下面是小编为大家准备的函数的应用专项测试题,本文共12篇,欢迎阅读借鉴。

篇1:函数的应用专项测试题
函数的应用专项测试题
1、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm2.
2、(聊城冠县实验中学二模)某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程正确的是________________
3、用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门(不用篱笆),问养鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少?
4、某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取降价措施,经调查发现,若每件衬衫每降价1元,商场平均每天可以多售出2件.(1)若每件降价x 元,每天盈利y 元,求y 与x 的关系式.(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(3)每件衬衫降价多少元时,商场每天盈利最多?盈利多少元?
5、某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:
(1)房间每天的入住量y(间)关于x(元)的'函数关系式.
(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式.
(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?
6、某商店经营一批进价每件为2元的小商品,在市场营销的过程中发现:如果该商品按每件最低价3元销售,日销售量为18件,如果单价每提高1元,日销售量就减少2件.设销售单价为x(元),日销售量为y(件).
(1)写出日销售量y(件)与销售单价x(元)之间的函数关系式; (2)设日销售的毛利润(毛利润=销售总额-总进价)为P(元),求出毛利润P(元)与销售单价x(元)之间的函数关系式;
(3)在下图所示的坐标系中画出P关于x的函数图象的草图,并标出顶点的坐标; (4)观察图象,说出当销售单价为多少元时,日销售的毛利润最高?是多少?
7、(08凉州)我州有一种可食用的野生菌,上市时,外商李经理按市场价格20元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160元,同时,平均每天有3千克的野生菌损坏不能出售.
(1)设x到后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.
O
(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.
(3)李经理将这批野生茵存放多少天后出售可获得最大利润W元? (利润=销售总额-收购成本-各种费用)
8、(09湖南长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.
(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;
(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?
(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?
9、(09成都)大学毕业生响应国家自主创业的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(130,且x为整数);又知前20天的销售价格Q1 (元/件)与销售时间x(天)之间有如下关系:Q1?x?30 (120,且x为整数),后10天的销售价格Q2 (元/件)与销售时间x(天)之间有如下关系:Q2=45(2130,且x为整数).
(1)试写出该商店前20天的日销售利润R1(元)和后l0天的日销售利润R2(元)分别与销售时间x(天)之间的函数关系式;
(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润. 注:销售利润=销售收入一购进成本.
10、红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:
未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1?
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;
(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a4)给希望工程。公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围。
篇2:《函数的应用》复习测试题
《函数的应用》复习测试题
一、选择题
1.(北京)函数的零点个数为( ).
A.0 B.1 C.2 D.3
考查目的:考查函数零点的概念、函数的单调性和数形结合思想.
答案:B.
解析:(方法1):令得, ,在平面直角坐标系中分别画出幂函数和指数函数的图象,可知它们只有一个交点,∴函数的零点只有一个.
(方法2):∵函数在上单调递增,且,∴函数的零点只有一个.答案选B.
2.(天津)函数的零点所在的一个区间是( ).
A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)
考查目的:考查函数零点的存在性定理.
答案:B
解析:∵,,∴答案选B.
3.(福建)若函数的零点与的零点之差的绝对值不超过0.25, 则可以是( ).
A. B. C. D.
考查目的:考查函数零点的概念和零点存在性定理.
答案:A.
解析:的零点为,的零点为,的零点为, 的零点为.下面估算的零点. ∵,,∴的零点.依题意,函数的零点与的零点之差的绝对值不超过0.25,∴只有的零点符合题意,故答案选A.
4.在研制某种新型材料过程中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的`一个近似地表示这些数据的规律,其中最接近的一个是( ).
1.95
3.00
3.94
5.10
6.12
0.97
1.59
1.98
2.35
2.61
A. B. C. D.
考查目的:考查几类不同增长类型函数模型与实际问题的拟合程度.
答案:D.
解析:通过检验可知,只有函数较为接近,故答案选D.
5.已知函数,,的零点分别为,,则的大小关系是( ).
A. B.
C. D.
考查目的:考查函数零点的定义,指数函数、对数函数、幂函数、一次函数的图象,以及数形结合思想.
答案:C.
解析:由已知得,,在同一平面直角坐标系中,画出函数的图象,由图象可知,,故答案选C.
6.(2010陕西)某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数与该班人数之间的函数关系用取整函数(表示不大于的最大整数)可以表示为( ).
A. B. C. D.
考查目的:考查函数的建模及其实际应用,意在考查分析问题与解决问题的能力.
答案:B.
解析:(方法1):当除以的余数0,1,2,3,4,5,6时,由题设知,且易验证,此时.当除以10的余数为7,8,9时,由题设知,易验证,此时.
综上得,必有,故选B.
(方法2):依题意知:若,则,由此检验知选项C,D错误.若,则,由此检验知选项A错误.故由排除法知,本题答案应选B.
二、填空题
7.(2009浙江)某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:
高峰时间段用电价格表
低谷时间段用电价格表
高峰月用电量
(单位:千瓦时)
高峰电价
(单位:元/千瓦时)
低谷月用电量
(单位:千瓦时)
低谷电价
(单位:元/千瓦时)
50及以下的部分
0.568
50及以下的部分
0.288
超过50至200的部分
0.598
超过50至200的部分
0.318
超过200的部分
0.668
超过200的部分
0.388
若某家庭5月份的高峰时间段用电量为千瓦时,低谷时间段用电量为千瓦时,则按这种计费方式,该家庭本月应付的电费为 元(用数字作答).
