欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

圆周角教案设计及反思

时间:2022-10-11 08:52:14 其他范文 收藏本文 下载本文

下面小编为大家整理了圆周角教案设计及反思,本文共20篇,欢迎阅读与借鉴!

圆周角教案设计及反思

篇1:圆周角教案设计及反思

圆周角教案设计及反思

教材依据

圆周角是新课标人教版九年级数学上册第二十四章第一节圆的有关性质的重要内容,本节内容依据新人教版九年级《课程标准》和《教师教学用书》及《初中数学新教材详解》。

设计思想

本节课是在学习了圆心角的定义、性质定理和推论的基础上,由生活实例引出圆周角,类比圆心角认识圆周角,类比圆心角的性质探究圆周角定理,精选例题及习题对本节内容进行迁移应用。

在教学过程中本着“以人为本,让课堂变为学堂,把时间和空间更多地留给学生”为原则,注重学生的实践活动,通过让学生作图、度量、分析、猜想、验证得出结论,教学过程中充分利用学生已有的认知水平,由浅入深、逐层递进,并能适时地应用直观教具引导学生运用分类讨论及转化的数学思想对圆周角定理进行证明,化解本节课的难点。这样学生易于接受新知识,也能很快地理解并掌握圆周角定理的内容,同时给学生自主探索留有很大空间,让学生在实践探究、合作交流活动中,亲身体验应用数学的乐趣和成功的喜悦,发展学生的思维,培养学生的多种学习能力。

教学目标

1.知识与技能

(1)理解圆周角的概念,掌握圆周角定理,并运用它进行简单的论证和计算。

(2)经历圆周角定理的证明,使学生初步学会运用分类讨论的数学思想和转化的数学思想解决问题。

2.过程与方法

采用“活动与探究”的学习方法,由感性到理性、由简单到复杂、由特殊到一般的思维过程研究新知识,引导学生理解知识的发生发展过程,并使学生能应用所学知识解决简单的实际问题。

3.情感、态度与价值观

通过学生探索圆周角定理,自主学习、合作交流的学习过程,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习数学的自信心。

教学重点

圆周角的概念、圆周角定理及应用。

教学难点

圆周角定理的探究过程及定理的应用。

教学准备

学生:圆规、量角器、尺子

教师:多媒体课件、活动教具

教学过程

一、 创设情景,引入新课

大屏幕显示学生熟悉的画面(足球射门游戏)

足球场有句顺口溜:“冲向球门跑,越近就越好;歪着球门跑,射点要选好。”其中蕴藏了一定的数学道理,学习了本节课,我们就可以解释其中的道理。

二、实践探索,揭示新知

(一)圆周角的概念

在射门游戏中,球员射中球门的难易程度与他所处的位置B对球门AC的张角∠ABC有关.(教师出示图片,提出问题)

图中∠ABC是圆心角吗?什么是圆心角?图中∠ABC有什么特点?

(学生通过与圆心角的类比、分析、观察得出∠ABC的特点,进而概括出圆周角的概念,教师引导并板书)

定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。

概念辨析:

判断下列各图形中的角是不是圆周角,并说明理由。(图略)

(通过概念辨析,让学生理解圆周角的定义,提高学生的语言表达能力,教师强调知识要点)

强调:圆周角必须具备的两个条件:①顶点在圆上;②两边都与圆相交.

(二)圆周角定理

1.提出问题,引发思考

类比圆心角的结论:同弧或等弧所对的圆心角相等。提出本节课研究的问题:同弧或等弧所对的圆周角相等吗?为了搞清这个问题,我们可以先研究:同弧所对的圆心角和圆周角的关系。

2.活动与探究

画一个圆心角,然后再画同弧所对的圆周角。你能画多少个圆周角? 用量角器量一量这些圆周角及圆心角的`度数,你有何发现呢?

(教师提出问题,学生作图、度量、分析、归纳出发现的结论。)

结论:(1)同一条弧所对的圆周角有无数个,同弧所对的任意一个圆周角都相等。

(2)同一条弧所对的圆周角等于它所对的圆心角的一半.

由上述操作可以看出:同一条弧所对的任意一个圆周角都等于该条弧所对的圆心角的一半。

(学生通过实践探究,讨论概括出结论,教师点评)

3.推理与论证

(1)教师演示活动教具,一条弧所对的圆心角只有一个,所对的圆周角有无数个,我们没有办法一一论证,提出本节课研究方法:分类讨论法。

(教师演示,引导学生观察圆心与圆周角的位置关系,学生观察、小组交流,最后得出结论,教师出示圆心和圆周角的三种位置关系图片)

(2)分类讨论,证明结论 ① 当圆心在圆周角的一条边上时,如何证明?(从特殊情况入手,学生通过观察、分析、讨论,证明所发现的结论,教师鼓励学生看清此数学模型。)

②另外两种情况如何证明,可否转化成第一种情况呢?

(学生采取小组合作的学习方式进行探索发现,教师巡视指导,启发并引导学生,通过添加辅助线,将问题进行转化,学生写出证明过程,并讨论归纳出结论,教师做出点评)

结论:在同圆中,同弧所对的圆周角相等,都等于该条弧所对圆心角的一半

4.变式拓展,引出重点

将上述结论改为“在同圆或等圆中,等弧所对的圆周角相等吗?

(学生思考、推理、讨论、总结出圆周角定理,教师板书)

圆周角定理: 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

强调:(1)定理的适用范围:同圆或等圆(2)同弧或等弧所对的圆周角相等(3)同弧或等弧所对的圆周角等于它所对圆心角的一半

(教师强调圆周角定理的内容,学生思考、默记、熟悉定理,加深对定理的理解)

三、应用练习,巩固提高

1.范例精析:

例:如图,在⊙O中,∠CBD=30° ,∠BDC=20°,求∠A(图略)

(鼓励学生用多种方法解决问题,发散学生的思维,培养学生良好的思维品质,让学生书写推力计算过程,教师补充、点评、并和学生一起归纳解法。两种解法分别应用了圆周角定理中的两个结论,进一步对本节课的重点知识熟练深化,同时又培养了学生规范的书写表达能力)

2.应用迁移:

(1)比比看谁算得快:(图略)

(本小题既可巩固圆周角定理,又可培养学生的竞争意识以适应时代的要求,同时对回答问题积极准确的学生提出表扬,激发学生的学习积极性)

(2)生活中的数学

如图.在足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同伴乙已经冲到B点,这时甲是直接射门好,还是将球传给乙,让乙射门好﹙仅从射门角度考虑﹚(图略)

(选用学生熟悉的生活材料,让学生通过合作交流,讨论找出合理的解答方法,通过本小题的练习,使学生体味到生活离不开数学,从而激发学生应用数学的意识)

四、总结评价,感悟收获

通过本节课的学习你有哪些收获?(学生归纳总结,老师点评)

知识:(1)圆周角的定义;

(2)圆周角定理。

能力:观察、操作、分析、归纳、表达等能力.

思想方法:分类讨论思想、转化思想、类比思想、数形结合思想、

五、作业设计,查漏补缺

1.课本习题:P88.1,2,3,P89.5,P124.11

2.在⊙O中,圆心角∠AOB=70°,点C是⊙O上异于A、B的一点,求圆周角∠AOB的度数。

3.生活中的数学:监控器的监控范围是65度,圆形的博物馆内需要安装几盏才能全方位监控?(图略)

(设计课本习题与课外拓展作业,不仅可以使学生对本节课的知识加以巩固、提高和查漏补缺,而且让学生会用数学的眼光和头脑去观察和思考世界,达到学以致用)

教学反思

成功之处:本节课内容丰富,结构合理,设计精细。教学时能根据学生实际遵循认知规律,由浅入深,循序渐进,及时了解学生的学习情况,灵活调整教学内容。能适时的用教材又不拘泥于教材,挖掘教材的多种功能,在教学结构的安排上也体现了新课标、新理念,重视学生自主学习、自主探究、合作交流、主动地观察与思考,各个环节衔接紧密、合理、流畅,教学效果比较理想。

不足之处:学生不易理解用分类讨论思想证明圆周角定理,在后面的教学中逐步让学生了解分类讨论思想在解题时的应用。另外学生语言表达的准确性还需不断加强。

篇2:《圆周角》教案设计

《圆周角》教案设计

《圆周角》教案设计

万店中心学校李桂初

教学目标:一.知识技能

1.理解圆周角概念,理解圆周用与圆心角的异同;

2.掌握圆周角的性质和直径所对圆周角的特征;

3.能灵活运用圆周角的性质解决问题;

二.解决问题

1.发现和证明圆周角定理;

2.会用圆周角定理及推论解决问题.

教学重点:圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征.

教学难点:发现并证明圆周角定理.

教学过程:

一.创设情景

如图是一个圆柱形的海洋馆,在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗⌒AB观看窗内的海洋动物.大家请看海洋馆的横截面的示意图,想想看:同学甲站在圆心O的位置,同学乙站在正对着下班窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(∠ADB和∠AEB)和同学乙的视角相同吗?

二、认识圆周角.

1.观察∠ACB、∠ADB、∠AEB,这样的角有什么特点?

2.给出定义,顶点在圆上,并且两边都与圆相交的角叫做圆周角.(注意两点:1.角的顶点在圆上;2.角的两边都与圆相交,二者缺一不可.)

3.辩一辩,图中的∠CDE是圆周角吗?引导学生识别,加深对圆周角的了解.

4.圆周角与圆心角的联系和区别是什么?

三、探究圆周角的性质.

1.在下图中,同弧⌒AB所对的圆周角有哪几个?观察并测量这几个角,你有什么发现?大胆说出你的猜想.同弧⌒AB所对的圆心角是哪个角?观察并测量这个角,比较同弧所对的圆周角你有什么发现呢?大胆说出你的猜出想.

