欢迎来到千学网!
您现在的位置:首页 > 心得体会 > 学习培训心得体会

数学学习心得作文

时间:2022-07-13 08:14:08 学习培训心得体会 收藏本文 下载本文

这次小编给大家整理了数学学习心得作文,本文共28篇,供大家阅读参考。

数学学习心得作文

篇1:数学学习心得

这三天,本人通过对小学数学新课程标准的学习,就改变学生的学习方式作如下几方面的思考:

数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。 数学教学,要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。 教师是学生数学活动的组织者、引导者与合作者。教师要积极利用各种教学资源,创造性地使用教材,设计适合学生发展的教学过程。要关注学生的个体差异,使每一个学生都有成功的学习体验,得到相应的发展;要因地制宜、合理有效地使用现代化教学手段,提高教学效益。

(一)让学生在现实情境中体验和理解数学.

教学中,要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。 例如,计算教学应注意与学生的现实生活相联系,让学生感受到通过计算可以解决一些实际问题。如,我们可以让学生估计一下,哪个答案接近自己的年龄?(①500分;②500周;③500时;④500月)学生可能会运用不同的方法进行猜测。此时,教师可以进一步引导学生如何知道自己的猜测是准确的或比较准确的。为了回答这个问题,学生将会进行必要的计算,从而体会计算的必要性。又如,在空间与图形的教学中,应充分利用学生生活中的事物,引导学生探索图形的特征,丰富空间与图形的经验,建立初步的空间观念。教学中可以组织学生分小组观察讲台上的物体,让学生站在不同角度看这个物体,体会从不同的角度看同一个物体时,所看到的形状的变化,并用简单的图形画下来。也可让学生根据下面的要求在方格纸上画出示意图:假设科技馆在学校的正东方向500米处,小红家在学校北偏西60°方向300米处,医院在学校正南方向1000米处,汽车站在校南偏西30°方向400米处。学生可以根据这些信息,在方格纸上确定适当的单位距离,标出相对位置后,教师应及时组织学生,发展学生的空间观念。

(二)鼓励学生独立思考,引导学生自主探索、合作交流.

数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动。教师要改变以例题、示范、讲解为主的教学方式,引导学生投入到探索与交流的学习活动之中。

例 在下面的横线上填数,使这列数具有某种规律,并说明有怎样的规律。2/5,1/5,( ),1/xx年级的学生指导如何进行预习、听课、记笔记、做复习、做作业等;要考虑到观察能力、想象能力、思维能力、推理能力及总结归纳能力的培养。一位老师教学水平的高低,不仅仅表现他对知识的传授,更主要表现在他对学生学习能力的培养。

二、变“走教案”为“生成性课堂”

当师生的主动性、积极性都充分发挥时,实际的教育过程远远要比预定的、计划中的过程生动、活泼、丰富得多。教师要利用好即时生成性因素,展示自己灵活的教学机智,不能牵着学生的鼻子“走教案”。要促成课堂教学的动态生成,教师要创造民主和谐的课堂教学氛围。教师要在教学中真正建立人格平等、真诚合作的民主关系。同时教师要高度重视学生的一言一行,在教与学的平台上,做到教学相长,因学而教,树立随时捕捉教学机会的意识,就必定会使我们的课堂教学更加活泼有趣,更加充满生机,也更能展示教师的无穷魅力。

三、变“权威教学”为“共同探讨”

新课程倡导建立自主合作探究的学习方式,对我们教师的职能和作用提出了强烈的变革要求,因而,教师的职能不再仅仅是传递、训导、教育,而要更多地去激励、帮助、参谋;师生之间的关系不再是以知识传递为纽带,而是以情感交流为纽带;教师的作用不再是去填满仓库,而是要点燃火炬。

四、变“教师说”为“学生多说”

教学中教师要鼓励、引导学生在感性材料的基础上,理解数学概念或通过数量关系,进行简单的判断、推理,从而掌握最基础的知识,这个思维过程,用语言表达出来,这样有利于及时纠正学生思维过程的缺陷,对全班学生也有指导意义。教师可以根据教材特点组织学生讲。教师不仅要了解学生说的结果,也要重视学生说的质量,这样坚持下去,有利于培养学生的逻辑思维能力。

根据小学生的年龄特点,上好数学课应该尽量地充分调动学生的各种感官,提高学生的学习兴趣,而不能把学生埋在越来越多的练习纸中。在数学课上,教师要引导学生既动手又动口,并辅以其它教学手段,这样有利于优化课堂气氛,提高课堂教学效果,也必然有利于提高教学质量。

总之,面对新课程改革的挑战,我们必须转变教育观念,多动脑筋,多想办法,密切数学与实际生活的联系,使学生从生活经验和客观事实出发,在研究现实问题的过程中做数学、理解数学和发展数学,让学生享受“快乐数学”。

篇2: 数学学习心得

早些年的时候,是进修八字术数的,刚开始看周易,便率先接触到八八六十四卦,那个时候没有耐心看,觉得演变的头晕脑混的。再加上觉得四柱八字预测得先让来人报“生辰八字”很麻烦,有的甚至还不知道自己的生辰八字,觉的此项预测术不适合我,所以学了没多久,就跑到奇门遁甲的世界里。然后再奇门遁甲里旁触到“梅花易数”,说是深研究,其实也不过是照卦说卦,相当的死板了。

奇门遁甲的实战中,总结出“申家奇门”的思路,奇门遁甲可以让我“玩的全盘转”,那么梅花易数是不是也可以改变研究策略?扔掉电子书、笔记,来个活学活用?奇门遁甲是风火轮,可以全盘转,那梅花易数能不能把大自然变成“游乐场”?随处可“点”可“用”呢?

上网搜索了有关“梅花易数“的资料,以“梅花易数入门”、“梅花易数如何学习”、“梅花易数笔记”等相关字眼进行搜索,也因此注册了很多易学论坛,为的是下载相关的“梅花易数”资料,看了看,基本上跟我买回来的“梅花易数”书说的一样,更是神秘莫测了,有关的测例也是少的可怜,怪不得“梅花易数”给人感觉那么“深”,那么“玄”了。

其实那些资料“看了等于白看”,根本不会有什么长进,顶多教你个怎么排卦而已,解卦的过程你根本摸不到。“梅花易数”分体用卦,体用两个卦变来变去,最后一锤定音出了个变卦,而变卦并不是事情的最终结果,最经典的部分在于那变化之间。6个爻再加上六个爻,上卦加下卦,单独来看又是八卦中的一个小卦。就是两个小碗跟一个纸团的游戏,类似考眼力的游戏。

篇3: 数学学习心得

数学究竟是什么呢?数学是对现实世界的一种思考、描述、刻画、解释、理解,其目的是发现现实世界中所蕴藏的一些数与形的规律,为社会的进步与人类的发展服务。数学教育的核心问题是学生学习过程的优化,即怎样使学生主动地、有效地、合理地学习需要的数学。在数学教育逐步由“应试教育”向“素质教育”转轨的过程中,我们需要更新观念,开拓创新,大面积提高教学质量,更改现有的教育模式与管理理念,给学生发展的时间和空间,加快课程改革的研究与实施,推进素质教育。下面是教者在教学过程中所得的体会:

一、让数学教学联系实际生活

新《数学课程标准》指出:“数学教学要紧密联系学生的生活环境,从学生经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳等活动,掌握基本的数学知识和技能,发展他们的能力,激发对数学的兴趣以及学好数学的愿望。”

数学源于生活,生活中的数学是最具有鲜活力的,一切脱离生活实际的教和学都显得苍白无力。在我们的生活中,到处都充满着数学,教师在教学中要善于从学生的生活中抽象数学问题,让学生熟知的生活数学走进学生视野,进入课堂,使之产生亲近感,变的具体、生动,诱发学生的内在知识潜能,使学生主动地动手、动口、动脑,想办法来探索知识的形成过程,以达到对自我生活、心理需要的满足,获得成功的喜悦感。同时也增强其学习数学的主动性,发展求异思维,培养实事求是的科学态度和勇于探索、创新的精神。为此,我经常引导学生提供他们所熟悉的经验,充分利用学生现有的知识经验和他们所熟悉的事物组织教学,使学生能较好地感知和理解所学的内容。

数学学习应该是一种有广泛的思维空间和实践空间,且生动有趣的学习活动,学生是可以用心去体会感悟的。而以往的数学学习,常常使学生们感到离自己的生活实践太远,枯燥乏味。其实,数学学习完全可以将学生的学习范围延伸到他们力所能及的社会生活和各项活动之中,将教育和生活融为一体,让学生获得更多的直接经验和感受体验。教给学生思维方式与思维的习惯,让学生去体会感悟数学的智慧与美。

二、精心准备,认真备课

教学是一门艺术,备好课是搞好艺术的基本条件。每一课都要做到“有备而来”,每堂课都在课前做好充分的准备。要备起点,所谓起点,就是新知识在原有知识基础上的生长点;要备重点,重点往往是新知识的起点和主体部分,备课时要突出重点;要备难点,所谓难点,即数学中大多数学生不易理解和掌握的知识点;要备交点,即新旧知识的连接点;要备疑点,即学生易混、易错的知识点。

三、培养学生自主学习数学的能力

每个学生都是一个独立的人,学习是学生自己的事情,这是教师不能代替也是代替不了的,教师只是起指导作用,现行教学改革要求改变单纯接受式学习,讲究从“一刀切”教学向关注个体差异的教学转变,强调发现学习、探究学习、研究学习及自主学习。因此,培养学生自主学习数学的能力显得十分重要,这不但有利于学生能更快更好地掌握吸收所需知识,学会学习,还能培养他们的探索能力、解决问题的能力、应用意识和创新精神。

四、培养学生在数学课堂上的参与意识

数学课堂通常是被认为比较枯燥、缺乏生动和激情,因此,努力创建既宽松、富有人情味又便于学生善于思考、乐于探究的教学环境显得尤为重要。让学生在课堂学习活动中形成正确的学习方式和对数学的态度,只有当学生体会到数学的乐趣,学生才会主动感悟数学,数学教学才能为学生的未来发展服务。

课堂教学效果很大程度上也取决于学生的参与情况,这就首先要求学生要有参与意识,加强学生在课堂教学中的参与意识,使学生真正成为课堂教学的.主人,这是现代数学教学的趋势。为此,在数学课堂上应充分让学生“动”起来。即让学生的个性表露出来,思维活跃起来,手脚解放出来,这将会极大地提高教学效率。

创设民主和谐的课堂教学氛围,使学生勤于动脑,善于发言;养成良好的课堂习惯,使学生在讨论交流的氛围中学习。

篇4: 数学学习心得

复习课是根据学生的认知特点和规律,在学习的某一阶段,以巩固、疏理已学知识、技能,促进知识系统化,提高学生运用所学知识解决问题的能力为主要任务的一种课型,经过多年的学习与教学实践,本人对复习课教学这一教学流程有了一个比较系统、比较全面、比较深刻的理解与认识。下面谈谈本人对有关复习课教学的一些看法与理解:

第一、复习课这一课型与新授课与试卷讲评课是有所不同的,复习课是介于新授课与试卷讲评课之间的一种课型,起到承上启下的作用,复习课应该结合以前的新授课的教学效果与结果,特别是新授课暴露出来的问题进行设计和教学,一堂好的复习课可以很好地促进学生对知识的理解、掌握与应用。