考查目的:考查分段函数在解决实际问题中的应用.
答案:.
解析:该家庭本月应付电费由两部分构成:高峰部分为,低谷部分为
,这两部分电费之和为(元).
8.(2009山东)若函数有两个零点,则实数的取值范围是__________.
考查目的:考查函数零点的定义,指数函数与一次函数的图象,数形结合的思想.
答案:.
解析:设函数和函数,则函数有两个零点,就是函数的图象与函数的图象有两个交点.由图象可知,当时,两个函数的图象只有一个交点,不符合题意;当时,∵函数的图象过点(0,1),而直线所过的点一定在点(0,1)的上方,∴两个函数的图象一定有两个交点,∴实数的取值范围是.
9.某电脑公司的各项经营收入中,经营电脑配件的收入为400万元,占全年经营总收入的40%.该公司预计经营总收入要达到1690万元,且计划从20到20,每年经营总收入的年增长率相同,则预计经营总收入为________万元.
考查目的:考查增长率模型在实际问题中的应用和读题审题能力.
答案:1300.
解析:设年平均增长率为,则,∴,∴20预计经营总收入为×=1300(万元).
10.(2010全国I理15改编)若函数有四个零点,则实数的取值范围是 .
考查目的:考查函数零点的定义,函数的图象与性质、不等式的解法,和数形结合思想.
答案:.
解析:在平面直角坐标系内,先画函数的图象.当时,,图象的顶点为,与轴交于点(0,-1);当时,,图象的顶点为,与轴交于点(0,-1).是一条与轴平行的直线.当时,直线与函数的图象有4个交点,即当,函数有四个零点.
11.为了预防流感,某段时间学校对教室用药熏消毒法进行消毒.设药物开始释放后第小时教室内每立方米空气中的含药量为毫克.已知药物释放过程中,教室内每立方米空气中的含药量(毫克)与时间(小时)成正比.药物释放完毕后,与的函数关系式为(为常数).函数图象如图所示.则从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式为 .
考查目的:考查待定系数法求指数函数、一次函数解析式的方法,以及阅读理解能力和分类讨论思想.
答案:.
解析:函数图象由一条线段与一段指数函数图象组成,它们的交点为(0.1,1).当时,由(毫克)与时间(小时)成正比设,∴,解得,∴.当时,将(0.1,1)代入得,∴,,∴函数关系式为。
篇3:数学函数模型及其应用专项练习题
1.某公司为了适应市场需求,对产品结构做了重大调整.调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与产量x的关系,则可选用
A.一次函数 B.二次函数
C.指数型函数 D.对数型函数
解析:选D.一次函数保持均匀的增长,不符合题意;
二次函数在对称轴的两侧有增也有降;
而指数函数是爆炸式增长,不符合“增长越来越慢”;
因此,只有对数函数最符合题意,先快速增长,后来越来越慢.
2.某种植物生长发育的数量y与时间x的关系如下表:
x 1 2 3 …
y 1 3 8 …
则下面的函数关系式中,能表达这种关系的是()
A.y=2x-1 B.y=x2-1
C.y=2x-1 D.y=1.5x2-2.5x+2
解析:选D.画散点图或代入数值,选择拟合效果最好的函数,故选D.
3.如图表示一位骑自行车者和一位骑摩托车者在相距80 km的两城镇间旅行的.函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:
①骑自行车者比骑摩托车者早出发了3小时,晚到1小时;
②骑自行车者是变速运动,骑摩托车者是匀速运动;
③骑摩托车者在出发了1.5小时后,追上了骑自行车者.
其中正确信息的序号是()
A.①②③ B.①③
C.②③ D.①②
解析:选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了1.5小时后,追上了骑自行车者,正确.
4.长为4,宽为3的矩形,当长增加x,且宽减少x2时面积最大,此时x=________,面积S=________.
解析:依题意得:S=(4+x)(3-x2)=-12x2+x+12
=-12(x-1)2+1212,∴当x=1时,Smax=1212.
答案:1 1212
篇4:《反比例函数》测试题
《反比例函数》测试题
练习目标:1.会判别反比例函数,能够确定简单的反比例函数的关 系式;2.会画反比例函数的图象,能从反比例函数的.图象上分析出函数 的性质.
作 者:何春华 作者单位: 刊 名:中学生数理化(八年级数学人教版) 英文刊名:SCHOOL JOURNAL OF MATHEMATICS 年,卷(期): “”(2) 分类号: 关键词:篇5:函数应用试题
函数应用试题
一、选择题(本大题共10个小题,每小题5分,共50分)
1.函数f(x)=x2-3x-4的零点是
A.(1,-4) B.(4,-1)
C.1,-4 D.4,-1
解析:由x2-3x-4=0,得x1=4,x2=-1.