2.由学生总结发现规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半,教师再利用几何画板从动态的角度进行演示,验证学生的发现.

四、证明圆周角定理及推论.

1.问题:在圆上任取一个圆周角,观察圆心角顶点与圆周角的位置关系有几种情况?

2.学生自己画出同一条弧的圆心角和圆周角,将他们画的图归纳起来,共有三种情况:①圆心在圆周角的一边上;②圆心在圆周角的内部;③圆心在圆周角的外部.如下图

3.问题:在第一种情况中,如何证明上面探究中所发现的结论呢?另外两种情况如何证明呢?

4.怎样利用有上结论证明我们的.第一个猜想:圆弧所对的圆周角相等?(利用圆弧所对的圆心角相等)

5.以上结论同圆改成等圆,同弧改成等弧结论还成立吗?为什么?

6.总结出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

7.将上面定理中的“同弧或等弧”改成“同弦或等弦”,结论还成立吗?

8.在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?

总结推论1:同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。(也是圆周角定理的逆定理,要通过圆心角来转换)

五.应用迁移,巩固提高.

1.求图中x的度数.

2.如图,⊙O的直径AB为10 cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.

六.小结:本节课你认识了什么?掌握了哪些定理?有什么收获?

七.课外作业.

教材P86练习.

MSN(中国大学网)

篇3: 《圆周角》教学反思

《数学课程标准》中指出:“在掌握基础知识的同时,感受数学的意义”提出了“重视从学生的生活经验和已有的知识中学习数学和理解数学”使学生感受到数学就在我们身边,感受到数学的趣味、作用。

在我们的日常生活中,圆周角和圆心角的现象无处不在,对于这两个概念的体验尤为重要。反思这节课,我有以下体会:

1、重视联系学生的生活实际,让学生体验到生活中处处有数学。

从观察名牌汽车的标志入手,还有自行车的车轮等等都是学生在生活中时时能看,处处能见的,通过这些图形的形象演示,让学生直观看到真实的世界中的“圆周角和圆心角”,加强学生的感性认识。

2、用多种感官感受数学,培养数学情感。

学生在本课中不是用耳朵听数学,而是用眼睛观察数学现象,通过数学教具的演示来理解数学知识,用数学知识解释身边的数学现象,在探讨、交流、分析中获得数学概念,拉近了抽象的数学概念与生活实际的距离。

3、重视数学知识的形成过程,让学生感受到学习数学的快乐。

课中引导学生从三种情况进行分析,推导圆周角定理的证明过程。定理学完后,马上进行适当的练习加以巩固,让学生在思考与回答的过程中体会到学习数学的快乐。

存在的不足:

还可让学生多一些动手操作的时间,给小老师多一些机会,在操作中加深对“圆周角定理推导过程”的体验。

篇4: 《圆周角》教学反思

本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解,勾股定理的应用的教学反思(郑茹)。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。

针对本班学生的特点,学生知识水平、学习能力的差距,本节课安排了如下几个环节:

一、复习引入

对上节课勾股定理内容进行回顾,强调易错点。由于学生的注意力集中时间较短,学生知识水平低,引入内容简短明了,花费时间短。

二、例题讲解,巩固练习,总结数学思想方法

活动一:用对媒体展示搬运工搬木板的问题,让学生以小组交流合作,如何将木板运进门内?需要知道们的宽、高,还是其他的条件?学生展示交流结果,之后教师引导学生书写板书,教学反思《勾股定理的应用的教学反思(郑茹)》。整个活动以学生为主体,教师及时的引导和强调。

活动二:解决例二梯子滑落的问题。学生自主讨论解决问题,书写过程,之后投影学生书写过程,教师与学生一起合作修改解题过程。

活动三:学生讨论总结如何将实际生活中的问题转化为数学问题,然后利用勾股定理解决问题。利用勾股定理的前提是什么?如何作辅助线构造这一前提条件?在数学活动中发展了学生的探究意识和合作交流的习惯;体会勾股定理的应用价值,让学生体会到数学来源于生活,又应用到生活中去,在学习的过程中体会获得成功的喜悦,提高了学生学习数学的兴趣和信心。

三、巩固练习,熟练新知

通过测量旗杆活动,发展学生的探究意识,培养学生动手操作的能力,增加学生应用数学知识解决实际问题的经验和感受。

在教学设计的实施中,也存在着一些问题:

1.由于本班学生能力的差距,本想着通过学生帮带活动,使学困生充分参与课堂,但在学生合作交流是由于学习能力强的学生,对问题的分析解决所用时间短,而在整个环节设计中转接的快,未给学困生充分的时间,导致部分学生未能真正的参与到课堂中来。

2.课堂上质疑追问要起到好处,不要增加学生展示的难度,影响展示进程出现中断或偏离主题的现象。

3.对学生课堂展示的评价方式应体现生评生,师评生,及评价的针对性和及时性。

篇5: 《圆周角》教学反思

我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾(短直角边)等于三,股(长直角边)等于四,那么弦等于五。即“勾三、股四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中,在这本书的另一处,还记载了勾股定理的一般形式。中国古代的几何学家研究几何是为了实用,是唯用是尚的。在勾股定理教学中反思如下:

一转变师生角色,让学生自主学习。

由同学们的作图,我们发现有的直角三角形的三边具有这种关系,有的直角三角形不具有这种性质。当然作图存在着误差。可仍然证明不了我们的猜想是否正确。下面我们用拼图的方法再来验证一下。请同学们拿出准备好的直角三角形和正方形,利用拼图和面积计算来证明a2+b2=c2(学生分组讨论。)学生展示拼图方法,课件辅助演示。

新课标下要求教师个人素质越来越高,教师自身要不断及时地学习新知识,接受新信息,对自己及时充电、更新,而且要具有诙谐幽默的`语言表达能力。既要有领导者的组织指导能力,更重要的是要有被学生欣赏佩服的魅力,只有学生配合你,信任你,喜欢你,教师才能轻松驾御课堂,做到应付自如,高效率完成教学目标。

“教师教,学生听,教师问,学生答,教室出题,学生做”的传统教学摸模式,已严重阻阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1平方米到底有多大?因此,新课标要求老师一定要改变角色,变主角为配角,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。

数学的创造性不能没有逻辑思维,学习数学可以帮助养成理性思考的习惯。数学并不是公式的堆垒,也不是图形的汇集,数学有逻辑性很强的体系。数学不是只强调计算与规则的课程,而是讲道理的课程。培养与运用逻辑思维,并不是不顾及学生的可接受性一味地片面强调推理的严密和体系的完整,而是既要体现逻辑推理的作用,又不片面夸大它。几何的教学体系有别于几何的科学体系,在几何教学中,讲道理并完全不等同于纯粹的形式证明,几何教学培养逻辑思维能力同样要有的放矢,循序渐进,从直观到抽象,从简单到复杂?? 二转变教学方式,让学生探索、研究、体会学习过程。

学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当今课堂教学存在的普遍问题,对于学生实践能力的培养非常不利的。现在的数学教学到处充斥着过量的、重复的、不断循环的、人为挖掘的训练。 学习的过程性:

1.关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积思考,能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;

2.关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理. 学习的知识性:掌握勾股定理,体会数形结合的思想.

试一试:我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺。如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面。请问这个水池的深度和芦苇的长度各是多少?

新课标对几何内容的安排。安排采取了首先是直观和经验,接着是说理与抽象,最后是演绎

的方案。以直线形为例,先借助直观认识一个直线形,进而借助多种手段合乎情理地发现它的某种几何性质,接着通过演绎推理把这个性质搞定。看上去,强化了直观和实验,弱化了推理,实际上,在这里直观和推理两者都很重要,而且两者之间互为支撑,有互逆的性质。让直观几何和推理几何并重,把发现和证明绑在一起,与传统的几何课程体系确有不同。说到几何,新课标对几何的重视程度丝毫没有减弱,而是在加强。例如直观和实验几何的触角已经伸向了小学低年级,同时欧氏几何的体系和内容差不多还是完整呈现。如果说有所弱化,就是具体要求降低了,这种降低主要体现在两个方面,一个是对推理几何的难度要求有所限制,另外是弱化了相似形和圆(包括圆与直线之间的关系)这块内容的证明部分。

教材内容的丰富,充分激发了学生的学习积极性。教材编排了一些游戏性的智力题,引导学生发现数学规律,探索数学世界的奥秘,采用阅读一些数学小故事和数学发展史,丰富学生的数学知识和对世界数学文化的了解,充分激发了学生继续学习数学和发展数学的积极性,把生活中的实物抽象成几何图形,让学生了解丰富变幻的图形世界,培养了学生抽象思维能力,特别侧重于培养学生认识事物,探索问题,解决实际的能力。让学生感兴趣且愿意学,并且接受知识是循序渐进的过程,随着数学知识的不断学习,也使学生亲身体会到了学习数学的重要意义:我们的生活中处处离不开数学,处处需要数学,学习数学也是非常有意思的。三提高教学科技含量,充分利用多媒体。

几何图形可以直观地表示出来,人们认识图形的初级阶段中主要依靠形象思维。远古时期人们对几何图形的认识始于观察、测量、比较等直观实验手段,现代儿童认识几何图形亦如此,人们可以通过直观实验了解几何图形,发现其中的规律。然而,因为几何图形本身具有抽象性和一般性,一种几何概念可能包含无限多种不同的情形,例如有无数种形状不同的三角形。对一种几何概念所包含的一部分具体对象进行直观实验所得到的认识,一定适合其他情况验回答不了的问题。因此,一般地,研究图形的形状、大小和位置.