第二、复习课应该遵循心理学原则,根据学生的认知特点和规律,使学生轻松地进入复习课课堂学习状态,以学生为主体,教师为主导的启发式与探究式相结合的教学方式进行复习课教学,激发学生的学习兴趣,留给学生充分的思考时间,使学生能够积极地参与复习课课堂学习,以便取得更好的复习课教学效果。

第三、复习课的主要功能是查缺补漏,巩固基础,加强知识间的联系,促进知识的条理化与知识网络的形成,深化提炼数学思想方法,提高学生综合应用数学知识的能力。上复习课之前教师要通过平时的作业批改等一些教学活动或一些教学方面的调查活动对学生在这一章节中存在的问题了如指掌,以便在复习课教学中有的放矢,针对学生的知识学习中的薄弱之处进行重点教学,教师要引导学生构造本章的知识结构图,可以让学生在课前进行自主构造知识网络,或让学生在课后交一份知识网络图作业,以便提高课堂效率。复习课教学时要注重提炼数学思想方法,数学思想方法是数学的核心与精华所在,有一句话说得好:“授人以鱼,不如授人以渔”,教师应在良好的师生互动中,通过启发式等一些教学方法让学生自然而然地学会一些数学思想方法,通过设计有关此类数学思想方法的练习题组,让学生逐步学透数学思想方法,真正做到举一反三、触类旁通,学会学习,从而提高学生应用数学知识的能力。

第四、上复习课时除了要巩固基础,还要注重一题多问、一题多解、一题多变、一题多思教学,多方向多角度地在师生良好的互动的基础上进行习题教学,注重对有关习题的拓展与延伸,注重培养学生思维的全面性、灵活性、严密性与深邃性,注重培养学生的数学学习方面的探究精神,探究精神在培优方面尤其重要。

第五、复习课要面向全体学生,满足不同层次学生的学习需求,尽可能调动全体学生上复习课的积极性,让学生尽情发挥、各得其所,“不放弃每一个学生”是我们教学的一个根本目的。

第六、复习课教案要具体、细致,教学过程要流畅,要有互动,要有艺术性,课堂上要留给学生充足的思考时间与空间,复习课后要精心设计有针对性的习题作业,精心批改作业,可以对学生进行个性化辅导,以便让学生得到更进一步的巩固和提高。

篇5:数学学习心得

众所周知,数学是高中学科中很重要的科目,下面是我对数学的几点学习心得:

在学习的过程中,最重要的环节是听课,听课首要认真,但更要学会把握重点,记好笔记,及时领悟,掌握并发展老师的思路,作为理科,老师上课的内容以概念分析和例题这两部分,听概念分析,要边听边思考,才能有更深的理解,也才可以记忆牢固,再有就是记笔记的问题,我的习惯是先理解题意,然后听老师的思路,思考老师是怎样认识题、分析题,又是怎样把题目所学过的知识联系起来的,听完后,把握了总体的脉络,再记下答案,课后再依照思路,自己把题做出,久而久之,这样积累下的思路方法就成了自己的了。

对于数学而言,做题量大是学好它的保证之一,但我认为做题也要有原则,即代表性和针对性,所谓代表性,即应选取能代表同一类型号的题目睐做;针对性即多找一些解题过程较复杂、思路有很强的灵活性的题目来做;如些做下去,达到一定的题量后,会发现解题时脑子变灵活了。

对平时易做错的题目应收取起来,作为错题本,而且要经常回头看一下过去做错的题目,以便掌握解题方法,比如这次月考,其实很多题目是老师平时所讲过的,但有的同学可能会没印象,我想很大的原因是没有仔细复习错题本。

以上是我学习数学的几点心得。

篇6: 数学学习心得

1.知识方面

十二月,最后的冲刺阶段,我们需要对知识进行宏观、整体上的把握,但是何为宏观上的把握,下面呢,我将通过一个例子来说明我们应该如何对知识有宏观上的把握。首先呢,我想问大家一个问题,考研数学的题型有哪几种?相信很多同学会告诉我,我问的这句话实在是太多余了,因为看过真题的人都知道,考试题型就是选择题、填空题和解答题。其实,大家告诉我的是考研数学的形式,而考研数学是最不注重形式的一门考试,比如说求极限,它可以出现在选择题、填空题中,也可以出现在解答题中,但是无论它以何种形式出现,我们都是一步步的进行求解,因此我们的考研数学是最不注重形式的一门考试。

考研数学考试主要以计算题为主,下面我们再来看下三种题型,分别对我们考生有什么样的要求:

(1)概念:概念题对大家有两个要求,一是概念的再现,比如说导数,说到导数,大家的头脑中就要不假思索的闪现出如下等式:

二是理解概念本身、理解概念的变形,依旧以导数为例,我们还要知道下列形式也是导数的定义;

(2)计算:计算题要求大家的做题速度要够快、准确率要够高,对于这个目标,我们没有什么捷径而言,唯有通过大量的习题训练才能够做得快、做的准;

(3)证明:证明题是一直以来大家认为最难的一个部分,但是对于这最难的部分,我们并不是素手无策的,因为该部分的内容是有迹可循的,通过我们对近三十年考研数学的真题进行分析,我们发现证明题的分值是比较稳定的,题目数在1-2道,并且考查的内容也是可以被追溯的,就拿高等数学来说吧,它出证明题的范围只有两个一是不等式的证明,一是中值定理。

2.模考

(1)形式与内容

在最后的冲刺阶段,我们一定要注意模拟考试的形式是远远大于考试的内容的,大家都知道考研数学是上午的8:30-11:30,因此我们在模拟的时候,大家也要保证我们在这个时间段答题,一定要按照严格的时间来进行模拟考试。另外大家要注意,我们在模拟的时候,大家做题做到11点15分的时候就结束,我们要留出15分钟的机动时间,因为在正式考试的时候可能会出现一些我们当前无法预知的问题,所以在模拟的时候要留出部分时间。

(2)心态

到了这个紧张的关键时刻,大家在做模拟题目的时候可能会遇到一些障碍,这些障碍可能直接影响大家当前的学习心情,削减备战精力,这种做法是非常不正确的,大家都知道真题的价值是远远高于模拟题目的,但是模拟题目的难度是高于真题的,所以大家遇到障碍的时候,无需久久挂心,烦恼的时候,莫不如将时间花费在查缺补漏上,所以大家这个阶段不要有消极的心态,大家一定要保证积极良好的状态,全面备战考试。

(3)题目

这个阶段我们仍然按照11月下旬的做题节奏,保证真题和模拟题的比例是2:1,平均两天一套题,认真的对待模拟考试。

篇7: 数学学习心得

第一,复习概念。

大纲是所有考生都需要彻底理一遍的首要材料。所有的概念都须搞清记熟,查漏补缺。这是9月份之前考生应做的工作。

第二,强调做题质量。

从9月份开始,做题是考生这一段时间必须勤。加练习的重要内容。综合题、模拟题、历年真题都是最后阶段的必练题目。周老师强调,每套题都必须做完后认真分析、总结,做一套分析一套,吃透后再做下一套。反复练习、纠错,才能真正掌握。

第三,主要锻炼自己的计算能力。

周老师说,从往年学生常出现的问题来看,很多人都会将注意力集中在笔记上。从课堂上就不难看出,很多同学非常爱做笔记,却不常做题。实际上笔记对考试的用处十分有限,最主要的还是做题,必须要锻炼自己的计算能力和应用能力。许多考生习惯在最后的时间里集中看笔记,其实际功用非常有限。

第四,同样重视使用计算器。

最后两个月的时间,学生也应该熟悉一下计算器的使用。

篇8: 数学学习心得

虽然不是数学系学生(化学系学生),但是觉得也勉强可以回答一下。

数学分析我也坐等大佬填坑,我数学分析学的并不好;高等代数倒是可以说说一点一孔之见,有点长,欢迎友好交流。

高等代数是研究线性关系的代数学,是当代代数学的基础。那么既然提到线性关系,那么最容易想到的一定是一次齐次多项式(不论是一元多项式,如#FormatImgID_0#,或者多元多项式#FormatImgID_1#),你可以想一下,在同一平面内的两条直线,有哪几种关系?

这个我想大家都想的明白:相交、平行或者重合。相互“平行”的几个一次齐次多项式组成的方程(条件独立)不就是线性方程组吗?相互“相交”的不就是多项式环(几个多项式依赖于乘法结合)?相互“重合”的不就是重因式吗?(重合可以看做相交的特殊情况,就是有解的情况下有无穷解,所以划到多项式环一点问题没有)

所以,国内较为常见的打开思路是要么先讲一元多项式环(或者多项式环),以张贤科先生《高等代数学》和孟道骥先生《高等代数与解析几何》的书为例;要么先讲线性方程组,以丘维声先生《高等代数》为例。姚慕生老师的书《高等代数学》开篇就是行列式,按照个人观点来看其实有问题的。从行列式的三种定义(从线性变换对应矩阵表示的角度来讲,明显不合适,观点太超前了;从映射的角度来讲,对初学者太抽象;从逆序数组合乘积再求和来讲,没有直观意义,只是沦为计算工具)来看,其十分不适合放在开篇第一章的位置。相应的,我是非常不待见考研数学线性代数经典书籍同济版本的线性代数的,这书我相信开篇行列式的打开方式令无数考研同学对于代数从此一叶障目,不见泰山。

个人比较推崇丘维声老师的思路。原因有以下几点:

第一,不仅结构相对清晰,而且思路叙述相对完备。举个例子,从线性方程组的完全求解(即完全解决线性方程组的求解方法――Gauss-Jordan算法和解的结构)开始,第一章叙述求解方法,(第二章叙述行列式,我觉得这是一个败笔。我本人也曾用他的教材授过一次课,跳过完全没问题,一个跳过去完全不影响以后发展的章节说明其在结构上是赘余的,所以说是败笔)第三章通过n维向量空间作为脚手架来解决解的结构问题,接着引出矩阵(系数矩阵)的表示方法,引出矩阵解法。这一系列线性代数的基本概念都在解决线性方程组求解的问题中产生,并发挥作用,证明也很大程度上依赖线性方程组的基本理论,可以说结构相对清晰,中间为什么引入向量叙述也算是比较充分(但是个人在授课时依然倾向于让学生在观察求解线性方程组时系数的变化情况而引入,而不是先引入再告诉你联系,觉得这样更有逻辑些,但是毕竟有所提及,解释问题)。

我同意这样的看法:代数学是“生产定理的机器”,是研究结构的学科。有一个清晰的结构很重要,但叙述思想与概念的来源同样非常重要,因为这样的想法可以指导以后的认知,这是真正的授之以渔。