答案:D
2.今有一组实验数据如下表所示:
t 1.99 3.0 4.0 5.1 6.12
u 1.5 4.04 7.5 12 18.01
则体现这些数据关系的最佳函数模型是 ()
A.u=log2t B.u=2t-2
C.u=t2-12 D.u=2t-2
解析:把t=1.99,t=3.0代入A、B、C、D验证易知,C最近似.
答案:C
3.储油30 m3的油桶,每分钟流出34 m3的油,则桶内剩余油量Q(m3)以流出时间t(分)为自变量的函数的定义域为 ()
A.[0,+) B.[0,452]
C.(-,40] D.[0,40]
解析:由题意知Q=30-34t,又030,即0 30-34t30,040.
答案:D
4.由于技术的提高,某产品的成本不断降低,若每隔3年该产品的价格降低13,现在价格为8 100元的.产品,则9年后价格降为 ()
A.2 400元 B.900元
C.300元 D.3 600元
解析:由题意得8 100(1-13)3=2 400.
答案:A
5.函数f(x)=2x+3x的零点所在的一个区间是 ()
A.(-2,-1) B.(-1,0)
C.(0,1) D.(1,2)
解析:f(-1)=2-1+3(-1)=12-3=-520,
f(0)=20+30=10.
∵y=2x,y=3x均为单调增函数,
f(x)在(-1,0)内有一零点
答案:B
6.若函数y=f(x)是偶函数,其定义域为{x|x0},且函数f(x)在(0,+)上是减函数,f(2)=0,则函数f(x)的零点有 ()
A.唯一一个 B.两个
C.至少两个 D.无法判断
解析:根据偶函数的单调性和对称性,函数f(x)在(0,+)上有且仅有一个零点,则在(-,0)上也仅有一个零点.
答案:B
7.函数f(x)=x2+2x-3,x0,-2+lnx,x0的零点个数为 ()
A.0 B.1
C.2 D.3
解析:由f(x)=0,得x0,x2+2x-3=0或x0,-2+lnx=0,
解之可得x=-3或x=e2,
故零点个数为2.
答案:C
8.某地固定电话市话收费规定:前三分钟0.20元(不满三分钟按三分钟计算),以后每加一分钟增收0.10元 (不满一分钟按一分钟计算),那么某人打市话550秒,应支付电话费
()
A.1.00元 B.0.90元
C.1.20元 D.0.80元
解析:y=0.2+0.1([x]-3),([x]是大于x的最小整数,x0),令x=55060,故[x]=10,则y=0.9.
答案:B
9.若函数f(x)的零点与g(x)=4x+2x-2的零点之差的绝对值不超过0.25,则f(x)可以是 ()
A.f(x)=4x-1 B.f(x)=(x-1)2
C.f(x)=ex-1 D.f(x)=ln(x-12)
解析:令g(x)=0,则4x=-2x+2.画出函数y1=4x和函数y2=-2x+2的图像如图,可知g(x)的零点在区间(0,0.5)上,选项A的零点为0.25,选项B的零点为1,选项C的零点为0,选项D的零点大于1,故排除B、C、D.
答案:A
10.在股票买卖过程中,经常用两种曲线来描述价格变化情况:一种是即时价格曲线y=f(x),另一种是平均价格曲线y=g(x),如f(2)=3表示股票开始买卖后2小时的即时价格为3元;g(2)=3表示2小时内的平均价格为3元,下面给出了四个图像,实线表示y=f(x ),虚线表示y=g(x),其中可能正确的是 ()
解析:A选项中即时价格越来越小时,而平均价格在增加,故不对,而B选项中即时价格在下降,而平均价格不变化,不正确.D选项中平均价格不可能越来越高,排除D.
答案:C
二、填空题(本大题共4小题,每小题5分,共20分)
11.用二分法求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点x0=2.5,那么下一个有根区间是________.
解析:f(x)=x3-2x-5,
f(2)=-10,f(3)=160,f(2.5)=5.6250,
∵f(2)f(2.5)0,
下一个有根区间是(2,2.5).
答案:(2,2.5)
12.已知mR时,函数f(x)=m(x2-1)+x-a恒有零点,则实数a的取值范围是________.
解析:(1)当m=0时,
由f(x)=x-a=0,
得x=a,此时aR.
(2)当m0时,令f(x)=0,
即mx2+x-m-a=0恒有解,
1=1-4m(-m-a)0恒成立,
即4m2+4am+1 0恒成立,
则2=(4a)2-440,
即-11.
所以对mR,函数f(x)恒有零点,有a[-1 ,1].
答案:[-1,1]
13.已知A,B两地相距150 km,某人开汽车以60 km/h的速 度从A地到达B地,在B地停留1小时后再以50 km/h的速度返回A地,汽车离开A地的距离x随时间t变化的关系式是________.
解析:从A地到B地,以60 km/h匀速行驶,x=60t,耗时2.5个小时,停留一小时,x不变.从B地返回A地,匀速行驶,速度为50 km/h,耗时3小时,故x=150-50(t-3.5)=-50t+325
所以x=60t,02.5,150, 2.53.5,-50t+325, 3.56.5.