培养逻辑推理能力,作了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续。在这套教科书的几何部分,七年级上、下两册要先后经历“说点儿理”“说理”“简单推理”几个层次,有意识地逐步强化关于推理的初步训练,主要做法是在问题的分析中强调求解过程所依据的道理,体现事出有因、言之有据的思维习惯。

由于信息技术的发展与普及,直观实验手段在教学中日益增加,有些学校还建立了“数学实验室”,这些对于几何学的学习起到积极作用。随着教学研究的不断深入,直观实验会在启发诱导、化难为易、检验猜想等方面进一步大显身手。但是,直观实验终归是数学学习的辅助手段,数学毕竟不是实验科学,它不能象物理、化学、生物等学科那样最后通过实验来确定结论。实验几何只是学习几何学的前奏曲或第一乐章,后面的乐曲建立在理性思维基础上,逻辑推理是把演奏推向高潮的主要手段。

四转变评价手段,让每个学生找到学习数学的自信。

评价就其实质来讲,乃是一种监控机制。这种反馈监控机制包括“他律”与“自律”两个方面。所谓“他律”是以他人评价为基础的,“自律”是以自我评价为基础的。每个人素质生成都经历着一个从“他律”到“自律”的发展过程,经历着一个从学会评价他人到学会评价自己的发展过程。实施他人评价,完善素质发展的他人监控机制很有必要。每个人都要以他人为镜,从他人这面镜子中照见自我。但发展的成熟、素质的完善主要建立在自律的基础上,是以素质的自我评价、自我调节、自我教育为标志的。因此要改变单纯由教师评价的现状,提倡评价主体的多元化,把教师评价、同学评价、家长评价及学生的自评相结合。尤其要突出学生的自评,提高他们的自我认识、自我调节、自我评价的能力,增强反思意识,培养健康的心理。 注重数学与生活的联系,从学生认知规律和接受水平出发,这些理念贯彻到教材与课堂教学当中,很好地激发了学生学习数学的兴趣。学生们善于提出问题、敢于提出问题、解决问题的能力强,已经成为数学新课标下学生表现的一个标志。

通过学习几何可以认识丰富多彩的几何图形,建立与发展空间观念,掌握必要的几何知识,培养运用这些知识认识世界与改造世界的能力。但是,这些并不是几何学的全部教育功能。从更深层次看,学习几何学的一个重要的作用是:以几何图形为载体,培养逻辑思维能力,提高理性思维水平。这正是自古希腊开始几何教学一直倍受重视的主要原因。

从实际需要看,一个普通人一生中运用几何知识的时间、场合,要比他应该运用逻辑思维的时间、场合少得多。前者在特定的环境下发生,而后者经常地、普遍地出现,它的作用远比前者大得多。一个人学过几何后,如果不继续从事与数学关系密切的学习或工作,他一生中有可能很少甚至不会用到在某个几何定理,但是他肯定应该经常不断地在不同程度上使用逻辑推理来分析问题。当然,其他课程也可以培养学生的逻辑思维能力,学习几何学并不是实现此目的之唯一途径。但是,长期以来几何学被普遍认为是适合培养逻辑思维能力的绝好课程是客观事实。形成这种状况的原因主要有:几何学的历史悠久,学科体系成熟;几何学体系的逻辑性特点格外突出;几何学的研究对象是几何图形,结合几何图形,利用图形语言,在一定程度上可以降低认识和理解逻辑推理的难度。

按照人的一般认知规律,认识几何图形的过程,也是从具体到抽象,从简单到复杂,从特殊到一般,从感性到理性的过程。根据教育心理学的规律可知,初中学生多处于认识方法发生升华的阶段,他们对事物的认识已不满足于表面的、孤立的层次,而有了向更深层次发展的要求,即向往“由此及彼,由表及里”的思维方式。从几何教学的内容看,学生们从小学开始已经通过直观实验这种主要方式学习了基础的图形知识,在他们的头脑中已经积累了一定的关于图形的感性认识,在初中阶段应该更深入地在“为什么”的层面上认识图形。显然,单纯的直观实验这种学习方式已经不适应继续深入学习的需要,因为这种方式难以真正从道理上对图形规律进行解释,而逻辑推理的方式才能担此重任。因此,从“实验几何”向“推理几何”的过渡成为初中几何教学必须面对的问题,培养逻辑推理能力成为初中几何教学必须实现的教学目标。

认识几何图形既需要形象思维,又需要抽象思维,两者相辅相成。虽然我们强调几何教学中逻辑推理的重要性,但是并不排斥直观实验。直观实验是初级认识手段,逻辑推理是高级认识手段。“看一看”“量一量”“做一做”等直观实验活动在几何学习的初始阶段的重要性尤为突出,即使在推理几何阶段的学习中,直观实验也具有重要的辅助作用,人们常借助某些直观特例来发现一般规律、探寻证明思路、理解抽象内容,有时直观实验与逻辑推理是交替进行的。

让学生享受数学的有趣:可利用愉快的游戏、生动的故事、激烈的竞赛、入境的表演、热情的掌声等创设出一种愉悦的学习情境,诱发学生的学习情趣;让学生时常感受到“数学真奇妙!”,从而产生“我也想试一试!”的心理。

让学生享受数学的有用:借助生活情境,让学生寻找有关的数学问题,使学生体会到我们的生活中蕴涵着丰富的数学问题,感受数学学习在生活中的作用。

让学生享受数学的精彩:创设一切机会让学生学会思考,乐于思考、善于思考,只有这样,数学才能展示其精彩的一面;在教学中可有意识地安排一些问题让学生多途径思考,发现答案有多种多样;让他们体味出更多的精彩!享受数学的成功:“教育教学的本质就是帮助学生成功。”一次成功的机会却可以十倍地增强学生的信心;因此,课堂上教师应毫不吝啬自己鼓励的眼神、赞许的话语,批改作业时尽量少一些令人生厌的“×”,可以写上“再算算”。

篇6: 《圆周角》教学反思

本节课是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角的性质进行探索,圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,也是学习圆的后续知识的重要预备知识,在教材中起着承上启下的作用.同时,圆周角性质也是说明线段相等,角相等的重要依据之一.

本节课的重点是圆周角的概念和经历探索圆周角性质的过程,难点是合情推理验证圆周角与圆心角的关系.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大.而对圆周角与圆心角的关系理解起来则相对困难,特别是圆心在圆周角内部、圆心在圆周角外部这两种情况,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.此外,在知识的应用过程中还应引导学生注重前后知识的联系,提高学生综合运用知识的能力,培养学生对数学的应用意识、创新意识.

本节课我设计了问题情境――自主探究――拓展应用的课堂教学模式,以学生探究为主,配合多媒体辅助教学.在教学过程中,教师将问题式教学法,启发式教学法,探究式教学法,情境式教学法,互动式教学法等多种教学方法融为一体,注重教学与生活的联系,创设富有挑战性的问题情境,引导学生用数学的眼光看问题,发现规律,验证猜想.教学中注重学生的个体差异,让不同层次的学生充分参与到数学思维活动中来,充分发挥学生的主体作用.运用适度的激励,帮助学生认识自我,建立自信,不仅“学会”,而且“会学”,“乐学”.引导学生采用动手实践,自主探究,合作交流的学习方法进行学习,使学生在观察、实践、问题转化等数学活动中充分体验探索的快乐,发现新知,发展能力.与此同时,教师通过适时的点拨、精讲,使观察、猜想、实践、归纳、推理、验证贯穿于整个学习过程之中.

本节课不足的是,由于内容较多,节奏有点快,可能有部分学生掌握的不够好,还需点时间巩固练习。

篇7: 《圆周角》教学反思

反思一:圆周角和圆心角的关系教学反思

把射门游戏问题抽象为数学问题,研究圆周角和圆心角的关系,研究圆周角和圆心角的关系,应该说,学生解决这一问题是有一定难度的,尽管如此,教学时仍应给学生留有时间和空间,让他们进行思考。让学生经历观察、想象、推理、操作、描述、交流等过程,多种角度直观体验数学模型,而这也正符合本章学习的主要目标。

反思二:圆周角和圆心角的关系教学反思

在本节课的教学中,我结合本节课教学内容、教学目标和学生的认知规律,在教学设计上,一是注重创设情境,激发学生学习的兴趣、主动性和求知欲望, 为下一步教学的顺利展开开个好头;二是注重引导学生经历探索、验证、论证、应用数学新知的过程,鼓励学生用动手实践、自主探究、合作交流的>学习方法进行学习,使学生在数学活动中深刻的理解知识和掌握由特殊到一般的认知方法。

反思三:圆周角和圆心角的关系教学反思

本节课我认为是一节研究性的课,结论虽然简单、易用,但是探索的过程中体现了数学的分类思想与化归思想。如何让学生自然地理解是这节课的难点。最开始,我是>计划通过学生动手作圆周角来体会分类,但是考虑到时间的关系,没有让学生动手,尽管在后面对分类思想在本节课的应用进行了充分的讲解,但是对于学生自主探究还是有些欠缺,使学生对“为什么要分类”体会的不是很充分。这是本节节课比较遗憾的地方。另外,没有充分考虑到不同层次学生的需求。看了各位老师的建议,我获益匪浅,在今后上课的时候对各个环节更应充分的考虑。

篇8: 《圆周角》教学反思

本节课在知识上主要有两点:一是圆周角的概念,二是圆周角定理,为了使学生能够更好的掌握并运用知识,在授课时就需要注重方式方法,要使学生能够体验到抽象出概念和定理的过程,参与到课堂活动中,成为课堂上的真正主人,为此,对本节课有以下几点思考:

1、教学上注重学生的数学核心素养数学抽象能力,逻辑推理能力的培养。学生对这些虽然没有明确的概念,但是多年的数学学习,已经对这些数学核心素养具有了朦胧的感知,也具有了一般的用数学眼光、数学思维去分析、去看待事物的潜意识,老师不必明确强调,但要加以引导,将这些数学思想默默地进行渗透。

2、注重评价。评价是很重要的,学生回答正确时,积极正面的鼓励会使学生学习热情更加高涨,对学习也更有信心,逐渐形成良性循环;学生回答出错时,当然也要评价,也当然是不能批评否定,而应该给予鼓励与引导。评价方式可多种多样,除了老师评价之外,还可以学生互评,小组互评。

3、学生学习方式要多样化。根据内容的难易程度,可以组织学生以独自学习、对子互帮学习、小组合作学习等多种方式展开,使学生真正成为课堂的主导者,知识的掌握者。

篇9:圆周角教学反思

教学目标:

(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;

(2)培养学生观察、分析、想象、归纳和逻辑推理的能力;

(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法。

教学重点:

圆周角的概念和圆周角定理

教学难点:

理解圆周角定理的证明

教学活动设计:

(在教师指导下完成)

(一)圆周角的概念

1、复习提问:

(1)什么是圆心角?