第二,定理内容深刻,进行了很大推广,在推广过程中让读者意识到每个条件的意义。第五章是特征值与特征向量,第六章是二次型(后二章里面用了大量一元多项式环的内容,虽然结论深刻了,但是要求提高了)(至此线性代数部分结束,转入高等代数部分),仅靠上半本和下半本的第七章就可以对于矩阵的特征值和特征向量有相对充分的认识了(当然,有些问题还是没能够解决,比如怎样的多项式的特征值重数不变)。之后的第十章讨论了具有度量的线性空间,并不限于实数域与复数域,还推广到了一般域(通常这个域的特征不为2)的情况,叙述正交空间与辛空间,这其实对于矢量与场论分析基础有帮助(比如,正交变换作用于一个标准正交基#FormatImgID_2#可得到另一个标准正交基#FormatImgID_3#等价于两个标准正交基做的非退化线性变换必为正交变换,这在有限维实内积空间或酉空间不可以如此论述,因为这两个基不是数域上的向量,是一般域上的),这个是很好的,也帮助读者更好认识从实数域、经过复数域再到一般数域,因为正定性这一关键(不然就没有办法定义内积)而不断放低条件的过程。

第三,例题丰富,便于自学,并至少试图进行广泛应用。表明所学的意义和用法,这一点也非常重要。我们当下很多的学生只是单纯的学习数学知识,但是对于学科的基本思想与方法全然无睹,导致的严重后果是当需要用到这些知识的时候学生们要么根本不记得多少,要么根本想不起来用。个人认为大学最重要的是培养的是人的思维方式,而不是知识(当然不是不重要,只是有了这些才有真正意义上的知识)。让读者能够学以致用,这一点上,在国内的基础教材内,丘维声老师的书确实做的非常好。

以上既是丘老师书的优点,也是在阅读的时候需要注意的:注意叙述的时候课程或者教材结构的合理性;注重每个定理的意义和条件的意义;进行应用和推广时应注意什么。

这个其实也是是学习数学的一般思维。当然针对于代数,我也有其他的一些想法与认识,(敲黑板),以下是学习代数时应该注意的想法和方式:

第一,注意有限与无限的区别。无限和有限的意义往往不一样,这个在有限维里成立的命题,未必可以推广到无限维。比如伴随变换在有限维酉空间里一定有,但是在无限维酉空间里就不一定有了。但是线性空间的补空间在有限维和无限维空间里都是有的。

第二,要有“基”和维数的意识,这是(有限维的)线性代数独有的。研究一个有限维的线性空间只需要找到一个基,研究一个有限维线性空间上的线性变换除了找对应关系,还是要找一个基(线性映射找两个)。有了基才有坐标的意义,度量才有了意义。与基相关联的还有维数,这同样是描述线性空间的核心数学量(比如,两个有限维实内积空间同构当且仅当二者同维)。我所指的基,可不仅仅指线性空间中的基,还有多项式环中的不可约多项式(这往往倒是无限多的),不可约多项式和线性空间的基看似是不同的概念,却都是构筑相应结构(基域上多项式环和基域上有限维线性空间)的“砖石”。这个观点非常重要,以后讲述抽象代数,这个“砖石”有名字的,叫做“生成元”,甚至于学习群表示论,我们更关心群的不可约表示,就是因为这个。

第三,以研究态射为高等代数的核心。当然这也是后续课程抽象代数学的核心。高等代数的重难点就是线性空间与线性映射,搞不清楚这一点就没办法弄清楚结构问题,或者“作用效果”。解决问题一定要抓住要解决所需的必要条件,比如做一个矩阵分解,我得知道矩阵分解能够体现什么特征。比如,我做一个极分解,结果相当于做第一类正交变换和仿射变换这说明我作用这个矩阵可以得到这样的效果(类比于经典力学中曲线运动,我将力分解为切向力和法向力,每个分力都要承担效果的)。

第四,学习抓临界条件来解决关键问题,不要随意丢弃“脚手架”。秩的概念的本质就是向量集合的最小的生成元集中元素的个数,最小多项式更是如此(次数最低的零化多项式)。最小本质就是一种临界条件(有点类似于物理中的临界问题,或者边界条件?),临界状态往往是突破口;还有一些用过的工具用过了不代表没用,比如向量组提出其实可以看做是用来解决线性方程组问题的,但是解决了不代表就没其他用了,相应的,在度量上,其依然发挥着重要作用。

这就是个人的一点观点,不局限于高等代数(也一定不能局限,否则难以提出真正的高观点),再次表示欢迎真正的大佬前来指教,姑且作为抛砖引玉了。

篇9: 数学学习心得

一、将三门基础2113课作为一个整体去学,摒弃孤立5261的学习,提倡综合4102的思考

恩格斯曾经说1653过:“数学是研究数和形的科学。”这位先哲对数学的这一概括,从现代数学的发展来看,已经远远不够准确了,但这一概括却点明了数学最本质的研究对象,即为“数”与“形”。比如说,从“数”的研究衍生出数论、代数、函数、方程等数学分支;从“形”的研究衍生出几何、拓扑等数学分支。20世纪以来,这些传统的数学分支相互渗透、相互交叉,形成了现代数学最前沿的研究方向,比如说,代数数论、解析数论、代数几何、微分几何、代数拓扑、微分拓扑等等。可以说,现代数学正朝着各种数学分支相互融合的方向继续蓬勃地发展下去。

数学分析、高等代数、空间解析几何这三门基础课,恰好是数学最重要的三个分支--分析、代数、几何的最重要的基础课程。根据课程的特点,每门课程的学习方法当然各不相同,但是如果不能以一种整体的眼光去学习和思考,即使每门课都得了A,也不见得就学的很好。学院的资深教授曾向我们抱怨:“有的问题只要画个图,想一想就做出来了,怎么现在的学生做题,拿来就只知道死算,连个图也不画一下。”当然,造成这种不足的原因肯定是多方面的。比如说,从教的角度来看,各门课程的教材或授课在某种程度上过于强调自身的特点,很少以整体的眼光去讲授课程或处理问题,课程之间的相互联系也涉及的较少;从学的角度来看,学生们大都处于孤立学习的状态,也就是说,孤立在某门课程中学习这门课程,缺乏对多门课程的整体把握和综合思考。

根据我的经验,将高等代数和空间解析几何作为一个整体去学,效果肯定比单独学好,因为高等代数中最核心的概念是“线性空间”,这是一个几何对象;而且高等代数中的很多内容都是空间解析几何自然的延续和推广。另外,高等代数中还有很多分析方面的技巧,比如说“摄动法”,它是一种分析的方法,可以让我们把问题从一般矩阵化到非异矩阵的情形。因此,要学好高等代数,首先要跳出高等代数,将三门基础课作为一个整体去学,摒弃孤立的学习,提倡综合的思考。

二、正确认识代数学的特点,在抽象和具体之间找到结合点

代数学(包括高等代数和抽象代数)给人的印象就是“抽象”,这与另外两门基础课有很大的不同。以“线性空间”的定义为例,集合V上定义了加法和数乘两种运算,并且这两种运算满足八条性质,那么V就称为线性空间。我想第一次学高等代数的同学都会认为这个定义太抽象了。其实在高等代数中,这样抽象的定义比比皆是。不过这样的抽象是有意义的,因为我们可以验证三维欧氏空间、连续函数全体、多项式全体、矩阵全体都是线性空间,也就是说,线性空间是从许多具体例子中抽象出来的概念,具有绝对的一般性。代数学的研究方法是,从许多具体的例子中抽象出某个概念;然后通过代数的方法对这一概念进行研究,得到一般的结论;最后再将这些结论返回到具体的例子中,得到各种运用。因此,“具体--抽象--具体”,这便是代数学的特点。

在认识了代数学的特点后,就可以有的放矢地学习高等代数了。我们可以通过具体的例子去理解抽象的定义和证明;我们可以将定理的结论运用到具体的例子中,从而加深对定理的理解和掌握;我们还可以通过具体例子的启发,去发现和证明一些新的结果。因此,要学好高等代数,就需要正确认识抽象和具体的辩证关系,在抽象和具体之间找到结合点。

三、高等代数不仅要学代数,也要学几何,更要在代数和几何之间建立一座桥梁

随着时代的变迁,高等代数的教学内容和方式也在不断的发展。大概在90年代之前,国内高校的高等代数教材大多以“矩阵论”作为中心,比较强调矩阵论的相关技巧;90年代之后,国内高校的高等代数教材渐渐地改变为以“线性空间理论”作为中心,比较强调几何的意义。作为缩影,复旦的高等代数教材也经历了这样一个变化过程,1993年之前采用的屠伯埙老师的教材强调“矩阵论”;1993年之后采用的姚慕生老师的教材强调“线性空间理论”。从单纯重视“代数”到“代数”与“几何”并重,这其实是高等代数教学观念的一种全球性的改变,可能这种改变与现代数学的发展密切相关吧!

学好高等代数的有效方法应该是:

深入理解几何意义、熟练掌握代数方法。

其次,高等代数中很多问题都是几何的问题,我们经常将几何的问题代数化,然后用代数的方法去解决它。当然,对于一些代数的问题,我们有时也将其几何化,然后用几何的方法去解决它。

最后,代数和几何之间存在一座桥梁,这就是代数和几何之间的转换语言。有了这座桥梁,我们就可以在代数和几何之间来去自由、游刃有余。因此,要学好高等代数,不仅要学代数,也要学几何,更要在代数和几何之间建立一座桥梁。

四、学好教材,用好教参,练好基本功

复旦现行的高等代数教材是姚慕生老师、吴泉水老师编著的《高等代数学(第二版)》。这本教材从1993年开始沿用至今,已有近的历史。教材内容翔实、重点突出、表述清晰、习题丰富,即使与全国各高校的高等代数教材相比,也不失为出类拔萃之作。

复旦现行的高等代数教学参考书是姚慕生老师编著的《高等代数学习方法指导(第二版)》(因为封面为白色,俗称“白皮书”)。这本教参书是数院本科生必备的宝典,基本上人手一册,风行程度可见一斑。

要学好高等代数,学好教材是最低的要求。另外,如何用好教参书,也是一个重要的环节。很多同学购买教参书,主要是因为教材里的部分作业(包括一些很难的证明题)都可以在教参书上找到答案。当然,这一点无可厚非,毕竟这就是教参书的功能嘛!但是,我还是希望一年级的新生能正确地使用教参书,遇到问题首先自己独立思考,实在想不出,再去看懂教参书上的解答,这样才能达到提高能力、锻炼思维的效果。注意:既不独立思考,又不看懂教参书上的解答,只是抄袭,这对自己来说是一种极不负责的行为,希望大家努力避免!

最后,我愿以华罗庚先生的一句诗“勤能补拙是良训,一份辛勤一份才”与大家共勉,祝大家不断进步、学业有成!