答案 :x=60t,02.5150, 2.53.5-50t+325 3.56.5
篇6:二次函数测试题的
二次函数测试题的整理
一、填空题:
1、函数是抛物线,则=。
2、抛物线与轴交点为,与轴交点为。
3、二次函数的图象过点(-1,2),则它的解析式是,当时,随的增大而增大。
4、二次函数的图象如下左图所示,则对称轴是,当函数值时,对应的取值范围是。
y
xA
-3o1
B
5、已知二次函数与一次函数的'图象相交于点A(-2,4)和B(8,2),如上右图所示,则能使成立的的取值范围是。
二、选择题:
6、函数的图象经过点
A、(-1,1)B、(1,1)C、(0,1)D、(1,0)
7、抛物线向右平移1个单位,再向下平移2个单位,所得到的抛物线是
A、B、
C、D、
8、已知关于的函数关系式(为正常数,为时间)如图,则函数图象为
hhhh
o
ottotot
ABCD
9、下列四个函数中:
A、B、C、D、
图象经过坐标原点的函数是
图象的顶点在X轴上的函数是
图象的顶点在Y轴上的函数是
10、已知二次函数,如图所示,若,,那么它的图象大致是
yyyy
xxxx
ABCD
三、解答题:
11、根据所给条件求抛物线的解析式:
(1)、抛物线过点(0,2)、(1,1)、(3,5)
(2)、抛物线的顶点为(-1,2),且过点(2,1)
(3)、抛物线关于轴对称,且过点(1,-2)和(-2,0)
12、先配方,再指出下列函数图象的开口方向、顶点和对称轴:
(1)、(2)、
四、应用题:
13、某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为米,面积为S平方米。
(1)求出S与之间的函数关系式,并确定自变量的取值范围;
(2)请你设计一个方案,使获得的设计费最多,并求出这个费用。
14、如图,有一座抛物线形的拱桥,桥下的正常水位为OA,此时水面宽为
40米,水面离桥的最大高度为16米,试求拱桥所在的抛物线的解析式。
OA
15、已知P(,)是抛物线上在第一象限内的一个点,点A的坐标是(3,0)。
(1)、令S是△OPA的面积,求S与的函数关系式以及S与的函数关系式;
(2)、当S=6时,求点P的坐标;
(3)、在抛物线上求一点P,,使△OP,A是以OA为底的等腰三角形。
篇7:反比例函数单元测试题
反比例函数单元测试题
一、填空题
1.若反比例函数 与正比例函数y=2x的图象没有交点,则k的取值范围是____
_ _;若反比例函数 与一次函数y=kx+2的图象有交点,则k的 取值范围是______.
2.如图,过原点的直线l与反比例函数 的图象交 于M, N两点,根据图象猜想线段MN的长的最小值是___ _____ ____.
3.一个函数具有下列性质:
①它的图象经过点(-1 ,1); ②它的图象在第二、四象限内;
③在每个象限内,函数值y随自变量x的增大而增大.
则这个函数的解析式可以为____________.
4.如图,已知点A在反 比例函数的图象上,AB⊥x轴于点B,点C(0,1),若△ABC的面积是3,则反比例函数的解析式为____________.
5已知反比例函数 (k为常数,k≠0)的图象经过P(3,3),过点P作PM⊥x轴于M,若点Q在反比例函数图象上,并且S△QOM=6,则Q点坐标为______.
二、选择题
6.下列函数中,是反比例函数的是( ).
(A) (B (C) (D)
7如图,在直角坐标中,点A是x轴正半轴上的一个定点,点B是双曲线 (x>0)上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会( ).
(A)逐渐增大 (B)不变
(C)逐渐减小 (D)先增大后减小
8.如图,直线y=mx与双曲线 交于A,B两点,过点A作AM⊥x轴,垂足为M,连结BM,若S△ABM=2,则k的值是( ).
(A)2 (B)m-2 (C)m (D)4
9.若反比例函数 (k<0)的图象经过点(-2,a),(-1,b),(3,c),则a,b,c的大小关系为( ).
(A)c>a>b (B)c>b>a
(C)a>b>c (D)b>a>c
10.已知k1<0
11.当x<0时,函数y=(k-1)x与 的y都随x的增大 而 增大,则k满足( ).
(A)k>1 (B)1
(C)k>2 (D)k<1
12.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.当气球 内的气压大于140kPa时,气 球将爆炸.为了安全起见,气体体积应( ).
(A)不大于 (B)不小于
(C)不大于 (D)不小于
13.一次函数y=kx+b和反比例函数 的图象如图所示,则有( ).
(A)k>0,b>0,a>0 (B)k<0,b>0,a<0
(C)k<0,b>0,a >0 (D)k<0,b<0,a>0
14.如图,双曲线 (k>0)经过矩形OABC的边BC的中点E,交AB 于点D。若梯形ODBC的面积为3,则双曲线的解析式为( ).
(A) (B)
(C) (D)
三、解答题
15.作出函数 的 图象,并根据图象回答下列问题:
(1)当x=-2时,求y的'值;
(2) 当2
(3)当-3
16.已知图中的曲线是反比例函数 (m为常数)图象的一支.
(1)这个反比例函数图象的另一支 在第几象限?常数m的取值范围是什么?
(2)若函数的图象与正比例函数y=2x的图象在第一象限内交点为A,过A点作x轴的垂线,垂足为B,当△OAB的面积为4时,求点A的坐标及反比例函数的解析 式.