答:顶点在圆心的角叫圆心角。

(2)圆心角的度数定理是什么?

答:圆心角的度数等于它所对弧的度数。

2、引题圆周角:

如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角。(如右图)

(演示图形,提出圆周角的定义)

定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角

3、概念辨析:

教材P93中1题:判断下列各图形中的是不是圆周角,并说明理由。 学生归纳:一个角是圆周角的条件:

①顶点在圆上;

②两边都和圆相交。

(二)圆周角的定理

1、提出圆周角的度数问题

问题:圆周角的度数与什么有关系?

经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系。引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部

(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半。

提出必须用严格的数学方法去证明。

(2)其它情况,圆周角与相应圆心角的关系:

当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论。

证明:作出过C的直径(略)

圆周角定理: 一条弧所对的

周角等于它所对圆心角的一半。

说明:这个定理的证明我们分成三种情况。这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想。(对A层学生渗透完全归纳法)

(三)定理的应用

1、例题: 如图OA、OB、OC都是圆O的半径, ∠AOB=2∠BOC。 求证:∠ACB=2∠BAC

让学生自主分析、解得,教师规范推理过程。

说明:

①推理要严密;

②符号“”应用要严格,教师要讲清

2、巩固练习:

(1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数?

(2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数? 说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个。

(四)总结

知识:

(1)圆周角定义及其两个特征;

(2)圆周角定理的内容。 在思想方法:一种方法和一种思想:

在证明中,运用了数学中的分类方法和“化归”思想。分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题。

(五)作业 教材P100中习题A组6,7,8

教学反思

本节课是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角的性质进行探索,圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,也是学习圆的后续知识的重要预备知识,在教材中起着承上启下的作用。同时,圆周角性质也是说明线段相等,角相等的重要依据之一。

本节课的重点是圆周角的概念和经历探索圆周角性质的过程,难点是合情推理验证圆周角与圆心角的关系。在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大。而对圆周角与圆心角的关系理解起来则相对困难,特别是圆心在圆周角内部、圆心在圆周角外部这两种情况,因此在教学过程中要着重引导学生对这一知识的探索与理解。还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出。此外,在知识的应用过程中还应引导学生注重前后知识的联系,提高学生综合运用知识的能力,培养学生对数学的应用意识、创新意识。

本节课我设计了问题情境——自主探究——拓展应用的课堂教学模式,以学生探究为主,配合多媒体辅助教学。在教学过程中,教师将问题式教学法,启发式教学法,探究式教学法,情境式教学法,互动式教学法等多种教学方法融为一体,注重教学与生活的联系,创设富有挑战性的问题情境,引导学生用数学的眼光看问题,发现规律,验证猜想。教学中注重学生的个体差异,让不同层次的学生充分参与

到数学思维活动中来,充分发挥学生的主体作用。运用适度的激励,帮助学生认识自我,建立自信,不仅“学会”,而且“会学”“,乐学”。引导学生采用动手实践,自主探究,合作交流的学习方法进行学习,使学生在观察、实践、问题转化等数学活动中充分体验探索的快乐,发现新知,发展能力。与此同时,教师通过适时的点拨、精讲,使观察、猜想、实践、归纳、推理、验证贯穿于整个学习过程之中。本节课不足的是,由于内容较多,节奏有点快,可能有部分学生掌握的不够好,还需点时间巩固练习。

篇10:圆周角

第一课时 (一)

教学目标:

(1)理解的概念,掌握的两个特征、定理的内容及简单应用;

(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;

(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.

教学重点:的概念和定理

教学难点:定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.

教学活动设计:(在教师指导下完成)

(一)的概念

1、复习提问:

(1)什么是圆心角?

答:顶点在圆心的角叫圆心角.

(2)圆心角的度数定理是什么?

答:圆心角的度数等于它所对弧的度数.(如右图)

2、引题:

如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是.(如右图)(演示图形,提出的定义)

定义:顶点在圆周上,并且两边都和圆相交的角叫做

3、概念辨析:

教材P93中1题:判断下列各图形中的是不是,并说明理由.

学生归纳:一个角是的条件:①顶点在圆上;②两边都和圆相交.

(二)的定理

1、提出的度数问题

问题:的度数与什么有关系?

经过电脑演示图形,让学生观察图形、分析与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的的三种情况:圆心在的一边上、圆心在内部、圆心在外部.

(在教师引导下完成)

(1)当圆心在的一边上时,与相应的圆心角的关系:(演示图形)观察得知圆心在上时,是圆心角的一半.

提出必须用严格的数学方法去证明.

证明:(圆心在上)

(2)其它情况,与相应圆心角的关系:

当圆心在外部时(或在内部时)引导学生作辅助线将问题转化成圆心在一边上的情况,从而运用前面的结论,得出这时仍然等于相应的圆心角的结论.

证明:作出过C的直径(略)

定理:一条弧所对的

周角等于它所对圆心角的一半.

说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)

(三)定理的应用

1、例题:如图   OA、OB、OC都是圆O的半径, ∠AOB=2∠BOC.

求证:∠ACB=2∠BAC

让学生自主分析、解得,教师规范推理过程.

说明:①推理要严密;②符号应用要严格,教师要讲清.

2、巩固练习:

(1)如图,已知圆心角∠AOB=100°,求∠ACB、∠ADB的度数?

(2)一条弦分圆为1:4两部分,求这弦所对的的度数?

说明:一条弧所对的有无数多个,却这条弧所对的的度数只有一个,但一条弦所对的的度数只有两个.

(四)总结

知识:(1)定义及其两个特征;(2)定理的内容.

思想方法:一种方法和一种思想:

在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.

(五)作业  教材P100中习题A组6,7,8

第 1 2 页

篇11:圆周角的教学反思

本节课我以学生探究为主,配合多媒体辅助教学、在教学过程中,我注重教学与生活的联系,创设富有挑战性的问题情境,引导学生用数学的眼光看问题,发现规律,验证猜想、教学中注重学生的个体差异,让不同层次的学生充分参与到数学思维活动中来,充分发挥学生的主体作用、引导学生采用动手实践,自主探究,合作交流的学习方法进行学习,使学生在观察、实践中充分体验探索的快乐,发现新知,发展能力、

这节课做的比较好的地方是:

1、教学环节设计比较合理,尤其是对圆周角定理证明的处理。考虑到定理的后两种图形证明难度大,考试要求低,班级基础又弱,我采用了留作思考,个别点拨的方法,帮助学困生和中等生跳过这个“障碍",使得教学重难点没有被冲淡,教学目标比较明确,课时任务顺利完成。

2、基本上做到让学生讲。在课堂上学生能说的老师不说,学生说不出来的老师引导着说,学生没有想到的老师补充着说。3、小组4人合作使用合理。充分调动小组合作的积极性和有效性,利用角落的一点地方,进行课堂评价,使学生课堂效率和学习积极性大增。

这节课还留有很多的遗憾:引入部分的时间过多,使得时间分配不当,学生的练习不够充分。由于时间把握不好,导致设计的对于每个知识点都应该有一个练习与之对应没有很好完成,使学生对本节课的几个知识点不够明确,应用会有点生涩。

篇12:圆周角教案

教学任务分析

教学目标

知识技能

1.了解圆周角与圆心角的关系.

2.掌握圆周角的性质和直径所对圆周角的特征.

3.能运用圆周角的性质解决问题.

数学思考

1.通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.

2.通过观察图形,提高学生的识图能力.

3.通过引导学生添加合理的辅助线,培养学生的创造力.

解决问题

在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题

情感态度

引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.

重点

圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征.

难点

发现并论证圆周角定理.

教学流程安排

活动流程图

活动内容和目的

活动1 创设情景,提出问题

活动2 探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系

活动3 发现并证明圆周角定理

活动4 圆周角定理应用

活动5 小结,布置作业

从实例提出问题,给出圆周角的定义.

通过实例观察、发现圆周角的特点,利用度量工具,探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系.

探索圆心与圆周角的位置关系,利用分类讨论的数学思想证明圆周角定理.

反馈练习,加深对圆周角定理的理解和应用.

回顾梳理,从知识和能力方面总结本节课所学到的东西.

教学过程设计

问题与情境

师生行为

设计意图

[活动1 ]

问题

演示课件或图片(教科书图24.1-11):

(1)如图:同学甲站在圆心的位置,同学乙站在正对着玻璃窗的靠墙的位置,他们的视角(和)有什么关系?

(2)如果同学丙、丁分别站在其他靠墙的位置和,他们的视角(和)和同学乙的视角相同吗?

教师演示课件或图片:展示一个圆柱形的海洋馆.

教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗观看窗内的海洋动物.

教师出示海洋馆的横截面示意图,提出问题.

教师结合示意图,给出圆周角的定义.利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧所对的圆心角()与圆周角()、同弧所对的圆周角(、、等)之间的大小关系.教师引导学生进行探究.

本次活动中,教师应当重点关注:

(1)问题的提出是否引起了学生的兴趣;

(2)学生是否理解了示意图;

(3)学生是否理解了圆周角的定义.