篇10: 数学学习心得

庆童蒙氏幼儿园是大庆庆童早期教育服务中心的一所幼儿教育实践基地,本中心于20xx年1月份开始进行亿童《蒙氏数学》的课题研究及大庆地区幼儿园教育服务工作,并于20xx年3月成立庆童幼儿园。对于如何在幼儿园中班开展蒙氏数学,使幼儿得到更大的发展成为本园所的研究主要目标。在近几年的实践中,渐渐总结出了一些心得,在这里与各位同仁及家长共同分享。

一、《蒙氏数学》是孩子的好伙伴

我国数学家陈身生说过:传统的数学教育,幼儿学到的只是计算能力的培养。而《蒙氏数学》以激发兴趣和培养思维为精华的数学教育思想和独特的纸面操作教具为主的教学形式弥补了传统数学教育的不足,让幼儿在学习过程中学习推理、判断、主动思考、与人沟通、互相学习、互相帮助、互相欣赏、互相包容。经过一段时间的努力,孩子们在各个方面都有了很大的进步。在线上活动时,一听到班德瑞音乐,孩子们便会安静自觉地进行走线活动;在集体活动时,幼儿通过教具的操作,不但在大小肌肉、手眼协调方面得到训练,而且领会了感官、数学教育中的内涵,为学习文化知识打下坚实基础并养成良好的学习习惯;同时在自主操作中,他们的动手操作能力有了很大的进步,增进了同伴之间的友谊和情感,他们的语言表达能力、动手能力、交往能力也有了很大的提高,孩子们参与的主动性与积极性也越来越强,真是印证了那句话“智慧就在指尖上”。在不断的研究、反思,分析个案,调整教学内容、方法的过程中,我体味着变化的欣喜和收获的充实。

二、《蒙氏数学》是教师的好帮手

开课初期,我园针对各班的实际情况,无论是在《蒙氏数学》的线上活动,还是在集体活动、到分组活动上,操作起来较难。孩子们在分组活动时,我在组织教学活动的初期,一到这个环节就头痛,到现在可以很轻松地驾驭这个环节,使我感觉到《蒙氏数学》不仅使孩子的各方面能力有所提高,也使我们在教学活动中的组织能力有所提高。经过半学期的时间,我发现孩子们虽然已经知道了蒙氏常规的要求是什么,而且在专注力等方面都较以前有了进步,但对于《蒙氏数学》中不同教具操作要求及其展示方式等,真正能按要求去做的还是不多。另外,在其他方面的学习上也出现了明显的差距。这些情况的出现让我不得不重新思考和修改自己的教学方法。

为了充分发挥“以强带弱,以弱促强”的这一教育理念,我把教学的目标重新进行了调整。我班接受能力强的幼儿占多数,因此,我以这部分幼儿为主,然后再根据其余幼儿不同的发展需求制定相应的教学目标。

在《蒙氏数学》活动中增加接受能力强的幼儿进行展示的机会。这样不仅会增强孩子的自信心和学习积极性,同时还会激励弱势幼儿的学习,于是就达到了互相学习、互相促进的目的。

在其他内容的学习上,除了进行分组教学以外,我还运用《蒙氏数学》的作业纸,增强了家园共育这一环节,请家长们参与到孩子们的学习中来,进行家庭辅导。对于孩子们遇到的困难,由家长反馈给我,我再根据孩子们作业情况及家长的意见进行课堂指导或个别指导,然后再利用作业进行巩固和练习。

总之学习了《蒙氏数学》后,孩子们的数学思维能力有所提升,养成了主动思考的习惯,专注力和秩序感越来越好,自我探究意识也增强了,现在孩子们在做《操作册》时,多数题不用老师讲解,就能独立审题并完成。

三、《蒙氏数学》促进了整合教育的发展

作为《蒙氏数学》的老师,为了孩子能够更好地健康发展,我考虑如何把《蒙氏数学》与日常教育更好地进行结合,使孩子们得到更大的发展。对于这一点,从一开始我们班便开始了相应的实践。

1.利用《蒙氏数学》中的日常生活教育进行生活常规教育。

我利用《蒙氏数学》的活动,让幼儿学习如何搬椅子、拿勺子、擦桌子、叠衣服、站队等,在日复一日的生活中,不断重复这些工作,幼儿的生活常规有了很大的提高。运用蒙台梭利教育理念管理教育环境,引导幼儿参与环境管理的过程中,只要我们注意“环境育人”这一教育功能,孩子们就会更好的成长。

2.把蒙氏活动中的一些技能学习与五大领域活动进行穿插教育。

3月初时,我准备带孩子们上一堂剪纸课《美丽的小雪花》之前,我就利用做蒙氏数学《操作册》的时间不断让幼儿进行“剪”的活动,以提高幼儿“剪”的技能。孩子们在学习蒙氏数学的过程中,不知不觉地接触到了方方面面的指示,使自己得到了不同程度的满足和提高。

3.五大领域教学可弥补《蒙氏数学》教学中音乐、绘画方面的不足。

通过五大领域与《蒙氏数学》教学相结合,孩子们学到的内容大大增加,知识涉及更为广泛。《蒙氏数学》为幼儿准备了充分的学具和操作材料,他们每天都能根据自己的兴趣和需要在这里自由选择、自由操作,教师在观察的基础上给予适时地引导和帮助,让孩子在操作活动中自我学习、自我探索、自我发现、自我提高,从而实现主动发展的目标。

四、《蒙氏数学》促进了家长工作

通过做蒙氏数学《操作册》、《作业纸》,每个孩子的进步不仅老师看在眼里,家长们也十分清楚,对于自己的孩子哪些方面进步了,哪些方面还有所不足,家长会经常与我沟通。这样一来,不但家长工作收到了成效,我们的数学教育教学质量也有了提高,当然还是孩子们得到了健康的充分的发展。在前些天家长的反馈表中,有的家长写道:《蒙氏数学》寓教于乐,激发了孩子的学习兴趣,让他在快乐中学习,在快乐中学习成长,这是我们家长最愿意看到的;还有的家长写道:自从接触了《蒙氏数学》,孩子的思维能力增强了,对数学也很感兴趣,尤其喜欢通过做手工、做剪纸学习数学知识,这样形象生动的学习方式,孩子很乐于接受,家长也很高兴,在此对《蒙氏数学》表示感谢。这些都是家长们发自肺腑的感言。

《蒙氏数学》通过简单的作业纸,就轻而易举地拉近了教师与家长之间的距离,也增进了亲子间的关系,使我今后的工作能更顺利地开展。

篇11: 数学学习心得

数学学科发展到现在,已成为了分支众多的学科之一,复变函数则是其中一个非常重要的分支,是19世纪,Cauchy, Riemann, Weierstrass 等数学家分别从不同角度建立了复变函数的系统理论,使复变函数真正成为分析数学的一个重要分支。

复变函数是复数域上的微积分,是基于解决数学内部矛盾的间接需要而产生的,是由于在生产实际和科学研究中发现了应用原型而发展起来的!

复变函数现在是大学理工科专业和数学院系数学类专业的一门重要的基础课,但是复变函数的学习要有高等数学的基础,如果没有这方面的知识,学习复变函数无疑会非常困难,因为这门课程在初学者看来非常抽象,理论性太强。作为复变函数的教学工作者,如何使得这门课程的课堂变得生动有趣,而且使学生在学习过程中容易理解,是我们不得不思考的问题。

由于复变函数的导数与可导性、微分与可微性是利用类比的方法从一元实变函数相应概念推广到复数域后得到的,它们在形式上与一元实变函数的导数、可导性与微分一致,因此在教学中应当勤于和善于比较,既要重视共性,更要注意不同点,切实关注在推广到复数域后出现了什么新情况和新问题,探讨出现新问题的原因何在。

在这篇报告中,王锦森先生非常生动地介绍了复变函数课程的改革思路和分别讨论了复变函数教学中的难点和重点,并且这些难点和重点的教学方法。

难点和重点介绍方面:讨论了“在复变函数可导性(从而判断函数解析性)的充要条件中,为什么要求函数的实部和虚部必须满足Cauchy-Riemann方程?”内在含义,复变函数的导数的几何意义是否跟实变函数导数的几何意义相同?,一元实函数的微分中值定理能不能推广到复变函数中来?,复变初等函数与相应的实变初等函数之间的关系与差别,复变函数的积分与一元实变函数的第二型曲线积分的不同之处,即,它们积分和式的结构不同,积分的表达形式不同,物理意义不同等等,还讨论了学习Cauchy-Goursat 基本定理应当注意的几个问题,复变函数积分中有没有与一元实变函数微积分中的微积分基本定理和Newton-Leibniz公式相对应的结论等等。

这些难点和重点教学法方面介绍了类比教学法,化“复”为“实”,用“已知”解决“未知”的思想等教学法。

参加培训之前我没有考虑过这些问题,通过这次学习,我对这些难点与重点的认识进一步深入了。以后的教学过程中用到所学的知识,为提高教学质量而努力。

篇12: 数学学习心得

感谢老师对我的肯定,让我给大家分享一下对于数学学习的经验和一些考试的技巧。

首先,数学的学习要注重基础知识的掌握和运用,万丈高楼平地起,复杂的数学运算也只是加减乘除的组合而已。熟练的使用数学的运算公式和画图等,不仅能大大提高解题的效率,更能在遇到难题的时候更好的发现解题的窍门。这样学习和练习的时候就能高效记忆、掌握技巧,自己学习也能更加有信心和乐趣。第二,解题的时候要细心,基础题和会做的题要保证全对。数学考试不仅是对于所学知识和解题技巧的考验,更是对于细心程度和考试时心态的考验。我相信大家数学考试的失分大多数都是失在这些细节上,只要我们考试的时候再细心一点,考完再认真的复查一遍,这些不必要的失分就能很大程度的避免,我们的成绩也能顺理成章的提高一个档次。第三,考试的时候如果遇到难题卡住,或者运算算不出来,先暂且把题目放一放,回头再来做,一直在一个题目上钻牛角尖会打乱我们的心态,这个时候放宽一下心情先去完成其他的题目最后再来啃难题会更好。

最后,数学是一门注重多学多练多问的科目,只要大家多多练习,认真完成老师布置的作业,课外再适当根据自己学习的情况做一些题目,不懂的及时问老师,数学成绩一定能突飞猛进,祝大家下次考试都能有令自己满意的进步!

篇13: 数学学习心得

一、检查试卷,稳定心情

拿到试卷以后不要着急做题,花一两分钟时间把卷子通篇看一下,检查一下考研数学试卷是不是23道题目,大致都是什么题型的题目。这样做有两个好处:一是可以有效防止因粗心大意而漏掉一些题目,漏题就太可惜了;二是可以加强自己的信心,稳定心情,通过长达一年时间的复习,看了这么多参考书,听了那么多考研课程,相信试卷中肯定有不少题型你是非常熟悉的,看了这些题目以后,你会感到非常高兴,自信心倍增,原本紧张的心情也会放轻松,这样才能正常发挥。

二、按序做题,先易后难

考研数学题量都是23道题目,其中选择题8道,填空题6道,解答题9道。题目类型也是固定的,数学一和数学三1~4题是高数选择题,5~6题是线代选择题,7~8题是概率选择题;9~12题是高数填空题,13题是线代填空题,14题是概率填空题,15~19题是高数解答题,20~21题是线代解答题,22~23题是概率解答题。数学二1~6题是高数选择题,7~8题是线代选择题;9~13是高数填空题,14题是线代填空题,15~21题是高数解答题,22~23题线代解答题。

选择题和填空题主要考察的是基本概念、基本公式、基本定理和基本运算,解答题包括计算题和证明题考察内容比较综合,往往一个题目考查多个知识点,从近些年的试卷特点,题型都比较常见,难度不算大,我们最好按题目顺序做,这样能稳定心情,很快进入状态,也不容易漏做题目,如果遇到自己不熟悉的题目也不要发慌,可以暂时放下接着做下一个题目。等容易的题目有把握的题目都做完之后,再静心研究有疑问的题目,但如果实在没有思路也要学会放弃,留出时间检查自己会做的题目,争取会做的题目不丢分,因为数学的分数最依赖的还是能否将会做的题都做对。