17.如图,直线y=kx+b与反比例函数 (x<0)的图象交于点A,B,与x轴交于 点C,其中点A的 坐标为(- 2,4),点B的横坐标为-4.
(1)试确定反比例函数的关系式;
(2)求△AOC的面积.
18.已知反比例函 数 的图象经过点 ,若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数图象与x轴的交点坐标.
19.如图,已知A(-4,n),B(2,-4)是一次函数y=kx+b的图象和反比例函数 的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及△AOB的面积;
(3)求方程 的解(请直接写出答案);
(4)求不等式 的解集(请直接写出答案).
20.已知:如图,正比例函数y=ax的图象与反比例函数 的图象交于点A(3,2).
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值;
(3)M(m,n)是反比例函数图象上的一动点,其中0
21.如图,已知点A,B在双曲线 上,AC⊥x轴于点C,BD⊥y 轴于点D,AC与BD交于点P,P是AC的中点,若△ABP的面积为3,求k的值.
篇8:正负数的专项测试题
正负数的专项测试题
用正数或负数表达下面各题
1、某地5月2日气温最高是三十五摄氏度,记作( ) ℃;最低是零下十摄氏度,记作 ℃。
2、某盆地比海平面低69米,记作海拔()米。
3、南极洲平均海拔高于海平面2480米,海拔( )米。
4、我国的泰山主峰玉皇顶高于海平面1534米,海拔( )米。
5、红河煤矿8号井井底低于海平面1090米,海拔()米。
6、如果李叔叔乘电梯上升15层,记作“+15层”,那么他乘电梯下降8层,记作()层。
7、某商店6月份亏损1300元,记作()元,7月份盈利3500元,记作()元。
8、如果在银行取出500元,在存折上记作“-500元”,那么存入元,应记作( )元。
9、如果明明向东走160米记作“+160米”,那么小云向西走320米记作()米。如果小红向南走74米记作“+74米”,那么王芳走“-55米”表示她向()走了()米。
10、今年春节,乐乐得到520元压岁钱,记作“+520元”;用去150元,记作()元。
11、下象棋输一局,扣5分,记作“-5分”;赢一局,加10分,记作( )分。
12、月球表面的最高温度是一百二十七摄氏度。( ) ℃
13、南极洲年平均气温是零下二十五摄氏度。() ℃
14、一辆玩具汽车在桌上左右移动,设向右为正。那么,向左移动30厘米应该记作();“+5厘米”表示()。
15、车轮顺时针旋转一周记作“+1”,则顺时针旋转五周应记作()。
16、如果“-600元”表示亏本600元,那么“+800元”表示()。
17、如果电梯上升25层记作“+25层”,那么电梯下降12层记作()层。
18、如果某股票第一天跌了3.01%,应表示为(),第二天涨了4.21%,应表示为().
19、一种零件标明的要求是 (单位:mm),表示这种零件的标准尺寸为直径10mm,该零件最大直径不超过()mm,最小不小于()mm,为合格产品.
20、收入-500元的实际意义是().
篇9:考研英语语法专项测试题
语法专项练习【1】
1. Exceptional children are different in some significant way from others of the same age. For these children ________to their full adult potential, their education must be adapted to those differences.
A. to develop B. to be developed C. developingD. will develop
2. Space exploration promises to open up many new territories for human settlement, as well as _________the harvest of mineral resources.
A. leads to B. to lead to C. leading to D. lead to
3. Someday, solar power collected by satellites ________ the earth or fission power (裂变能)manufactured by mankind may give us all the energy we need for an expanding civilization.
A. circled B. to circle C. circling D.circles
4. In this experiment, they are wakened several times during the night, and asked to report what they ________ .
A.had just been dreaming B. are just dreaming
C.have just been dreaming D. had just dreamt
5. Her terror was so great ________ somewhere to escape, she would have run for her life.
A. only if B. that there had only been
C. that had there only been D. if there were only
1. AFor these children to develop to their full adult potential在句中做目的状语,these children 是to develop 的逻辑主语,这种主谓关系在目的状语中一般是不能用分词表示的。B中不定式被动式与句意相悖;for不是连词,故不能选D,否则语句不通。
2. Cas well as 在语法功能上相当于介词,所以在句中要接动名词leading to。
3. C句子的主语为solar power or fission power,谓语是may give, collected by satellite circling the earth是后置定语修饰solar power,其中circling the earth 又是现在分词短语修饰satellite,“环绕地球的卫星”,相当于the satellite which circles the earth。其他选择项均不符合句子语法结构要求。
4. C句中已给出频次状语several times,说明要用完成时态,同时句子的时态定位是现在时they are wakened,显然不能用过去完成时,所以选C。
5. C这是一个so…that结构表示结果状语的句型, A、D 可以排除。在that从句中又有条件从句,而且应该是虚拟语气结构,B中没有表示条件的连词,是错误的。C虽然也没有连词if,但采用了倒装结构,可以将if省略,又是had done,表示与过去事实相反的假设,时态、结构完全正确,因此是惟一正确的选择。
语法专项练习【2】
1. Some women ________ a good salary in a job instead of staying home, but they decided not to work for the sake of the family.