(4)学生是否清楚了要研究的数学问题.

从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分,人们的需要产生了数学.

将实际问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻找数学模型、建立数学关系的方法.

引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.

[活动2]

问题

(1)同弧(弧AB)所对的圆心角∠AOB与圆周角∠ACB的大小关系是怎样的?

(2)同弧(弧AB)所对的圆周角∠ACB与圆周角∠ADB的大小关系是怎样的?

教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论.

由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.

教师再利用几何画板从动态的角度进行演示,验证学生的发现.教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化:

(1)拖动圆周角的顶点使其在圆周上运动;

(2)改变圆心角的度数;3.改变圆的半径大小.

本次活动中,教师应当重点关注:

(1)学生是否积极参与活动;

(2)学生是否度量准确,观察、发现的结论是否正确.

活动2的设计是为 引导学生发现.让学生亲自动手,利用度量工具(如半圆仪、几何画板)进行实验、探究,得出结论.激发学生的求知欲望,调动学生学习的积极性.教师利用几何画板从动态的角度进行演示,目的是用运动变化的观点来研究问题,从运动变化的过程中寻找不变的关系.

[活动3]

问题

(1)在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况?

(2)当圆心在圆周角的一边上时,如何证明活动2中所发现的结论?

(3)另外两种情况如何证明,可否转化成第一种情况呢?

教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论.

教师巡视,请学生回答问题.回答不全面时,请其他同学给予补充.

教师演示圆心与圆周角的三种位置关系.

本次活动中,教师应当重点关注:

(1)学生是否会与人合作,并能与他人交流思维的过程和结果.

(2)学生能否发现圆心与圆周角的三种位置关系.学生是否积极参与活动.

教师引导学生从特殊情况入手证明所发现的结论.

学生写出已知、求证,完成证明.

学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动.启发并引导学生,通过添加辅助线,将问题进行转化.教师讲评学生的证明,板书圆周角定理.

本次活动中,教师应当重点关注:

(1)学生是否会想到添加辅助线,将另外两种情况进行转化

(2)学生添加辅助线的合理性.

(3)学生是否会利用问题2的结论进行证明.

数学教学是在教师的引导下,进行的再创造、再发现的教学.通过数学活动,教给学生一种科学研究的方法.学会发现问题,提出问题,分析问题,并能解决问题.活动3的安排是让学生对所发现的结论进行证明.培养学生严谨的治学态度.

问题1的设计是让学生通过合作探索,学会运用分类讨论的数学思想研究问题.培养学生思维的深刻性.

问题2、3的提出是让学生学会一种分析问题、解决问题的方式方法:从特殊到一般.学会运用化归思想将问题转化.并启发培养学生创造性的解决问题

[活动4]

问题

(1)半圆(或直径)所对的圆周角是多少度?

(2)90°的圆周角所对的弦是什么?

(3)在半径不等的圆中,相等的两个圆周角所对的弧相等吗?

(4)在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?

(5)如图,点、、、在同一个圆上,四边形的对角线把4个内角分成8个角,这些角中哪些是相等的角?

(6)如图, ⊙O的直径AB 为10cm,弦AC 为6cm, ∠ACB的平分线交⊙O于D, 求BC、AD、BD的长.

学生独立思考,回答问题,教师讲评.

对于问题(1),教师应重点关注学生是否能由半圆(或直径)所对的圆心角的度数得出圆周角的度数.

对于问题(2),教师应重点关注学生是否能由90°的圆周角推出同弧所对的圆心角的度数是180°,从而得出所对的弦是直径.

对于问题(3),教师应重点关注学生能否得出正确的结论,并能说明理由.教师提醒学生:在使用圆周角定理时一定要注意定理的条件.

对于问题(4),教师应重点关注学生能否利用定理得出与圆周角对同弧的圆心角相等,再由圆心角相等得到它们所对的弧相等.

对于问题(5),教师应重点关注学生是否准确找出同弧上所对的圆周角.

对于问题(6),教师应重点关注

(1)学生是否能由已知条件得出直角三角形ABC、ABD;

(2)学生能否将要求的线段放到三角形里求解.

(3)学生能否利用问题4的结论得出弧AD与弧BD相等,进而推出AD=BD.

活动4的设计是圆周角定理的应用.通过4个问题层层深入,考察学生对定理的理解和应用.问题1、2是定理的推论,也是定理在特殊条件下得出的结论.问题3的设计目的'是通过举反例,让学生明确定理使用的条件.问题4是定理的引申,将本节课的内容与所学过的知识紧密的结合起来,使学生很好地进行知识的迁移.问题5、6是定理的应用.即时反馈有助于记忆,让学生在练习中加深对本节知识的理解.教师通过学生练习,及时发现问题,评价教学效果.

[活动5]

小结

通过本节课的学习你有哪些收获?

布置作业.

(1)阅读作业:阅读教科书P90―93的内容.

(2)教科书P94习题24.1第2、3、4、5题.

教师带领学生从知识、方法、数学思想等方面小结本节课所学内容.

教师关注不同层次的学生对所学内容的理解和掌握.

教师布置作业.

通过小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.

增加阅读作业目的是让学生养成看书的习惯,并通过看书加深对所学内容的理解.

课后巩固作业是对课堂所学知识的检验,是让学生巩固、提高、发展.

篇13:圆周角教案

教学目标:

(1)掌握圆周角定理的三个推论,并会熟练运用这些知识进行有关的计算和证明;

(2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力;

(3)培养添加辅助线的能力和思维的广阔性.

教学重点:

圆周角定理的三个推论的应用.

教学难点:

三个推论的灵活应用以及辅助线的添加.

教学活动设计:

(一)创设学习情境

问题1:画一个圆,以B、C为弧的端点能画多少个圆周角?它们有什么关系?

问题2:在⊙O中,若=,能否得到∠C=∠G呢?根据什么?反过来,若土∠C=∠G,是否得到=呢?

(二)分析、研究、交流、归纳

让学生分析、研究,并充分交流.

注意:①问题解决,只要构造圆心角进行过渡即可;②若=,则∠C=∠G;但反之不成立.

老师组织学生归纳:

推论1:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.

重视:同弧说明是“同一个圆”;等弧说明是“在同圆或等圆中”.

问题:“同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)

问题3:(1)一个特殊的圆弧――半圆,它所对的圆周角是什么样的角?

(2)如果一条弧所对的圆周角是90°,那么这条弧所对的圆心角是什么样的角?

学生通过以上两个问题的解决,在教师引导下得推论2:

推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦直径.

指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握.

启发学生根据推论2推出推论3:

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角是直角三角形.

指出:推论3是下面定理的逆定理:在直角三角形中,斜边上的中线等于斜边的一半.

(三)应用、反思

例1、如图,AD是△ABC的高,AE是△ABC的外接圆直径.

求证:AB・AC=AE・AD.

对A层同学,让学生自主地分析问题、解决问题,进行生生交流,师生交流;其他层次的学生在教师引导下完成.

交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范).

解(略)

教师引导学生思考:(1)此题还有其它证法吗?(2)比较以上证法的优缺点.

指出:在解圆的有关问题时,常常需要添加辅助线,构成直径上的圆周角,以便利用直径上的圆周角是直角的性质.

变式练习1:如图,△ABC内接于⊙O,∠1=∠2.

求证:AB・AC=AE・AD.

变式练习2:如图,已知△ABC内接于⊙O,弦AE平分

∠BAC交BC于D.

求证:AB・AC=AE・AD.

指出:这组题目比较典型,圆和相似三角形有密切联系,证明圆中某些线段成比例,常常需要找出或通过辅助线构造出相似三角形.

例2:如图,已知在⊙O中,直径AB为10厘米,弦AC为6厘米,∠ACB的平分线交⊙O于D;

求BC,AD和BD的长.

解:(略)

说明:充分利用直径所对的圆周角为直角,解直角三角形.

练习:教材P96中1、2

(四)小结(指导学生共同小结)

知识:本节课主要学习了圆周角定理的三个推论.这三个推论各具特色,作用各异,在今后的学习中应用十分广泛,应熟练掌握.

能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角或构成相似三角形,这种基本技能技巧一定要掌握.

(五)作业

教材P100.习题A组9、10、12、13、14题;另外A层同学做P102B组3,4题.

探究活动

我们已经学习了“圆周角的度数等于它所对的弧的度数的一半”,但当角的顶点在圆外(如图①称圆外角)或在圆内(如图②称圆内角),它的度数又和什么有关呢?请探究.

提示:(1)连结BC,可得∠E=(的度数―的度数)

(2)延长AE、CE分别交圆于B、D,则∠B=的度数,

∠C=的度数,

∴∠AEC=∠B+∠C=(的度数+的度数).

篇14:圆周角教案

教学目标:

(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;

(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;

(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.

教学重点:

圆周角的概念和圆周角定理

教学难点:

圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.

教学活动设计:(在教师指导下完成)

(一)圆周角的概念

1、复习提问:

(1)什么是圆心角?

答:顶点在圆心的角叫圆心角.

(2)圆心角的度数定理是什么?

答:圆心角的度数等于它所对弧的度数.(如右图)

2、引题圆周角:

如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角.(如右图)(演示图形,提出圆周角的定义)

定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角

3、概念辨析:

教材P93中1题:判断下列各图形中的是不是圆周角,并说明理由.

学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交.

(二)圆周角的定理

1、提出圆周角的度数问题

问题:圆周角的度数与什么有关系?

经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.

(在教师引导下完成)

(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半.

提出必须用严格的数学方法去证明.

证明:(圆心在圆周角上)

(2)其它情况,圆周角与相应圆心角的关系:

当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.

证明:作出过C的直径(略)

圆周角定理:一条弧所对的

周角等于它所对圆心角的一半.

说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)

(三)定理的应用

1、例题:如图OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.