此外,有些同学喜欢先做高数,再做线代,这样的做题顺序也可以,关键是看你平时训练时是如何训练的,选择适合自己的就是最好的,但在此提醒一下大家一定不要漏做题。

三、合理分配答题时间

根据以往考生的经验,一道客观题控制在3分钟左右,最多不要超过5分钟,解答题一般10分钟左右,根据难易程度适当调整。最后至少留出30分钟时间检查,确保会做的题目计算正确。

考研线性代数考点预测:向量的数学定义

首先回顾一下,在中学我们是如何表示向量的。中学数学中主要讨论平面上的向量。平面上的向量是可以平行移动的。两个相互平行且长度相等的向量我们认为是相等的。好,假设在平面直角坐标系中,对于平面上的任何一个向量,我们总是可以将其平移至起点坐标原点重合。这时向量终点的坐标同时也是向量的坐标。这样,我们就可以用一个实数对表示一个平面向量了。

一个实数对实际是我们线性代数中的一个二维行向量。而线代中讨论的向量是任意n维的。所以线性代数中的向量可视为中学向量的推广。

下面是向量的数学定义:

由n个实数a1,a2,…,an构成的有序实数组(a1,a2,…,an)称为一个n维行向量。类似可定义列向量。

问个问题:向量和矩阵是什么关系?向量可视为特殊的矩阵(行数或列数为1的矩阵)。这是理解向量的一个很好的角度。因为学习向量时,我们已把矩阵讨论得很清楚了,所以通过矩阵理解向量就能省不少事。

知道了什么是向量,那什么是向量组呢?向量一般来说不是单独出现,而是成组出现的。我们把多个向量放在一起考虑,就构成了向量组。

当然向量组的严格数学定义也不难理解:由若干个同型向量构成的集合称为一个向量组。这里的“同型”可以理解成矩阵同型,也可以用向量的语言描述成:同为行向量或列向量且维数相同。

篇14: 数学学习心得

本学期,我有幸听了多堂优秀的数学课,现在我把听课后的心得体会向老师们作一个汇报。

通过听课,让我学到了很多很多新的教学方法和新的教学理念。这些课在教学过程中创设的情境,目的明确,为教学服务。由于所使用教材不同,高年级在教材上没有关于“选择合理的计算方法解决问题”这一块内容,但执教老师在刚接到执教任务之时就到当地小学深入了解学生的学习情况,对已有的知识经验、不同层次的学生情况进行摸底,然后根据学情制定了详细地、符合学生的教学设计,同时结合不同版本的教材,一遍一遍的研究、改进,最终呈现课堂的才是精致的。可见,调查学情,挖掘教材对于上好一堂课是多么的重要。另外,印象较深的还有贲友林老师的课,他以独特的风格,幽默诙谐的形体语言博得了满堂彩。吴金根老师主张把一切还给学生,即主张:学生能自己探索发现的,教师不提醒;学生能通过思考描述出来的,教师不引导;学生能自己总结出规律的,教师不告知等等,允许学生出现错误,允许学生出现分歧,允许学生出现自己的预设中没有的问题,创设的情境真正为教学服务,课堂的原生态味儿十足,这也充分展现了高老师深厚的教学功底,临时应变的能力很强。有老师说:“应用知识可以去解决问题,对现象的解释也是解决问题的一种形式。”优秀的数学课正好体现了这一点,比如说,利用黄金比0。618:1去解释为什么刘翔的身材看上去比菲尔普斯的身材美,为什么符合黄金比的长方形看上去比较舒服等,这都是用所学知识去解释生活中出现的问题,听完这三节课,我们对解决问题又有了新的认识。充分体现“教师以学生为主体,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”的教学理念。执教者的语言精练、丰富,特别是对学生鼓励性的语言十分值得我学习。

这些,都是我们年轻教师应该去好好学习的地方,并应借此,在不断在模仿与摸索中更好地完善自己的课堂教学。

徐斌老师经常说,什么样的课才算是一堂好课呢?其实也很简单,就是要培养学生良好的习惯,但这种习惯并不是上课发言、遵守纪律的习惯,而是能够和老师一起思考的这么一种习惯,这种习惯形成的前提是学生能够集中注意力。徐老师引用一位教授的话说:“课堂教学上,老师讲的拙一点没关系,关键是要引发学生思考,而引发学生思考的最好办法就是老师和学生一块儿思考。”

总结起来就是两点,学生跟着教师一起思考,教师跟学生一起思考。这就是一堂好课的标准。

篇15: 数学学习心得

近段我市举行了特色课堂教学展示活动,这给我们提供了学习的现场,观赏的舞台。我有幸聆听了韩老师、焦老师的精彩课堂,如饮醍醐,受益匪浅。

课堂教学是一个“仁者见仁,智者见智”的话题,大家对教材的钻研都有自己独特的见解。通过听课,让我学到了很多新的教学方法和新的教学理念。在教学过程中创设的情境,目的明确,教学老师在课件里呈现游戏,其情境的内容和形式的选择都符合学生的年龄特点。整个教学过程都紧紧围绕着教学目标,非常具体,有新意和启发性。这样的情境让学生体会数学来源于生活并运用于生活,激发学生学习兴趣。创设的情境真正为教学服务,如果只是为了情境而情境,那就是一种假的教学情境。

在这两节课中,教师放手让学生自主探究解决问题的方法,整节课,每一位教师都很有耐性的对学生进行有效的引导,充分体现“教师以学生为主体,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”的教学理念。执教者的语言精练、丰富,对学生鼓励性的语言非常值得我学习。授课教师注重从学生的生活实际出发,为学生创设现实的生活情景,充分发挥学生的主体作用,引导学生自主学习、合作交流的教学模式,让人人学有价值的数学,不同的人在数学上得到不同的发展,体现了新课程的教学理念。 想想自己的教学与他们的差距。教学时我常会抱怨学生不配合,不认真听讲,现在想想应该不是学生的原因,如果自己的教学也能设计地十足吸引学生,相信学生们肯定会积极投入。一节课要上好,提前就应该把课堂中会出现的各种情况、问题想周全,使自己运筹帷幄,还应该注重与学生的交流,不要为了传授知识而教学,应该发自内心地尊重、保护学生。

通过这次听课学习,我感到自身与优秀教师的差距,我会多读书、多听课、学会如何整合教材、反思、总结,使自己各方面更上一层楼。

篇16: 数学学习心得

1. 数学PACE问题。

大家可能都会觉得数学很简单,不用刻意去练习PACE,但是GMAT数学的陷阱题失分题一般都出在中后段,在我考试的时候,大段时间放在了中段几道题上,做到最后10题的时候只剩20分钟了,所以大家一定也要练习数学的PACE,遇到难题及时切换思路,带入具体数值挨个试选项都比你在那推导公式省时间。还有,数学不像语文,PACE不决定分数的多少,决定分数的只有正确率遇到难题不要像语文那样直接放弃,给自己试一试的时间。

2. DS题

PS题也许大家会就是会,不会就是不会,胜利和败北的感觉很鲜明,但是DS题老是阴沟里翻船,我想说的就是,DS题也是数学题,考试中占得比例虽然和PS差不多,但是重要性远比PS题大,因为错误高发点一般都在DS上,为了避免DS的错误,我们必须做到。

第一.不要只凭自己的印象决定条件1和条件2能不能做题,必须自己下笔算,但是不求结果,只求清晰的过程。真正的算下去,这点十分重要。大家DS错基本就错在这点了。

第二.一定要看清GMAT 数学题目最后要求的是什么,GMAC老头们出了太多条件1给了一个具体数但是题目是求比率的问题了,大家一定注意。

第三.学会用代入具体数值检验条件的方法,一般特别绕的题,但是限定了取值范围的题,我们都可以用这种举穷法,为了保证代入数值的准确性,一般代入两种数据,大于10的质奇数,和一个偶数,或者直接把范围内的所有数都列出来验证。

第四.一些DS题在条件中就会给你很多提示,会让你想到很多你原来想不到的点,但切记,条件1和条件2除非选C是可以共存的,不然他们谁都和谁没关系,单独看条件2的时候一定一定把条件1忘掉。

第五.一定要严重关切条件1和条件2给出GMAT 数学数据的性质。若都是比率,那么极有可能选E,因为他们可能在化简后是相同比率(严重关切),若条件1和2的性质不同,则要先看题目所求,再看1和2如何和原题所求建立联系。

篇17: 数学学习心得

我班有几个学困生,他们的学习习惯非常差,应培养他们哪些良好的学习习惯呢?

一、培养学生专心倾听的习惯

专心倾听是学生主动参与学习过程,积极思考的基础,也是提高课堂学习效率的前提。因此,要培养学生上课专心倾听的习惯。

二、培养他们独立思考、合作交流的习惯

数学是思考性极强的学科。在数学教学中,必须使学生积极开动脑筋,乐于思考,勤于思考,善于思考,逐步养成独立思考并与同伴交流的习惯。

三、培养他们从生活中发现数学、应用数学的习惯

数学来源实际生活,教师要培养学生从生活实际中出发,从平时看得见、摸得着的周围事物开始,在具体、形象中感知数学、学习数学、发现数学。教师除了让学生将书本中的知识与生活联系外,还要经常引导学生去发现身边的数学,记下身边的数学.

四、培养学生认真书写的习惯

认真书写不仅能提高作业的准确率,而且对端正学生的学习态度,养成认真负责的习惯有积极的意义。书写美观、工整是学生的基本功。做数学作业一般要求学生书写格式规范,阿拉伯数字和符号的书写也要规范。对于作业的书写情况,教师要经常讲评,要以典型示范,以表扬为主。应要求小组同学共同督促,使学生认真地完成作业。

总之,面对新课程改革的挑战,我们必须转变教育观念,多动脑筋,多想办法,密切数学与实际生活的联系,使学生从生活经验和客观事实出发,在研究现实问题的过程中做数学、理解数学和发展数学,让学生享受“快乐数学”。

作为一个参加工作没有几年的教师,对于此次课改我认真研读了新的课标,积极参加课改的培训学习。我深刻感受到教学处处都有细节,处处要让学生体验实践,联系生活,让学生学有价值的数学。

在这次培训之前,我一直对学生的口算能力的提高不得法,听完老师的讲述后,明白要用听算的方法,不仅可以提高学生口算能力,还可以培养学生注意力和书写速度。学生的学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等过程。学生是教学的主体作用,

同时还要重视培养学生良好的学习品质。教学不是简单的“知识灌输”和“知识移植”的过程,真正的教学应该说是学习主体和教育主体交互作用的过程。在未来瞬息万变的社会中的,并为此设计、组织相应的使学生成为活动主体的学习环境。教室和教师并非学习环境的全部,课堂教学也不再限于传统的教科书、黑板、粉笔之类的媒体,而是有了多媒体系统乃至因特网的支撑。人们正步入学习化社会,一劳永逸获取知识已成为过去。每一个人都必须面对迅速发展的机会现实,时时更新自己的知识结构,才能不断创造成功的机会,与外部世界保持和谐与默契。