A. must make B. should have made
C. would make D. could have made
2. A light with no more power than ________ by an ordinary electric light bulb becomes intensely strong as it is concentrated to a pinpoint-sized beam.
A. as is produced B. that produced
C. that is produced D. produced
3. For most people the sea was remote, and with the exception of early intercontinental travelers or others who earned a living from the sea, there was little reason to ask many questions about it, let alone________ what lay beneath the surface.
A. asking B. ask C. to ask D. be asked
4.Even if they are on sale, these ________refrigerators are equal in price to, if not more expensive than, at the other store.
A. anyone B. the others C. that D. the ones
5. The atmosphere is as much a part of the earth as ________ its soil and the water of its lakes, rivers and oceans.
A. are B. is C. do D. has
1. D这是一个含蓄虚拟句,意为“有些妇女完全可以不呆在家里,干一份工作挣得可观的工资,可是她们决定不工作,为的是照顾家庭”,所以选D。should have made意思是“本应该做而实际上没做”,与原句意不够贴切。
2. B相当于A light with no more power than the power that is produced by…。that代替power,表示相比较的事物,而D中没有比较对象,故不对;as表示原级比较,不与than用在一起,故A也不正确;C中缺少that的先行词,也是错误的。
3. Clet alone,“更不用说……”,在用法上相当于并列连词,因此要求填入与前面一样的结构,此处是不定式。
4. D句子要求填一个能够代替these refrigerators 的代词,故排除A、C。the others一般与另一部分相对而言,在此句中不对,所以选the ones。
5. A句子后半句是倒装句,主语是复数its soil and the water of its lakes, rivers and oceans,因为较长,所以后置,故选A。
语法专项练习【3】
1. From now on, when anyone in our ranks who has done some useful work dies, soldier or cook, we should have a funeral ceremony and a memorial meeting in his honor.
A. no matter he is B. whether he has been
C. be he D. whether be he
2. In 1921 Einstein won the Nobel Prize, and was honored in Germany until the rise of Nazism he was driven from Germany because he was a Jew.
A. then B. and C. when D. before
3.Physics is the present-day equivalent of used to be called natural philosophy from which most of present-day science arose.
A. that B. all C. which D. what
4. the population of working age increased by 1 million between 1981 and 1986, today it is barely growing.
A. Whereas B. Even if C. After D. Now that
5. His features were agreeable; his body, slight of build, had something of athletic outline.
A. somehow B. as C. though D. somewhat
1. C此句含有让步状语从句whether…or…“不管是……还是……”,采用倒装后省略连词,用原形动词,所以只能选C。
2. Cwhen引导时间从句:“纳粹上台的时候,他被赶出德国……”then不是连词, 用在句中不符合句法要求; 如果选B, 应为and then; before填入句中句意不通。
3. D句中要求一个能够引导of介词宾语从句的连接词, 所以只有what具有这个功能。
4. A前后两个句子是对比关系: increased和barely growing, 而even if表示让步“即使”; after表示时间;now that表示原因, 故只有whereas正确。
5. Cthough 表示让步, 意为“虽然”,全句的意思是: “他的长相挺好, 身体虽然瘦小, 但有点儿运动员的样子。”somehow“不知怎么”、“不知什么原因”。as 可以引导让步从句,但句子结构要倒装, 不用于省略句, 因此在此处不合适。somewhat“有几分”、“有点儿”, 没有让步意味。
篇10:电磁波及其应用测试题
电磁波及其应用测试题
选择题
1、目前雷达发射的电磁波频率多在200MHz至1000MHz的范围内.下列关于雷达和电磁波说法正确的是
A.真空中上述雷达发射的电磁波的波长范围在0.3 m至1.5 m之间
B.电磁波是由恒定不变的电场或磁场产生的
C.测出从发射电磁波到接收反射波的时间间隔可以确定雷达和目标的距离
D.波长越短的电磁波,反射性能越强
2、9月27日,我国神舟七号航天员翟志刚首次实现了中国航天员在太空的舱外活动(如图所示),神舟七号载人航天飞行取得了圆满成功,这是我国航天发展史上的又一里程碑。舱外的航天员与舱内的航天员近在咫尺,但要进行对话,一般需要利用()
A.紫外线 B.无线电波
C.射线 D. X射线
3、如图所示是LC振荡电路及其中产生的振荡电流随时间变化的图象,电流的正方向规定为顺时针方向,则在t1到t2时间内,电容器C的极板上所带电量及其变化情况是()量逐渐增加
B.上极板带正电,且电量逐渐减小 C.下极板带正电,且电量逐渐增加 D.下极板带正电,且电量逐渐减小如图
4、关于电磁场和电磁波,下列说法中正确的是()
A.均匀变化的'电场在它的周围产生均匀变化的磁场
B.电磁波中每一处的电场强度和磁感应强度总是互相垂直,且与波的传播方向垂直
C.电磁波和机械波一样依赖于媒质传播
D.只要空间中某个区域有振荡的电场或磁场,就能产生电磁波
篇11:函数和不等式专项训练题
函数和不等式专项训练题
一、选择题
1.(?北京卷)下列函数中,定义域是R且为增函数的是?( ).