求证:∠ACB=2∠BAC

让学生自主分析、解得,教师规范推理过程.

说明:①推理要严密;②符号“”应用要严格,教师要讲清.

2、巩固练习:

(1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数?

(2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?

说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个.

(四)总结

知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容.

思想方法:一种方法和一种思想:

在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.

(五)作业教材P100中习题A组6,7,8

篇15:圆周角教案

教材分析

1本节课是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角性质的探索。

2.圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,在对圆与其他平面图形的研究中起着桥梁和纽带的作用。

学情分析

九年级的学生虽然已具备一定的说理能力,但逻辑推理能力仍不强,根据数学的认知规律,数学思想的学习不可能“一步到位”,应当逐步递进、螺旋上升。 在具体的问题情境下,引导学生采用动手实践、自主探究、合作交流的学习方法进行学习,充分发挥其主体的积极作用,使学生在观察、实践、问题转化等数学活动中充分体验探索的快乐,发挥潜能,使知识和能力得到内化,体现“主动获取,落实双基,发展能力”的原则。

教学目标

(1)知识目标:

1、理解圆周角的概念。

2、经历探索圆周角与它所对的弧的关系的过程,了解并证明圆周角定理及其推论。

3、有机渗透“由特殊到一般”、“分类”、“化归”等数学思想方法。

(2)能力目标:

引导学生从形象思维向理性思维过渡,有意识地强化学生的推理能力,培养学生的实践能力与创新能力,提高数学素养。

(3)情感、态度与价值观的目标:

1、创设生活情境激发学生对数学的好奇心、求知欲,营造“民主”“和谐”的课堂氛围,让学生在愉快的学习中不断获得成功的体验。

2、培养学生以严谨求实的态度思考数学。

教学重点和难点

探索并证明圆周角与它所对的弧的关系是本课时的重点。

用分类、化归思想合情推理验证“圆周角与它所对的弧的关系”是本课时的难点。

篇16: 《圆周角》教案

教材的地位和作用:

本节课是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角的性质进行探索,圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,也是学习圆的后续知识的重要预备知识,在教材中起着承上启下的作用、同时,圆周角性质也是说明线段相等,角相等的重要依据之一。

学情分析:

九年级学生有较强的自我发展的意识,较感兴趣于有“挑战性”的任务,也具备一定的逻辑推理能力。所以在教学中应建立数学与生活的联系,创设一系列有启发性、挑战性的问题情景激发学生学习的兴趣,引导学生用数学的眼光思考问题、发现规律、验证猜想。

教法:

问题式教学法,启发式教学法,探究式教学法,情境式教学法,互动式教学法等多种教学方法融为一体。

学法:

学生采用动手实践,自主探究,合作交流的学习方法进行学习。在观察、实践、问题转化等数学活动中充分体验探索的快乐,发现新知,发展能力。

教学目标:

1、知识与技能:

(1)通过本节的教学使学生理解圆周角的概念,掌握圆周角的性质;

(2)准确地运用圆周角性质进行简单的证明计算。

2、过程与方法:

引导学生能主动地通过:实验、观察、猜想、验证“圆周角与圆心角的关系”,培养学生的合情推理能力、实践能力与创新精神,从而提高数学素养。

3、情感、态度与价值观:

创设生活情景激发学生对数学的“好奇心、求知欲”;营造“民主、和谐”的课堂氛围,让学生在愉快的学习中不断获得成功的体验,同时培养学生以严谨求实的态度思考数学。

重点难点:

1、重点:经历探索“圆周角与圆心角的关系”的过程,掌握圆周角定理。

2、难点:了解圆周角的分类、用化归思想,合情推理验证“圆周角与圆心角的关系”。

教学准备:

教师:几何画板课件、圆规、三角板

学生:圆形硬纸片(每位学生若干张)

教学过程:

一、创设情境,引入新课

(1)用几何画板画一圆心角∠AOB,移动顶点O到圆周,形成另一个角,这个角的顶点与两边有什么关系?类比圆心角的定义给这个角命名。教师结合示意图和圆心角的定义,引导学生得出圆周角的定义。由学生口述,教师板书:圆周角:顶点在圆上,且两边都与圆相交的角。强调:定义中的两个条件缺一不可。利用几何画板演示,让学生辨析圆周角。

设计说明:由圆心角的图形引入圆周角定义,用运动变化的观点来认识两者的关系,直观、生动、印象深刻。并且由学生认知的最近发展区引入,水到渠成。

(2)问题:足球训练场上教练球门前划了一个圆圈进行无人防守的射门训练如图1,甲、乙两名运动员分别在C、D两地,他们争论不休,都说在自己的位置射门好。如果你是教练,评一评他们的说法。

设计说明:联系学生生活中的话题,创设有一定挑战性的问题情景,目的在于激发学生的探索激情和求知欲望,吸引学生的注意力,很快进入课堂学习状态。这一设计没有采用课本上的问题情境,因为课本上的情境阅读文本复杂,理解起来有一定难度。

二、师生互动、合作探究

探究一:同弧所对的圆周角的大小有什么关系?

(1)教师引导学生把实际问题抽象成数学问题:“研究同弧所对的圆周角的大小关系问题”,导入新课。

(2)引导学生通过画图测量,发现:∠C、∠D的度数相等。并进一步用几何画板测量多画几个弧AB所对的圆周角,并测量出各个角的度数,进一步验证“同弧所对的圆周角的大小相等”。

(3)教师引导,问题转化为研究“同弧所对的圆周角与圆心角的关系”。

探究二:同弧所对的圆周角与圆心角的大小有什么关系?

(1)通过几何画板进行演示,引导学生注意弧所对的圆周角的三种情况,并用测量圆心角与圆周角度数的方法来初步猜测同弧所对的圆周角是圆心角度数的一半这一命题。

学生动手实践:在圆形硬纸片上任取一段弧,画出该弧所对的圆心角和任意一个圆周角。并根据所画的图形,探索说明“该弧所对的圆周角等于圆心角的一半”成立的理由。分组讨论

设计说明:本活动的设计让学生有自主探索、合作交流的时间和空间。学生在动手实践和充分的独立思考的基础上如有遇到个人难以独立解决的问题可以小组合作解决,在这个过程中教师深入课堂对学生适时的点拨、指导。

(2)充分的活动交流后,教师挑选有代表性的几个小组派代表在黑板上展示图片、并说理、验证。

第一类:圆心在圆周角一边上第二类:圆心在圆周角内部第三类:圆心在圆周角外部

①第一类比较容易,圆心在圆周角上

[∠C=∠AOB

∠A=∠C

OA=OC]

②第二类、第三类比较难,教师引导:由圆的轴对称性和圆周角的分类标准联想到把硬纸片对折、发现过圆周角的顶点C作辅助线“直径”,可以把第二、第三类情况转化为第一类来验证。

第二类:圆心在圆周角内部

[∠C=

∠AOB

∠ACD+∠BCD=

(∠AOD+∠BOD)

∠ACD=

∠AOD、∠BCD=

∠BOD]

③第三类:圆心在圆周角外部

[∠C=

∠AOB

∠ACD―∠BCD=

(∠AOD―∠BOD)

∠ACD=

∠AOD、∠BCD=

∠BOD]

(3)教师精讲:猜想成立,就可以把情景中研究“同弧所对的圆周角的大小问题”化归为研究“同弧所对的圆周角与圆心角的关系问题”,教师用几何画板演示二、三类情况,加深对所加辅助线和第二、三类情况划归为第一类情况的认识,一目了然。学生归纳严格的推理过程。

设计说明:本环节以学生活动为核心,首先让学生自主探究、合作交流,突出了重点,然后教师通过引导,环环相扣,把难点突破,其间渗透了“分类”、“化归”等数学思想,把第一类图形想象第二类、第三类图形分别划归成第一类图形去解决,化抽象为具体、化一般为特殊,学生豁然开朗。

(4)由学生归纳发现的规律,教师板书“同弧所对的圆周角度数并且它的度数恰好等于这条弧所对的圆心角度数的一半。”说明:“同弧”说明是“同一个圆”;“等弧”说明是“在同圆或等圆中”。

(5)引导:“同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)

设计说明:让学生在同一知识中变换角度思考问题,从不同的方位观察圆心角与圆周角,更深一步理解“同弧”二字的含义,培养了学生思维的深度和广度。

三、巩固提高

A层(基础题)

1、概念辨析

判断下列各图形中的是不是圆周角,并说明理由

B层(中等题)课本86页练习题

C层(提高题)

(1)如图1,求∠1+∠2+∠3+∠4+∠5=

(2)如图2:已知弦AB、CD相交于P点,且∠AOC=44,∠BOD=46,求∠APC的度数

设计说明:分层次练习,是为了满足不同层次学生的学习数学需要,使不同的学生在数学上的得到不同的发展。

四、盘点总结

知识:本节课主要学习了圆周角定理及其推论、

能力:在解决圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角思想方法。

在证明中,运用了数学中的分类方法和“化归”思想、分类时应做到不重不漏;“化归思想”是将复杂的问题转化成一系列的简单问题或已证问题。

情感、态度、价值观:学习过程中,培养学生勇于独立探索、不怕困难,遇到问题,学会与他人沟通、合作。

五、学以致用

尊重学生的个体存在差异的客观事实,为了尽可能地让所有的学生都能主动的参与,都能在获得必要发展的前提下,不同的学生获得不同的发展。练习、作业的设计分层要求。

A层(基础题)

(1)如图3所示A、B、C三点在⊙O上,∠BOC=100

则∠BAC=____度∠BDC=____度

(2)如图4,在⊙O中,AB是⊙O的直径,∠D=25

则∠AOC=如图5,已知AB=AC=2cm,∠BDC=60

则△ABC的周长是。⑷如图6:∠A是⊙O的圆周角,∠A=40°,求∠OBC的度数。

B层(中等题)