总之,对新课标的学习给我的日常教学带来了生机和活力一个正确的方向和目标。要让学生在一次次的动手实践中、在一次次的探索与交流中,不觉之中感受到知识的滋养。

苏霍姆林斯基说:“当知识与积极的活动紧密联系在一起的时候,学习才能成为孩子们精神生活的一部分。”体验学习是在新课改理念下产生的一种教育思想,它充分展现了以人为本的教育理念:通过让学生参与知识的获得过程、参与思维的形成过程、参与问题的解决过程;使学生在体验中思考,在思考中创造,在创造中发展;使他们的情感、态度和价值观得到充分的发展。在教学中,使学生体验到数学的精彩、探究的快乐、成功的喜悦,是每一位课改教师义不容辞的责任。

“让学生在学习活动中体验和理解数学”是《数学课程标准》给我们的第一条建议,可见体验的过程对孩子成长的重要性。体验学习能使学生的学习进入生命领域,调用各种器官去体验、去感受,能为学生的认知结构与知识结构之间架起一道无形的桥梁,是知情合一的学习。这就告诉我们:在教育教学中我们应该提倡体验学习。

篇18: 数学学习心得

学习《小学数学》使我有了新的认识和体会。我想学生在学习数学的过程中,我们教师应给学生充分发挥的空间,让学生在教学情境中体验数学的趣味,在生活实践中体验数学的价值,在自主合作中体验数学的探索,从而真正享受到数学带来的快乐。下面,我来谈谈对这本书的几点心得:

对于如何才能更好地“关注课堂,实施有效教学”,小学数学心得体会确实是我们每一位老师值得讨论、研究的一个问题,也是我执教近几年来的最大困惑,现在我以一名参与者的身份来谈一下自己的感受。

首先,加深了我对课前备课环节的理解。

平时教学中,我知道了小学数学备课都应该备什么,都应该关注哪些方面。但具体在实际操作中该怎样去落实,还是很模糊的。通过这次培训活动后,我真正弄清了有效教学准备活动的流程是:课标解读与教材分析----学习者特征分析-----确定教学目标------最近发展区分析------教学处理及策略选择-----展示教学预案。先说一下教材分析:教材分析不单单是就教材去谈教材。还要在教材分析中明确编者意图,我们可以借此落实哪些阶段目标?我们应该在怎样的总目标的指引下具体落实到课堂上的目标?我们的教学到底要使学生形成怎样的能力?另外,从其他几块的准备中,我还知道了我们的教学还要关注学习者的特征,关注他们的最近发展区,怎样才能使我们的教学真正使他们受益,形成他们的一种能力,这才是我们教学的最终目的。因为现代社会要求公民具备良好的人文素养和科学素养,具备合作的意识和开放的视野,具备包括计算与实际应用在内的多方面的基本能力,以及运用现代技术搜集和处理信息的能力。所以,数学教学应该能够为造就现代社会所需的

一代新人发挥重要作用。就是说,我们的教学要使学生形成能力,形成能力的最终目的是为社会服务。只有明确了这一点,我们的教学才会更有效。

其次,为我创造了一个学习的机会。

现代的教育强化了学科的整合,要求教师做教育的研究者。这就要求我们教师必须学会合作,同伴互助,发挥团队的力量,才可以把我们的教育搞好。事实也是如此,在这次培训活动中,每每思考之余,浑身都不由然汲取一种力量,那就是为体现自己的人生价值而奋发努力!这也许就是人为什么是群居动物的原因吧。

再次,通过这次培训,使我能够取长补短,了解了自身确实还有很多不足的地方,可以向他们学习、请教,对我自己也是一种成长的好方式。

跟课堂教学有效性相关的因素太多了,只要我们勤思考,肯探索,把自己当作学生探求知识的同行者,一定会找到更好的办法。美国教育家帕尔墨说:“教学就是要开创一个实践真理的共同体空间,在这个共同体中,我们与志同道合的朋友一起追求真理。”让我们共同努力,不断探索提高课堂教学效率的有效途径吧。

新课程对教师提出了教育专业工作者的要求,我们只有作好充分的准备,进行精心的教学设计,才会在教学中使学生真正地动起来,经历"与人合作,并与同伴交流思维的过程和结果",使学生善于倾听他人发言,乐于陈述自己的想法,敢于修正他人的观点,勇于接受他人的意见;这些都有利学生主动地参与学习,有利于提高个体的学习动力和能力,才会使他们感到无限快乐,感到自己精神的、智慧的力量在增长,使学生的个性得以充分的发展。

有效性是课堂教学的生命。一节课,使师生的生命有了怎样的变化;收获了那些知识与思考;获得了怎样的身心体验,是考量课堂教学有效性的三个重要指标。客观地说,师生从走进课堂到走出课堂,总要发生一些变化,收获一些东西,好像每节课都是有效的。但是课堂的有效程度是很不一样的,有的课堂能对师生产生终生的影响;有的课堂只给学生留下一些机械的记忆,日积月累的差异就导致人的素质的差异,人的生活状态的差异。因此,每一节课的效果都不可忽视。

任何一个负责任的教师都想提高课堂教学的有效性,有关这方面的文章也有很多,从我的经历和体会来说,我认为最重要的.有以下三点。

一、教师要有吸引学生的本事

首先要放正心态。当我们拿着教案走进课堂时,如果心里想着:我讲课来了,学生必须坐好认真听我讲课!那么这节课一定不会太精彩!如果你微笑着走进课堂时心里想:我和大家一起学习来了,我一定让我们每个人学得愉快。这节课就成功了一半。人坐在飞机上和坐在自行车上想问题角度是不一样的,老师站在讲台上和走进学生中间想问题也是不一样的。因此走进课堂时,就要把自己的角色摆正,当成学生学习的合作者、促进者、引导者,忘记师道尊严,全身心投入,营造一个温馨和谐的学习氛围。

其次,老师要学会美化目标。任何一节课都有预定的目标,但是如何让目标具有吸引力,就不是每个老师能做到的了。上课前,老师要善于用最美好的语言描述达到教学目标后的美景,吸引每个孩子向着目标前进。

第三,要关注学习过程中的身心体验。教学是师生的双边活动,在这个过程中,师生是快乐还是痛苦,是主动还是被动,是评价一节课有效性的重要指标。比如去看大海,如果我们只管看到大海就行了,旅途中吃不好,睡不好,难受极了,等欣赏到大海的美景时,一定会大打折扣。对于师生,学习过程是生命的常态,是我们生活的重要内容,让学习过程充满快乐是提高我们生存质量的重要问题,不可忽视。

第四、精心准备每一节课。我们都有这样的感觉:备好课和没有备好课走进课堂时,心情是不一样的。苏霍姆林斯基也说过:要用一生来准备一节课。真的是这样,课堂的高效率来自于精心的准备!课堂的魅力也来自于精心的准备!能够吸引学生是提高课堂效率的保证。

二、努力拓展课堂的宽度

一节课的时间是有限的,要达到的目标是一定的,如果在达到目标的过程中,多了解一些相关的知识,增加课堂的宽度,课堂教学的有效性就会提高。

达到这样的境界,需要教师有深厚的知识储备,需要教师留心身边的一切事物,更需要不停的思考,精心的设计。课堂的宽度是提高课堂有效性的决定因素。

三、挖掘课堂的深度

决定一个容器大小的是它的容积,容积的大小跟它的深度成正比。一节课的有效性,也与知识的深度成正比。我们的课本知识都是很浅显的,一般智力的学生自己看几遍就能明白,如果老师像传声筒一样,只传授课本知识,很难满足学生的求知欲望。适当的挖掘知识的深度,是提高教学效率有效途径。

其实,每节课都应该在课本知识的基础上有所加深,增加课堂的容量,以提高课堂教学效率。

四、延伸课堂的长度

学生走出课堂时,如果觉得课堂上的东西都学会了,那这节课决不是完美的课;如果学生还愁眉不展,在思索还没有解决的问题,这样的课堂绝对是精彩的。课堂上高悬的永远应该是问号,而不是句号。所以,下课的时候,一定要让学生带着思考走出教室,延伸课堂的长度,提高课堂教学的有效性。

总之,面对新课程改革的挑战,我们必须多动脑筋,多想办法,密切数学与实际生活的联系,使学生从生活经验和客观事实出发,在研究现实问题的过程中用数学、理解数学和发展数学,让学生享受“数学学科的快乐”且快乐地学数学。

篇19: 数学学习心得

有一次老师上课时让我们同学拿出一张数学作业纸和圆规,同学们都百思不得其解。

原来老师是让我们画图形呀!我们今天学的就是欣赏与设计。有些图形十分的奇妙,看似复杂的图形实际上就是由几个大小相同,部分重叠的圆组成的。老师今天让我们画的图形全都可以拿圆规画出来,有一些圆画完后,还需要擦掉一些部分。

我记得有一个图形十分的难画,我涂涂改改了好几遍也没画出来,于是老师让我们下课几个人讨论一下。我仔细的观察了一下这个图形,找到了这个图形的规律。最后经过了我的努力我终于画出了这个图形。

我明白了做什么事情都要努力,只要努力了就能做成。

篇20: 数学学习心得

自从大二下学期真正开了数学模型这一门课之后,我对数学认识又进一步加深。虽然我是学纯数学即数学与应用数学,但是在我的认知中,数学最多的是单纯地证明一些定理抑或是反复的计算一些步骤比较多的题进而求解。随着老师在课堂上一点一点的引导、介绍、讲解,我渐渐地发现数学真的是很万能啊(在我看来),任何实际问题只要运用数学建立模型都可以抽象成一个数学方面的问题,进而单纯的分析、计算、求解。这只是我大体的认识。

首先,通过数学模型这一门课我解开了数学模型的神秘面纱,与数学模型紧密相连的就是数学建模,简而言之来说数学建模就是应用数学模型来解决各种实际问题的过程,也就是通过对实际问题的抽象、简化、确定变量和参数,并应用某些规律建立变量与参数之间的关系的数学问题(或称一个数学模型),在借用计算机求解该数学问题,并解释,检验,评价所得的解,从而确定能否将其用于解决实际问题的多次循环,不断深化的过程。

以下是我学习数学模型的一些心得:

第一,数学模型是数学的一个分支,它还没有脱离数学,众所周知数学是一门比较抽象的课程,主要需要和训练的还是逻辑思维。因此数学模型需要和训练的都基本是思维,但和纯数学区别的是数学模型只要抽象出数学问题的本质,进而建模,那之后不是非得自己一步步地演算、求解。

第二,数学模型最后的求解很多时候都不可避免地要用到计算机,比如像matlab,spss,linggo之类的数学软件。因此在学习过程中我们也得对这些软件有一定的了解和认识。这也就与平常的学习方式产生了区别,平常的数学方式因为其内容和讲授被限制在了平常的阶梯教室,但数学模型这一门课就必须通过自己的实践运用计算机来达到自己的目的。因此我们的学习方式就多了一项(通过计算机进一步了解数学模型的魅力)。

第三,因为数学模型是对现实问题的分析,因此老师在课堂上进行的授课通常会是老师引导、师生之间相互商量,因此课堂氛围一般都比较活泼,学习起来会相对的比较轻松。这样对学生的思维的开拓有很大的好处。因为我们在生活和学习的过程中都接触过很多问题的数学问题的模型,所以思考其整个过程及其影响因素就不会出现无从下手的感觉。相反的,在考虑问题的时候,我们更能提出自己的一些见解并能积极地与老师展开讨论。