A.y=e-x ?B.y=x3
C.y=ln x ?D.y=|x|
解析 依据函数解析式,通过判断定义域和单调性,逐项验证.A项,函数定义域为R,但在R上为减函数,故不符合要求;B项,函数定义域为R,且在R上为增函数,故符合要求;C项,函数定义域为(0,+∞),不符合要求;D项,函数定义域为R,但在(-∞,0]上单调递减,在[0,+∞)上单调递增,不符合要求.
答案 B
2.(2014?临沂一模)函数f(x)=lnxx-1+x12 的定义域为?( ).
A.(0,+∞) ?B.(1,+∞)
C.(0,1) ?D.(0,1)∪(1,+∞)
解析 要使函数有意义,则有x≥0,xx-1>0,
即x≥0,x?x-1?>0,解得x>1.
答案 B
3.(2014?江西卷)已知函数f(x)=a?2x,x≥0,2-x,x<0(a∈R),若f[f(-1)]=1,则a=??( ).
A.14 ?B.12
C.1 ?D.2
解析 根据分段函数的解析式列方程求字母的取值.
由题意得f(-1)=2-(-1)=2,f[f(-1)]=f(2)=a?22=4a=1,∴a=14.
答案 A
4.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=??( ).
A.ex+1 ?B.ex-1
C.e-x+1 ?D.e-x-1
解析 与曲线y=ex图象关于y轴对称的曲线为y=e-x,函数y=e-x的图象向左平移一个单位得到函数f(x)的图象,即f(x)=e-(x+1)=e-x-1.
答案 D
5.(2014?山东卷)已知函数y=loga(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的'是??( ).
A.a>1,c>1
B.a>1,0
C.01
D.0
解析 依据对数函数的图象和性质及函数图象的平移变换求解.由对数函数的图象和性质及函数图象的平移变换知0
答案 D
6.(?浙江卷)已知x,y为正实数,则?( ).
A.2lg x+lg y=2lg x+2lg y ?B.2lg(x+y)=2lg x?2lg y
C.2lg x?lg y=2lg x+2lg y ?D.2lg(xy)=2lg x?2lg y
解析 2lg x?2lg y=2lg x+lg y=2lg(xy).故选D.
答案 D
7.(2014?安徽卷)设a=log37,b=21.1,c=0.83.1,则?( ).
A.b
C.c
解析 利用“媒介”法比较大小.∵a=log37,∴12.∵c=0.83.1,∴0
答案 B
二、填空题
8.已知f(x)=ln(1+x)的定义域为集合M,g(x)=2x+1的值域为集合N,则M∩N=________.
解析 由对数与指数函数的知识,得M=(-1,+∞),N=(1,+∞),故M∩N=(1,+∞).
答案 (1,+∞)
9.(2014?大纲全国卷改编)奇函数f(x)的定义域为R.若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=______________.
解析 由函数的奇偶性和对称性推出周期性,利用周期性求函数值.因为f(x)为R上的奇函数,所以f(-x)=-f(x),f(0)=0.因为f(x+2)为偶函数,所以f(x+2)=f(-x+2),所以f(x+4)=f(-x)=-f(x),所以f(x+8)=f(x),即函数f(x)的周期为8,故f(8)+f(9)=f(0)+f(1)=1.
答案 1
10.(2014?新课标全国Ⅰ卷)设函数f(x)=ex-1,x<1,x13, x≥1,则使得f(x)≤2成立的x的取值范围是________.
解析 结合题意分段求解,再取并集.当x<1时,x-1<0,ex-1
答案 (-∞,8]
11.(2016?济南模拟)已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围是________.
解析 f′(x)=3x2+1>0,∴f(x)在R上为增函数.
又f(x)为奇函数,由f(mx-2)+f(x)<0知,f(mx-2)
令g(m)=mx+x-2,由m∈[-2,2]知g(m)<0恒成立,可得g?-2?=-x-2<0,g?2?=3x-2<0,∴-2
答案 -2,23
12.已知函数y=f(x)是R上的偶函数,对?x∈R都有f(x+4)=f(x)+f(2)成立.当x1,x2∈[0,2],且x1≠x2时,都有f?x1?-f?x2?x1-x2<0,给出下列命题:
①f(2)=0;
②直线x=-4是函数y=f(x)图象的一条对称轴;
③函数y=f(x)在[-4,4]上有四个零点;
④f(2 014)=0.
其中所有正确命题的序号为________.
解析 令x=-2,得f(-2+4)=f(-2)+f(2),解得f(-2)=0,因为函数f(x)为偶函数,所以f(2)=0,①正确;因为f(-4+x)=f(-4+x+4)=f(x),f(-4-x)=f(-4-x+4)=f(-x)=f(x),所以f(-4+x)=f(-4-x),即x=-4是函数f(x)的一条对称轴,②正确;当x1,x2∈[0,2],且x1≠x2时,都有f?x1?-f?x2?x1-x2<0,说明函数f(x)在[0,2]上是单调递减函数,又f(2)=0,因此函数f(x)在[0,2]上只有一个零点,由偶函数知函数f(x)在[-2,0]上也只有一个零点,由f(x+4)=f(x),知函数的周期为4,所以函数f(x)在(2,6]与[-6,-2)上也单调且有f(6)=f(-6)=0,因此,函数在[-4,4]上只有2个零点,③错;对于④,因为函数的周期为4,即有f(2)=f(6)=f(10)=…=f(2 014)=0,④正确.