(1)在⊙O中,∠BOC=100o,则弦BC所对的圆周角是度。

(2)如图7,AD是⊙O直径,BC=CD,∠A=30°,求∠B的度数。

C层(课外延拓)

如图8:“世界杯”赛场上李铁、邵佳一、郝海三名队员互相配合向对方球门进攻,当李带球冲到如图C点时,邵、郝也分别跟随冲到图中的D点、E点,从射门的角度大小考虑,李应把球传给谁好?请你从数学角度帮忙合情说理、分析说明。

设计说明:本题的设计既与课堂引入的情景问题相呼应又为后继学习“点与圆的位置关系“埋下伏笔。问题的延拓渗透了分类思想、化归思想有助于培养学生的数学思想、应用意识,提高分析问题、解决问题的能力,让学生感悟数学来源于生活,应用于生活,激发学生学习数学的热情。

篇17: 《圆周角》教案

教材依据

圆周角是新课标人教版九年级数学上册第二十四章第一节圆的有关性质的重要内容,本节内容依据新人教版九年级《课程标准》和《教师教学用书》及《初中数学新教材详解》。

设计思想

本节课是在学习了圆心角的定义、性质定理和推论的基础上,由生活实例引出圆周角,类比圆心角认识圆周角,类比圆心角的性质探究圆周角定理,精选例题及习题对本节内容进行迁移应用。

在教学过程中本着“以人为本,让课堂变为学堂,把时间和空间更多地留给学生”为原则,注重学生的实践活动,通过让学生作图、度量、分析、猜想、验证得出结论,教学过程中充分利用学生已有的认知水平,由浅入深、逐层递进,并能适时地应用直观教具引导学生运用分类讨论及转化的数学思想对圆周角定理进行证明,化解本节课的难点。这样学生易于接受新知识,也能很快地理解并掌握圆周角定理的内容,同时给学生自主探索留有很大空间,让学生在实践探究、合作交流活动中,亲身体验应用数学的乐趣和成功的喜悦,发展学生的思维,培养学生的多种学习能力。

教学目标

1、知识与技能

(1)理解圆周角的概念,掌握圆周角定理,并运用它进行简单的论证和计算。

(2)经历圆周角定理的证明,使学生初步学会运用分类讨论的数学思想和转化的数学思想解决问题。

2、过程与方法

采用“活动与探究”的学习方法,由感性到理性、由简单到复杂、由特殊到一般的思维过程研究新知识,引导学生理解知识的发生发展过程,并使学生能应用所学知识解决简单的实际问题。

3、情感、态度与价值观

通过学生探索圆周角定理,自主学习、合作交流的学习过程,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习数学的自信心。

教学重点

圆周角的概念、圆周角定理及应用。

教学难点

圆周角定理的探究过程及定理的应用。

教学准备

学生:圆规、量角器、尺子

教师:多媒体课件、活动教具

教学过程

一、创设情景,引入新课

大屏幕显示学生熟悉的画面(足球射门游戏)

足球场有句顺口溜:“冲向球门跑,越近就越好;歪着球门跑,射点要选好。”其中蕴藏了一定的数学道理,学习了本节课,我们就可以解释其中的道理。

二、实践探索,揭示新知

(一)圆周角的概念

在射门游戏中,球员射中球门的难易程度与他所处的位置B对球门AC的张角∠ABC有关、(教师出示图片,提出问题)

图中∠ABC是圆心角吗?什么是圆心角?图中∠ABC有什么特点?

(学生通过与圆心角的类比、分析、观察得出∠ABC的特点,进而概括出圆周角的概念,教师引导并板书)

定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。

(二)圆周角定理

1、提出问题,引发思考

类比圆心角的结论:同弧或等弧所对的圆心角相等。提出本节课研究的问题:同弧或等弧所对的'圆周角相等吗?为了搞清这个问题,我们可以先研究:同弧所对的圆心角和圆周角的关系。

2、活动与探究

画一个圆心角,然后再画同弧所对的圆周角。你能画多少个圆周角?用量角器量一量这些圆周角及圆心角的度数,你有何发现呢?

(教师提出问题,学生作图、度量、分析、归纳出发现的结论。)

结论:

(1)同一条弧所对的圆周角有无数个,同弧所对的任意一个圆周角都相等。

(2)同一条弧所对的圆周角等于它所对的圆心角的一半、

由上述操作可以看出:同一条弧所对的任意一个圆周角都等于该条弧所对的圆心角的一半。

(学生通过实践探究,讨论概括出结论,教师点评)

3、推理与论证

(1)教师演示活动教具,一条弧所对的圆心角只有一个,所对的圆周角有无数个,我们没有办法一一论证,提出本节课研究方法:分类讨论法。

(教师演示,引导学生观察圆心与圆周角的位置关系,学生观察、小组交流,最后得出结论,教师出示圆心和圆周角的三种位置关系图片)

(2)分类讨论,证明结论:

①当圆心在圆周角的一条边上时,如何证明?(从特殊情况入手,学生通过观察、分析、讨论,证明所发现的结论,教师鼓励学生看清此数学模型。)

②另外两种情况如何证明,可否转化成第一种情况呢?

(学生采取小组合作的学习方式进行探索发现,教师巡视指导,启发并引导学生,通过添加辅助线,将问题进行转化,学生写出证明过程,并讨论归纳出结论,教师做出点评)

结论:在同圆中,同弧所对的圆周角相等,都等于该条弧所对圆心角的一半

4、变式拓展,引出重点

将上述结论改为“在同圆或等圆中,等弧所对的圆周角相等吗?

(学生思考、推理、讨论、总结出圆周角定理,教师板书)

圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

强调:

(1)定理的适用范围:同圆或等圆

(2)同弧或等弧所对的圆周角相等

(3)同弧或等弧所对的圆周角等于它所对圆心角的一半

(教师强调圆周角定理的内容,学生思考、默记、熟悉定理,加深对定理的理解)

三、应用练习,巩固提高

1、范例精析:

例:如图,在⊙O中,∠CBD=30°,∠BDC=20°,求∠A(图略)

(鼓励学生用多种方法解决问题,发散学生的思维,培养学生良好的思维品质,让学生书写推力计算过程,教师补充、点评、并和学生一起归纳解法。两种解法分别应用了圆周角定理中的两个结论,进一步对本节课的重点知识熟练深化,同时又培养了学生规范的书写表达能力)

2、应用迁移:

(1)比比看谁算得快:(图略)

(本小题既可巩固圆周角定理,又可培养学生的竞争意识以适应时代的要求,同时对回答问题积极准确的学生提出表扬,激发学生的学习积极性)

(2)生活中的数学

如图、在足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同伴乙已经冲到B点,这时甲是直接射门好,还是将球传给乙,让乙射门好v仅从射门角度考虑w(图略)

(选用学生熟悉的生活材料,让学生通过合作交流,讨论找出合理的解答方法,通过本小题的练习,使学生体味到生活离不开数学,从而激发学生应用数学的意识)

四、总结评价,感悟收获

通过本节课的学习你有哪些收获?(学生归纳总结,老师点评)

知识:

(1)圆周角的定义;

(2)圆周角定理。

能力:观察、操作、分析、归纳、表达等能力。

思想方法:分类讨论思想、转化思想、类比思想、数形结合思想。

五、作业设计,查漏补缺

1、课本习题:P88.1,2,3,P89.5,P124.11

2、在⊙O中,圆心角∠AOB=70°,点C是⊙O上异于A、B的一点,求圆周角∠AOB的度数。

3、生活中的数学:监控器的监控范围是65度,圆形的博物馆内需要安装几盏才能全方位监控?

篇18:数学教案-圆周角

第一课时 圆周角(一)

教学目标 :

(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;

(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;

(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.

教学重点:圆周角的概念和圆周角定理

教学难点 :圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.

教学活动设计:(在教师指导下完成)

(一)圆周角的概念

1、复习提问:

(1)什么是圆心角?

答:顶点在圆心的角叫圆心角.

(2)圆心角的度数定理是什么?

答:圆心角的度数等于它所对弧的度数.(如右图)

2、引题圆周角:

如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角.(如右图)(演示图形,提出圆周角的定义)

定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角

3、概念辨析:

教材P93中1题:判断下列各图形中的是不是圆周角,并说明理由.

学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交.

(二)圆周角的定理

1、提出圆周角的度数问题

问题:圆周角的度数与什么有关系?

经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.

(在教师引导下完成)

(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半.

提出必须用严格的数学方法去证明.

证明:(圆心在圆周角上)

(2)其它情况,圆周角与相应圆心角的关系:

当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.

证明:作出过C的直径(略)

圆周角定理: 一条弧所对的

周角等于它所对圆心角的一半.

说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)

(三)定理的应用

1、例题: 如图   OA、OB、OC都是圆O的'半径, ∠AOB=2∠BOC.

求证:∠ACB=2∠BAC

让学生自主分析、解得,教师规范推理过程.

说明:①推理要严密;②符号“”应用要严格,教师要讲清.

2、巩固练习:

(1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数?

(2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?

说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个.

(四)总结

知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容.

思想方法:一种方法和一种思想:

在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.

(五)作业  教材P100中习题A组6,7,8

第二、三课时 圆周角(二、三)

教学目标 :

(1)掌握圆周角定理的三个推论,并会熟练运用这些知识进行有关的计算和证明;

(2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力;

(3)培养添加辅助线的能力和思维的广阔性.

教学重点:圆周角定理的三个推论的应用.

教学难点 :三个推论的灵活应用以及辅助线的添加.

教学活动设计:

(一)创设学习情境

问题1:画一个圆,以B、C为弧的端点能画多少个圆周角?它们有什么关系?

问题2:在⊙O中,若 =,能否得到∠C=∠G呢?根据什么?反过来,若土∠C=∠G ,是否得到 =呢?