第四,数学模型充分挖掘了我们的潜能,使我们对自己的能力有了新的认识,特别是自学能力得到了极大的提高,而且思想的交锋也迸发了智慧的火花,从而增加了继续深入学习数学的主动性和积极性。再次,它也培养了我们的概括力和想象力,也就是要一眼就能抓住问题的本质所在。我们只有先对实际问题进行概括归纳,同时在允许的情况下尽量忽略各种次要因素,仅仅抓住问题的本质方面,是问题尽可能简单化,这样才能解决问题。

第五,说到数学模型就必不可免得会联系到数学建模大赛。因为教育必须适应社会的需要,数学建模进入大学课堂,既顺应时代发展的潮流,也符合教育改革的需求,对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析和解决实际问题的意识和能力。数学建模大赛就是顺应这一要求,此外,数学建模还可以提高学生的竞赛能力,抗压能力,问题设计的能力,搜索资料的能力,计算机运用能力,论文写作与修改完善能力,语言表达能力,创新能力等科学综合素养。

第六,虽然我没参加过数学建模大赛,但是我曾去过数学建模的培训课程,通过老师的介绍,我知道数学建模对团队合作要求很高。一个人的能力毕竟有限,不能把什么都做得很好,即使少数人能方方面面都顾全到,那得多么的累,况且真正的数学建模大赛是对时间有限制的,不会让你不限时地让你做。正所谓‘三个臭皮匠,胜过诸葛亮’,可见思想与思想之间的交流产生的结果是多么的好,此外,每个人因为所处环境与经历还有专业的限制,每个人思考问题的角度都不尽相同。所以集结每个人的优点才会使自己的团队所做出来的结果更优秀。

以上只是我在这短短几个月对数学模型的浅显的认识,不用说大家肯定都只道数学模型更像是一个工具,所以说它的魅力作用及影响肯定不会仅仅是这些,有时现实生活中及各个学科都需要它来解决问题,所以这更要求我们要认真学好这门课。

通过上课我也有一点建议,就是希望老师可以让同学们结成小组再在课上可以讨论某几道题,这样可以加强同学们在这方面的能力,也可以提高课堂氛围。

篇21: 数学学习心得

今天是一个普通而不平凡的日子,枞阳县小学数学青年教师第一协作组成立了,它的成立有着重大意义,数学老师从此有了自己温馨的家,在这个家里我们可以一起分享快乐,一起解决困难,共同成长……能够成为其中一员是我最大的荣幸。

首先举行了成立仪式,然后是主题性的活动――研讨活动,我们一同观摩了两位老师的数学课,此次活动让我受益匪浅。

第一位是枞阳县城关小学丁萍老师的《加法交换律》。课的伊始以《朝三暮四》的故事拉近了与孩子们的距离,以聊天的形式进入本节课的学习,很自然。整节课她就像是学生的朋友而并非老师,让学生觉得很亲切。例如:当我们的小朋友回答了问题后,丁老师都会温柔地说句“谢谢!”简单而温馨的两个字,激起了孩子心中的波澜。作为老师是很少用这些简单却暖人心的字,但是它们的作用是非常大的。

第二位是石岭小学的许末香老师的《可能性》,学生浓厚的学习兴趣感染了我。许老师利用设疑、游戏等方式很好地抓住了学生的好奇心,最大限度地调动了学习兴趣。爱玩是孩子的天性,许老师很好地抓住这点,通过游戏的方式让孩子们在玩中掌握知识,在说中巩固知识。例如:在教授“一定”时,先通过摸球的游戏让学生感知“一定”,最后采用让学生独立说、集体说等形式说说原因,牢记知识。不同的形式调动了学生的积极性与好奇心,使得整节课学生的兴趣保持在高涨的状态。

两位教师的风格迥异,但是她们都用不同的形式让课堂“活”起来了,她们让孩子们都积极、主动地学习数学。每位老师的风格不同,但是我们可以采用不同的方式使我们的课堂“活”起来。我们可以在课堂教学中用礼貌性的语言,它犹如“兴奋的剂”调节学生的情绪,驱散学生的疲倦感,点亮学生的注意之灯,活跃课堂气氛。我们也可以利用游戏来教学,趣味游戏在儿童的成长过程中所起的作用是不可估量的,它好比强大的磁场,不仅吸引着更多的喜爱数学的同学们更好的学习数学,而且还能最大限度的激发学生的学习兴趣,充分调动学习的积极性,使学生由机械被动学习转变为创造主动学习。

篇22: 数学学习心得

《教育部高职高专规划教材:工程数学(建工类)》包括了线性代数、概率论、数理统计的基本内容,还介绍了MATLAB和SAS,2个软件系统,8个数学建模问题,18个数学实验,66个建工专业的例题与习题。

这本教材是“湖南省普通高等教育面向21世纪教学内容和课程体系改革计划”立项项目的成果之一.编者以“再设计”的思想,按照高职高专工科基础课内容“以应用为目的,以必需够用为度”的原则,全面审视了工程数学传统的教学内容,以及当代科学技术的发展水平和前景,提出了

[基础理论]+[数学建模]+[数学软件]三大模块有机结合的工程专科数学教学内容的设计方案,并以此编成了这本书.它有以下3个特点:

1.充分注意了工程数学基础理论的重要地位.全书以2/3的篇幅介绍了建工类高职高专学生所必需的线性代数、概率与数理统计方面的基础知识,仅删去一些烦琐的证明、神奇的运算技巧和少数几个概念.

2.强调“以培养创新精神和应用能力为重点”的指导思想.介绍了MATLAB和SAS 2个软件系统,讨论了8个数学建模问题,列出了18个数学实验,有66个例题或习题具有鲜明的建工类专业色彩,使学生能感受到工程氛围,注意基础知识用于工程实践,并能在建模训练中培养探索、创新能力.

3.内容处理新颖.本书在强调数学概念与基础理论的基础上,进行了6个方面的渗透:(1)渗透数学在工程技术中应用的实例;(2)渗透数学建模思想;(3)渗透数学实验方法;(4)渗透数学软件应用;(5)渗透经济效益意识;(6)渗透科学思维方法.这样,三大模块有机结合起来,互相渗透,融为一体,成为一个新的课程体系.这种体系以数学知识为基础,实际问题为背景,数学建模为手段,数学软件为工具,既有利于教学手段、教学方法的改革,更有利于学生素质的综合提高。

本书大部分内容在湖南城建高等专科学校试讲多年,编者做过大量的跟踪调查,召开座谈会、调查会,与会人数累计上百人次,问卷调查不下千人,收集“读书报告”(或数学学习心得)600多份.这些调查充分证明,本书的内容设计与讲述方法,有利于提高学生的应用能力,有利于培养学生的数学意识,而且在后续课程学习中,数学知识也基本够用.

这本书是为房屋建筑工程、道路桥梁、给水排水、规划设计、风景园林、工程造价、房地产管理等建工类专业的高职高专学生编写的,也可供其他专业的高职高专学生和教师参考.讲授本书内容约需50~70课时,目录中打“*”号的可作选学.

本书是湖南城建高等专科学校信息工程系数学教研室集体研究的成果.李天然副教授担任主编,张新宇、田罗生两位副教授担任副主编,参编人员分工如下:李天然编写第三、四、十一、十二章,张新宇编写第六、八章,田罗生编写第一、二章,龚卫明副教授编写第九、十章,龙韬讲师编写第五章,李俊锋讲师编写第七章.此外,何孟义教授、金庆华副教授、彭德权副教授、肖劲松讲师、郭冰阳讲师等也参加了本书大部分内容的教学研究. --此文字指本书的不再付印或绝版版本。

篇23: 数学学习心得

数学是一门非常有趣味的学科,也是最有逻辑性的学科。数学不存在似是而非,也不存在模棱两可,对就是对,错就是错。

以我目前的理解,我认为中学阶段数学有以下特点:一是数学的基础知识非常重要;这里的基础知识并不是低年级和简单知识,应该是所有前边掌握的知识都归到基础知识里边,因为,对于后来的知识来说,前边的都是基础。二是数学的趣味性非常强;我们生活中唯独离不开的就是数学,有些是在我们不经意间运用的数学知识。可以这么举例,凡是带数字的东西,都是在数学基础上派生或应用的事物。三是数学的关键在理解和应用;人类所有的知识都归结为一点,就是为我所用。很多人认为数学难、不容易学,其实是在最初接触数学的时候把它困难化了。数学中最直接的目的就是解决问题,解决困难,只要我们对这些问题、这些困难认识到位、理解透彻、方法得当、措施正确再加上我们认真和细致的推导,问题和困难都会迎刃而解。

我非常喜欢数学,特别喜欢立体几何和线性代数部分。我记得在高中开始的时候,我数学成绩并不是很理想,我对数学也是按部就班的学。在高二下学期的时候,因为一次考试让我对数学的兴趣陡然提升,数学成绩也快速提高。那次成绩虽然不是特别高,主要是因为我是全校里边唯一把90分选择题全部做对的一个,当时我们数学老师都认为不可思议,但是我做到了。也就从那一刻起,我自信心大涨,数学课听讲特别认真,老师讲课时注意力特别集中,数学题竟然不再乏味和无趣,在我眼里竟然都热闹和活灵活现起来。

如何学好数学呢?还是谈一下个人体会。

首先,我们对待数学要端正态度。数学学习和考试时面对的每一道题都是一个困难,都需要我们抱着高度认真负责的态度去应对,不能草率对待。我们要坚信,每一个数学题必定有正确的答案,必定有合理的解决方法,我们当时不会,肯定是还没有找到而已。

其次,要认真对待每一道题目。鉴于数学的特点,我们面对学习和考试中的每一道题目,都要确保:只要本人能理解明白这道题,只要认为个人完全可以把这道题做对,那么无论如何不能丢掉这道题目的分。

再次,要试着培养学习数学的兴趣点。生活中用到最多的就是数字,数学知识贯穿在生活中的时时刻刻和方方面面。人们从幼儿出生前就开始推算预产期;幼儿出生后要称体重、量身高,要化验血型参数;随后要定期防疫;要按照规定的年龄去幼儿园、上小学;期间身高、体重、衣服尺寸、鞋码等等都与数字有关;生活中更是离不开数学。卖油条的,要称斤两,按价格收款;超市里所有商品都有价格;我们的住址门牌号、楼座是为了确定方位;等等等等一切都离不开数学的因素。

最后,也是最重要的一点,要善于总结和不断自我提升。这一点不仅仅是对待数学,不仅仅是对待学习,对待生活和工作中的事物都一样。科学知识是在前人总结和归纳的基础上,融入新的东西,不断拓展延伸。作为我们个人来说,虽然我们不可能把一切东西全部学懂弄通,不可能面面俱到。但是我们可以在适当的时期和特定的情况下,尽量多的提升自我能力,迎接更多困难和挑战。

另外,有一点多加体会:个体的唯一性和事物的变化铁律。天下没有两片完全一样的树叶,当然天下也没有完全一样的两个人。每个人的身高、体重、年龄、血型、智商、生活环境、碰到的一切等等都是独一无二、无法复制的。这里重点说一下智商。人的智商只也是数学的一种体现,是人们为了研究人类在智力水平方面的认识,也可叫做工具,通过测量对不同题目的解答和最后的得分,反映一个人智力水平的高低。多年总结研究,人们发现智商极高(IQ在130分以上)和智商极低的人(IQ在70分以下)均为少数,智力中等或接近中等(IQ在80-120分)之间者约占全部人口的80%。也就是说,一个班级中50名学生的话,有40名学生是平均智商水平,有4-5名学生,智商略低,有4-5名学生智商略高。因此,大部分的学生智力水平并未明显差别,更多是后天的努力和学习的认真程度及学习方法。既然每一个人都有唯一性,那么我们不要和别人比较,分数和名次只是参考,关键是自己是否发挥了应有的能力和水平。本来我具备110分的能力,结果考了90分,20分的差距可能是粗心、误解、笔误等;本来110分的能力,考了115分,有5分是对你取得成绩的额外奖励,只是你不自知而已!分数多少还在其次,关键在我们是否能通过这一次考试真的总结并找到更适合自己的学习方法,这才是不断前进的动力源。

世界中,唯一不变的东西就是万事万物始终在变。当我们真的习惯于一种状态的时候,其实是最需要变化的时候,甚至是最危险的时候。羚羊只有不断的提高跑步的速度,才能确保性命无忧;而狮子、豹子只有不断提高速度和捕猎技巧才能捕获猎物。在变化中寻找平衡,在动态中保持稳定,挖掘潜力,提升自我,创造一个属于自己的精彩时空!

