗余性能好和三电平结构简单的优点。因此此类变频器实际上并不可取。
此类型变频器的性能价格优势并不大,与其同时采用多电平和多重化两种技术,还不如采用前面提到的高压IGBT的多重化变频器或者三电平变频器。
(3)电流源型高压变频器
功率器件直接串联的电流源型高压变频器是在线路中串联大电感,再将SCR(或GTO、 SGCT等)开关速度较慢的功率器件直接串联而构成的。
这种方式虽然使用功率器件少、易于控制电流,但是没有真正解决高压功率器 件的串联问题。因为即使功率器件出现故障,由于大电感的限流作用,di/dt受到限制,功率器件虽不易损坏,但带来的问题是对电网污染严重、功率因数低。并且电流源型高压变频器对电网电压及电机负载的变化敏感,无法做成真正的通用型产品。
电流源型高压变频器是最早的产品,但凡是电压型变频器到达的地方,它都被迫退出,因为在经济上、技术上,它都明显处于劣势。
3.IGBT直接串联的直接高压变频器
3.1 主电路简介
图1.IGBT直接串联高压变频如图1所示,图中系统由电网高压直接经高压断路器进入变频器,经过高压二极管全桥整流、直流平波电抗器和电容滤波,再通过 逆变器进行逆变,加上正弦波滤波器,简单易行地实现高压变频输出,直接供给高压电动机。
功率器件IGBT直接串联的二电平电压型 高压变频器是采用变频器已有的成熟技术,应用独特而简单的控制技术成功设计出的一种无输入输出变压器、IGBT直接串联逆变、输出效率达98%的高压调速系统。
对于需要快速制动的场合,采用直流放电制动装置,如图2所示:
图2.具有直流放电制动装置的IGBT直接串联高压变频器主电路图篇9:高压变频器在煤矿主井提升机改造中的应用
1.引言
随着电力电子技术的飞速发展,高、低压变频调速技术已发展成一种成熟稳定的技术,在各个生产环节,交流电机变频调速系统以其体积小、低维护量、优异的调速性能等诸多优点在逐步替代传统的直流调速系统,现已经成为电机驱动的发展趋势,成为电机节能高效运行的有效手段,
煤矿地面的大动力设备主要包括:主井提升机(或主运输皮带机)、副井提升机、主通风机、压风机等高压大功率用电设备。因此,电机的节能经济运行应从高压大功率设备的变频改造着手进行。尤其煤矿的立井主提升机因其每天约20多小时连续运行是煤矿生产中的主要耗能设备,对其进行变频改造、节能经济运行允为必要。
2.主井提升机的技术参数和调速现状
目前,国内还有很多矿井的主井提升机采用交流异步电动机的转子串电阻方式进行工作。起主井提升系统主要包含异步电动机、电控、调速电阻、辊简、箕斗、钢绳等组成。以下就以某煤矿主井提升机改造项目为例,对主井提升机改造进行探讨和研究。
某煤矿主立井提升机目前的调速方式为转子串电阻调速,采用接触器控制电阻的投切,加速时间长达约20秒左右;减速爬行至停车时间长达29秒左右,加速时电机电流持续接近100A耗能严重,
且起动时电机的冲击电流大大超过电机额定电流。因此,在2008年对该主井提升机进行了变频改造。
2.1主立井提升机参数
目前,主立井提升系统是双钩8.8吨箕斗缠绕式提升机,其调速系统是交流6k V/630k W双机驱动的绕线电机串电阻调速系统。
2.2串电阻调速方式存在的固有缺陷和问题
1)转子回路串接电阻,消耗电能造成巨大的能源浪费;
2)电阻只能分级切换,实现的是有级调速,设备运行不平稳易引起电气及机械冲击;对电机轴承、钢丝绳、减速器齿轮等造成巨大冲击,威胁系统的机械安全;
3)低速转矩小,转差功率大,启动电流和换档电流冲击大;
4)中高速运行振动大;制动不安全不可靠;
5)司机的开车熟练程度和责任心完全影响提升时间、电机电流,尤其夜班司机易疲倦,存在安全隐患;
6)线绕电机转子因为工作温度高容易开焊,滑环存在接触不良问题,容易引起设备故障;
7)设备维护工作量大、维护费用高;
8)2台电机分别串接三相转子电阻体积庞大,发热严重使工作环境恶化,夏季使环境温度高达60℃以上,导致工作环境恶劣;
9)电机的功率因数低,无功损耗较大。
文档为doc格式