答案 ①②④
三、解答题
13.已知函数f(x)=loga(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点对称的点Q的轨迹恰好是函数f(x)的图象.
(1)写出函数g(x)的解析式;
(2)当x∈[0,1)时总有f(x)+g(x)≥m成立,求m的取值范围.
解 (1)设P(x,y)为g(x)图象上任意一点,则Q(-x,-y)是点P关于原点的对称点,因为Q(-x,-y)在f(x)的图象上,所以-y=loga(-x+1),
即y=-loga(1-x)(x<1).
(2)f(x)+g(x)≥m,
即loga1+x1-x≥m.
设F(x)=loga1+x1-x,x∈[0,1).
由题意知,只要F(x)min≥m即可.
因为F(x)在[0,1)上是增函数,所以F(x)min=F(0)=0.
故m的取值范围是(-∞,0].
14.已知二次函数f(x)=ax2+bx+1(a>0),F(x)=f?x?,x>0,-f?x?,x<0.若f(-1)=0,且对任意实数x均有f(x)≥0成立.
(1)求F(x)的表达式;
(2)当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求k的取值范围.
解 (1)∵f(-1)=0,∴a-b+1=0,
∴b=a+1,
∴f(x)=ax2+(a+1)x+1.
∵f(x)≥0恒成立,
∴a>0,Δ=?a+1?2-4a≤0,
即a>0,?a-1?2≤0.
∴a=1,从而b=2,∴f(x)=x2+2x+1,
∴F(x)=x2+2x+1 ?x>0?,-x2-2x-1 ?x<0?.
(2)由(1)知,g(x)=x2+2x+1-kx=x2+(2-k)x+1.
∵g(x)在[-2,2]上是单调函数,
∴k-22≤-2或k-22≥2,
解得k≤-2或k≥6.
所以k的取值范围是(-∞,-2]∪[6,+∞).
15.已知函数f(x)=ex-e-x(x∈R且e为自然对数的底数).
(1)判断函数f(x)的奇偶性与单调性;
(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x都成立?若存在,求出t;若不存在,请说明理由.
解 (1)∵f(x)=ex-1ex,且y=ex是增函数,y=-1ex是增函数,所以f(x)是增函数.由于f(x)的定义域为R,且f(-x)=e-x-ex=-f(x),所以f(x)是奇函数.
(2)由(1)知f(x)是增函数和奇函数,∴f(x-t)+f(x2-t2)≥0对一切x∈R恒成立
?f(x2-t2)≥f(t-x)对一切x∈R恒成立
?x2-t2≥t-x对一切x∈R恒成立
?t2+t≤x2+x对一切x∈R恒成立
?t+122≤x+122min对一切x∈R恒成立
?t+122≤0?t=-12.
即存在实数t=-12,使不等式f(x-t)+f(x2-t2)≥0对一切x都成立.
篇12:《函数的应用》教案
教学目标
1.能够运用函数的性质,指数函数,对数函数的性质解决某些简单的实际问题.
(1)能通过阅读理解读懂题目中文字叙述所反映的实际背景,领悟其中的数学本,弄清题中出现的量及其数学含义.
(2)能根据实际问题的具体背景,进行数学化设计,将实际问题转化为数学问题,并调动函数的相关性质解决问题.
(3)能处理有关几何问题,增长率的问题,和物理方面的实际问题.
2.通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生分析问题,解决问题的能力和运用数学的意识,也体现了函数知识的应用价值,也渗透了训练的价值.
3.通过对实际问题的研究解决,渗透了数学建模的思想.提高了学生学习数学的兴趣,使学生对函数思想等有了进一步的了解.
教学建议
教材分析
(1)本小节内容是全章知识的综合应用.这一节的出现体现了强化应用意识的要求,让学生能把数学知识应用到生产,生活的实际中去,形成应用数学的意识.所以培养学生分析解决问题的能力和运用数学的意识是本小节的重点,根据实际问题建立数学模型是本小节的难点.
(2)在解决实际问题过程中常用到函数的知识有:函数的概念,函数解析式的确定,指数函数的概念及其性质,对数概念及其性质,和二次函数的概念和性质.在方法上涉及到换元法,配方法,方程的思想,数形结合等重要的思方法..事业本节的.学习,既是对知识的复习,也是对方法和思想的再认识.
教法建议
(1)本节中处理的均为应用问题,在题目的叙述表达上均较长,其中要分析把握的信息量较多.事业处理这种大信息量的阅读题首先要在阅读上下功夫,找出关键语言,关键数据,特别是对实际问题中数学变量的隐含限制条件的提取尤为重要.
(2)对于应用问题的处理,第二步应根据各个量的关系,进行数学化设计建立目标函数,将实际问题通过分析概括,抽象为数学问题,最后是用数学方法将其化为常规的函数问题(或其它数学问题)解决.此类题目一般都是分为这样三步进行.
(3)在现阶段能处理的应用问题一般多为几何问题,利润最大,费用最省问题,增长率的问题及物理方面的问题.在选题时应以以上几方面问题为主.
教学设计示例
★函数课件
文档为doc格式