篇24: 数学学习心得

学习数学,重要的是理解,而不是像其它科目一样死记硬背。数学有一个特点,那就是“举一反三”。做会了一道题目,就可以总结这道题目所包含的方法和原理,再用总结的原理去解决这类题,收效就会更好。学习数学还有一点很重要,那就是从基本的下手,稳稳当当的去练,不求全部题都会做,只求做过的题不会忘,会用就行了。在做题的过程中,最忌讳的就是粗心大意。往往一道题目会做,却因粗心做错了,是很遗憾的。所以在做数学的时候,一定不要太急,要条理清楚的去计算,思考;这样速度可能会稍慢,但却可以使你不丢分。相比之下,我会采取稍慢的计算方法来全面分析题目,尽量做到不遗漏。不要过于着急,一步一个脚印的来,就一定会取得一想不到的效果。

数学不是靠做题做出来的。方法永远比单纯做题更重要。在讲课前,让学生先预习。用笔划出不懂的地方。在老师讲课时认真听讲,并在原先预习时不懂的地方加以解释,写好步骤。在课上,有选择的听和记老师所讲的例题。首先要听懂,然后再记下些重要的步骤和方法以及易错的地方和自己不容易想到的地方。还有,重要的定理和结论一定要熟记。课后要善于总结本堂课的内容,并在脑中梳理自己不懂的但经老师讲后才明白的例题的步骤,梳理1至2遍。课后要按时完成作业。一般先看老师的题目,看完后再自己动手做一遍。至于那些老师没有钩的题目,可选择性的做一些。若想的时间太久,就需要“放弃”了。数学的学习是一个积累和运用的过程,因此,学好数学的一个必要前提便是要注重平时的积累和运用。而在日常时对于数学的学习还是有许多方法的。

数学学习做题是极为必要的,因此做题之后的总结工作也是极为重要的,否则只能是杂而不精,无法将知识融会贯通,合理运用。总结工作具体而言我们可以这样做:

一,常备改错本,将自己做错的题目摘录下来,并将自己的错误做法和正确的作法一同记录下来,以此警惕自己;

二,正确把握考点,抓好典型,以此举一反三,我们在做题的过程中应该对题目考察的知识点有一定的认识,不可盲目做题,在此过程中我们可以提取一些具有某知识点的典型考法的题目,将其拟于一个标题之下记录,以此不变而应万变;

三,对于许多学有余力的同学而言,仅有以上两点,想要得到进一步的提高还是远远不够的,我们还需要对解题方法有一个思辩的理解,从许许多多的解法中选取适于自己的解题方式,而对于一些灵活的题目而言,我们还应该在做题中对许许多多的情况进行总结,以便在考试中将方法灵活运用,防止死做与定性思维的产生。

篇25: 数学学习心得

我从数学书上学了很多知识,我认识了很多图形、认识了钟表、学会了物体的分类、还学会了20以内的进位加法等等。

我喜欢用凑十法做题,既简单又省时间。比如3+8中,3可以分成1和2,那么8加2等于10,10再加1就等于11,这样结果就很快算出来了。是不是很简单啊?

数学知识真奇妙,每个数字多了一个字表达的意思就不一样了。比如:“几”和“第几”就是不同的。在班级里我们一组有6个人,我在这一组中是第三个。所以说,“6”代表“几”表示人数时,是指有很多个的,有6个人,而“3”代表“第几”表示人数时仅指一个。

自从上了一年级,学习了数学以后,我发现数字的奥妙很多很有趣,我已经能用奇妙的数学知识解决很多问题了呢!

篇26: 数学学习心得

我是一名毕业生,现已以优异的成绩考入了重点学校重点班,就我的奥数学习谈谈自己的经验与各位即将面临的学生分享。

1.认真预习,掌握一定的解题方法。记得我五年级寒假时,学校组织六年级学生进行“华杯赛”辅导,我也跟着去听课。但是一星期之后测验,我的成绩落在后面。老师鼓励我,让我在假期里好好复习,争取开学下一次选拔获得好成绩。在寒假里,我把老师讲过的四章内容的例题仔细地看了一遍,然后和妈妈一起,对所有的题目认真地进行了讨论,归纳整理出了几种不同的题目类型,并基本掌握了它们的解答方法。所以,到六年级的时候,数学书上的很多知识其实我已经提前学习了。超前学习使我学习起来感觉更轻松了,也更投入了。

2.带着兴趣去学。俗话说,兴趣是最好的老师。你只要对一件事产生了兴趣,就会为它付出更多的时间和精力。记得五年级的时候,有一天,科学课的老师给我一叠《钱江晚报》的剪报,我发现上面有一些关于数字游戏的小资料。比如“扫雷”、“推箱子”这类需要推理的游戏,还有“紫色小精灵”这样有关光线的方向和角度的游戏。我兴奋地做起了这些数学小游戏。除了这些益智游戏,我还看过《意料之外的绞刑》、《从惊奇到发现--数学的悖论》等数学课外读物,还读过数学趣味读物--《数学乐园》。这些书开阔了我的视野,锻炼了我的数学思维能力,使我在一些重要的考试中,能在较短的时间里解答出20道奥数题,获得好的成绩。现在想来,感兴趣地阅读,给了我不少的帮助。

3.不怕麻烦,多解题,多思考。学数学,一定量的解题训练必不可少。记得在五年级的暑假里,我一个人提前把一本六年级《数学奥赛水平测试卷》里面的题做了2/3。当我碰到不会做的题目时,我就参考一下答案。解题、思考,再解题,再思考,我全身心地投入,那段时间真是很紧张的。

4.多运动,保持良好的心态。虽然学习时间很紧张,但是我很注意运动。课间出去活动一下,呼吸呼吸新鲜空气,做作广播操;晚上吃了饭先活动一会儿,然后再做作业,如果做完作业时间还早,我就会下楼去打打羽毛球。我和同年级中比我优秀的同学相比,在几次重要考试中我的发挥更稳定一点,可能和我经常活动,能保持良好的心态也有一定的关系。

篇27: 数学学习心得

今天上午,我们全园老师又一次接受了《蒙氏数学》的培训。通过前段自己从了解到熟练领悟到了许多,从而也解开了自己在《蒙氏数学》教学实践中的种种困惑,使自己对此教材有了更深刻地认识,对数学形式也有了全新的理解,现将学习后的心得体会谈一谈:

数学是一门基础的学科,同时也广泛地应用到生活的各个领域。幼儿数学教育,是帮助幼儿建立与发展初步的数概念。理解初步的数量关系与空间形式,从而促进幼儿思维能力发展的一项工作。

首先,我对开始部分的走线与线上游戏有了新的认识,最开始学习的时候,我对走线和线上游戏有些混淆,带孩子们走线时就开始玩游戏,使得这个环节不但未起到稳定情绪的作用,反而使孩子们的情绪更加浮燥起来,一发而不得收拾。通过观摩和学习,我才逐渐意识到走线和线上游戏并不时一回事,走线是教师带领孩子们一边听着舒缓的音乐一边进行脚跟对脚尖的平衡行走,待孩子们静下心来后再组织孩子们根据本次教学活动的内容玩不同的游戏,而且上线的时候,要组织孩子们一排排有秩序地进行。在经过一次又一次地训练后,孩子们已经养成了良好的走线和线上游戏的常规。

其次,对每次活动的教学内容我都要认真的去备课,对于教具及孩子的学具、操作册、练习册的使用和操作都要熟练。刚接触时,由于自己学得不够扎实,准备的也不够充分,使得在活动中出现问题不能及时的辉映,有的甚至囫囵吞枣,在这种情况下,我决心要先把教材读懂,于是就利用空余时间把每个教学活动和与之相关的材料弄明白,就这样,渐渐地我对教材熟悉了,上起来也越来越得心应手了,孩子们掌握的也越来越好了。但对于一些内容还是不清楚,如:守恒问题、加减法板的应用、货币的应用等。在我对这些内容正处于迷茫的时候,幼儿园又组织我们进行了《蒙氏数学》的培训,这真是及时雨,我把这些困惑与老师请教,在老师的讲解和点拨下,我终于明白了这些内容的教法。我会尽快地将所学至用到实践中,同时,我也有信心将这套好的教材在自己不断学习、积累中运用得更灵活、更能发挥出它的教育价值。

篇28: 数学学习心得

万丈高楼平地起。学好高中数学,首先得打好初中数学基础。假设你在初中的时候对二次函数了解的还不够,在高中的时候还不知道指数函数和对数函数。

对于初中数学来说,没有什么难度,大多是记忆和简单理解,需要能够购买一本数学基础知识概论类的书籍,或者下载一些初中数学知识概论。

有了初中数学的良好基础,你会发现,高中数学虽然有点难,但不是很复杂。首先要把握好课堂,教师的讲课一般可以从最基础的讲起,只要仔细听,一般不会出问题,要好好学习,课前有预习,课后巩固。

在这里,大师走进门,修行在个人。除了课堂上老师的谆谆教导外,课后请老师做好辅导资料。

这里的目的是加深知识理解点,另一个是问题,实现光车是熟悉的道路,读1万本书不如旅行1万英里是这个原因,不过要注意循序渐进,不需要做太困难的问题,问题的数量不宜太多。

两个笔记本。一个是习题集,它关注的是容易应用一些重要知识点的问题,以及你经常犯错误或理解不足的问题。当然,如果你想获得高分,有必要记住一些困难的问题和一个多解类型的问题。

另一个是对知识点的理解和总结,以及对常见方法和解决问题方法的总结。这里的一种很好的形式是组织知识地图。

记得直接在课堂上做笔记,所以它不容易专注于理解知识点,课后会浪费大量的时间,但往往效率低下,你可以在课堂上做的笔记,如果写在这里的本质,不需要编写一些基本的书。

数学不难,理解是第一位的,做题来辅助,技巧收囊中,高分终易得。

数学学习心得

高二数学学习心得

数学新课标学习心得

数学的学习心得

初中数学学习心得

数学研究性学习心得

三年级数学学习心得

初一数学学习心得

六年级数学学习心得

《小学数学新课标》学习心得

《数学学习心得作文(锦集28篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档