(二)分析、研究、交流、归纳

让学生分析、研究,并充分交流.

注意:①问题解决,只要构造圆心角进行过渡即可;②若 =,则∠C=∠G;但反之不成立.

老师组织学生归纳:

推论1:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.

重视:同弧说明是“同一个圆”; 等弧说明是“在同圆或等圆中”.

问题: “同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)

问题3:(1)一个特殊的圆弧――半圆,它所对的圆周角是什么样的角?

(2)如果一条弧所对的圆周角是90°,那么这条弧所对的圆心角是什么样的角?

学生通过以上两个问题的解决,在教师引导下得推论2:

推论2: 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦直径.

指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握.

启发学生根据推论2推出推论3:

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角是直角三角形.

指出:推论3是下面定理的逆定理:在直角三角形中,斜边上的中线等于斜边的一半.

(三)应用、反思

例1、如图,AD是△ABC的高,AE是△ABC的外接圆直径.

求证:AB・AC=AE・AD.

对A层同学,让学生自主地分析问题、解决问题,进行生生交流,师生交流;其他层次的学生在教师引导下完成.

交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范).

解(略)

教师引导学生思考:(1)此题还有其它证法吗? (2)比较以上证法的优缺点.

指出:在解圆的有关问题时,常常需要添加辅助线,构成直径上的圆周角,以便利用直径上的圆周角是直角的性质.

变式练习1:如图,△ABC内接于⊙O,∠1=∠2.

求证:AB・AC=AE・AD.

变式练习2:如图,已知△ABC内接于⊙O,弦AE平分

∠BAC交BC于D.

求证:AB・AC=AE・AD.

指出:这组题目比较典型,圆和相似三角形有密切联系,证明圆中某些线段成比例,常常需要找出或通过辅助线构造出相似三角形.

例2:如图,已知在⊙O中,直径AB为10厘米,弦AC为6厘米,∠ACB的平分线交⊙O于D;

求BC,AD和BD的长.

解:(略)

说明:充分利用直径所对的圆周角为直角,解直角三角形.

练习:教材P96中1、2

(四)小结(指导学生共同小结)

知识:本节课主要学习了圆周角定理的三个推论.这三个推论各具特色,作用各异,在今后的学习中应用十分广泛,应熟练掌握.

能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角或构成相似三角形,这种基本技能技巧一定要掌握.

(五)作业

教材P100.习题A组9、10、12、13、14题;另外A层同学做P102B组3,4题.

探究活动

我们已经学习了“圆周角的度数等于它所对的弧的度数的一半”,但当角的顶点在圆外(如图①称圆外角)或在圆内(如图②称圆内角),它的度数又和什么有关呢?请探究.

提示:(1)连结BC,可得∠E=( 的度数― 的度数)

(2)延长AE、CE分别交圆于B、D,则∠B=的度数,

∠C=的度数,

∴∠AEC=∠B+∠C=( 的度数+ 的度数).

篇19:圆周角教学课件

第一课时

教学目标:

(1)理解的概念,掌握的两个特征、定理的内容及简单应用;

(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;

(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.

教学重点:的概念和定理

教学难点:定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.

教学活动设计:(在教师指导下完成)

(一)的概念

1、复习提问:

(1)什么是圆心角?

答:顶点在圆心的角叫圆心角。

(2)圆心角的度数定理是什么?

答:圆心角的度数等于它所对弧的度数。(如右图)

2、引题:

如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是。(如右图)(演示图形,提出的定义)

定义:顶点在圆周上,并且两边都和圆相交的角叫做

3、概念辨析:

教材P93中1题:判断下列各图形中的是不是,并说明理由.

学生归纳:一个角是的条件:①顶点在圆上;②两边都和圆相交。

(二)的'定理

1、提出的度数问题

问题:的度数与什么有关系?

经过电脑演示图形,让学生观察图形、分析与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的的三种情况:圆心在的一边上、圆心在内部、圆心在外部.

(在教师引导下完成)

(1)当圆心在的一边上时,与相应的圆心角的关系:(演示图形)观察得知圆心在上时,是圆心角的一半。

提出必须用严格的数学方法去证明。

证明:(圆心在上)

(2)其它情况,与相应圆心角的关系:

当圆心在外部时(或在内部时)引导学生作辅助线将问题转化成圆心在一边上的情况,从而运用前面的结论,得出这时仍然等于相应的圆心角的结论。

证明:作出过C的直径(略)

定理:一条弧所对的

周角等于它所对圆心角的一半。

说明:这个定理的证明我们分成三种情况。这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想。(对A层学生渗透完全归纳法)

(三)定理的应用

1、例题:如图 OA、OB、OC都是圆O的半径, ∠AOB=2∠BOC.

求证:∠ACB=2∠BAC

让学生自主分析、解得,教师规范推理过程.

说明:①推理要严密;②符号“”应用要严格,教师要讲清.

2、巩固练习:

(1)如图,已知圆心角∠AOB=100°,求∠ACB、∠ADB的度数?

(2)一条弦分圆为1:4两部分,求这弦所对的的度数?

说明:一条弧所对的有无数多个,却这条弧所对的的度数只有一个,但一条弦所对的的度数只有两个.

(四)总结

知识:(1)定义及其两个特征;(2)定理的内容.

思想方法:一种方法和一种思想:

在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.

(五)作业 教材P100中习题A组6,7,8

第二、三课时

教学目标:

(1)掌握定理的三个推论,并会熟练运用这些知识进行有关的计算和证明;

(2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力;

(3)培养添加辅助线的能力和思维的广阔性.

教学重点:定理的三个推论的应用.

教学难点:三个推论的灵活应用以及辅助线的添加.

教学活动设计:

(一)创设学习情境

问题1:画一个圆,以B、C为弧的端点能画多少个?它们有什么关系?

问题2:在⊙O中,若 = ,能否得到∠C=∠G呢?根据什么?反过来,若土∠C=∠G ,是否得到 = 呢?

(二)分析、研究、交流、归纳

让学生分析、研究,并充分交流.

注意:①问题解决,只要构造圆心角进行过渡即可;②若 = ,则∠C=∠G;但反之不成立.

老师组织学生归纳:

推论1:同弧或等弧所对的相等;在同圆或等圆中,相等的所对的弧也相等.

重视:同弧说明是“同一个圆”; 等弧说明是“在同圆或等圆中”.

问题: “同弧”能否改成“同弦”呢?同弦所对的一定相等吗?(学生通过交流获得知识)

问题3:(1)一个特殊的圆弧——半圆,它所对的是什么样的角?

(2)如果一条弧所对的是90°,那么这条弧所对的圆心角是什么样的角?

学生通过以上两个问题的解决,在教师引导下得推论2:

推论2:半圆(或直径)所对的是直角;90°的所对的弦直径.

指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握.

启发学生根据推论2推出推论3:

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角是直角三角形.

指出:推论3是下面定理的逆定理:在直角三角形中,斜边上的中线等于斜边的一半.

(三)应用、反思

例1、如图,AD是△ABC的高,AE是△ABC的外接圆直径.

求证:AB·AC=AE·AD.

对A层同学,让学生自主地分析问题、解决问题,进行生生交流,师生交流;其他层次的学生在教师引导下完成.

交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范).

解(略)

教师引导学生思考:(1)此题还有其它证法吗? (2)比较以上证法的优缺点.

指出:在解圆的有关问题时,常常需要添加辅助线,构成直径上的,以便利用直径上的是直角的性质.

变式练习1:如图,△ABC内接于⊙O,∠1=∠2.

求证:AB·AC=AE·AD.

变式练习2:如图,已知△ABC内接于⊙O,弦AE平分

∠BAC交BC于D.

求证:AB·AC=AE·AD.

指出:这组题目比较典型,圆和相似三角形有密切联系,证明圆中某些线段成比例,常常需要找出或通过辅助线构造出相似三角形.

例2:如图,已知在⊙O中,直径AB为10厘米,弦AC为6厘米,∠ACB的平分线交⊙O于D;

求BC,AD和BD的长.

解:(略)

说明:充分利用直径所对的为直角,解直角三角形.

练习:教材P96中1、2

(四)小结(指导学生共同小结)

知识:本节课主要学习了定理的三个推论.这三个推论各具特色,作用各异,在今后的学习中应用十分广泛,应熟练掌握.

能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的或构成相似三角形,这种基本技能技巧一定要掌握.

(五)作业

教材P100.习题A组9、10、12、13、14题;另外A层同学做P102B组3,4题.

探究活动

我们已经学习了“的度数等于它所对的弧的度数的一半”,但当角的顶点在圆外(如图①称圆外角)或在圆内(如图②称圆内角),它的度数又和什么有关呢?请探究.

提示:(1)连结BC,可得∠E= ( 的度数— 的度数)

(2)延长AE、CE分别交圆于B、D,则∠B= 的度数,

∠C= 的度数,

∴∠AEC=∠B+∠C= ( 的度数+ 的度数).

篇20:圆周角定理及其推论

定理内容

圆周角的度数等于它所对弧上的圆心角度数的一半,同弧或等弧所对的圆周角相等。

圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角,这一定义实质上反映的是圆周角所具备的两个特征:①顶点在圆上,②两边都和圆相交。这两个条件缺一不可。

定理推论

1.在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。

2.半圆(直径)所对的`圆周角是直角;90°的圆周角所对的弦是直径。

3.圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

圆周角教学反思

《荷塘月色》教案设计及反思

《水》教案设计及反思

《荔枝》教学片段及反思教案设计

《鹤群翔空》教案设计及反思

幼儿园教案逛超市教案设计及反思

中班游戏《拍皮球》教案设计及教学反思

《秋天》教案设计及评点

《观潮》教案设计及阅读提高

《慈母情怀》教案设计及建议

《圆周角教案设计及反思(共20篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档