欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

《有理数的乘除法》 教学设计

时间:2025-11-05 07:34:32 其他范文 收藏本文 下载本文

以下是小编整理的《有理数的乘除法》 教学设计,本文共20篇,欢迎阅读分享。

篇1:《有理数的乘除法》 教学设计

《有理数的乘除法》 教学设计

【教学目标】

1.经历探索有理数乘法法则的过程,发展归纳、猜测等能力;

2.能运用法则进行有理数乘法运算;

3.能用乘法解决简单的实际问题.

【对话探索设计】

〖探索1

(1)商店降价销售某种产品,若每件降5元,售出60件,问与降价前比,销售额减少了多少?

(2) 商店降价销售某种产品,若每件提价-5元,售出60件,与提价前比,销售额增加了多少?

(3)商店降价销售某种产品,若每件提价a元,售出60件,问与提价前比,销售额增加了多少?

〖探索2

(1)登山队攀登一座高峰,每登高1km,气温下降6℃,登高3km后,气温下降多少?

(2)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高3km后,气温上升多少?

(3)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高-3km后,气温有什么变化?

〖探索3

(1)2(2)-2(3)2(-3)=___;(4)(-2)(-3)=____;

(5)30=_____;(6)-30=_____.

〖法则归纳

两数相乘,同号得______,异号得_______,并把________相乘.

任何数同0相乘,都得______.

〖旧课复习

1.满足什么条件的两个数互为倒数?0.2的倒数是多少?7.29的倒数呢? 的倒数呢?

2.满足什么条件的两个数互为相反数? 0.2的相反数是多少? 呢?

〖探索4

在有理数范围内,我们仍然规定:乘积是1的两个数互为倒数.

-0.2的倒数是多少?-7.29的倒数呢? - 的倒数呢?

〖练习

P38.练习

〖作业 P45习题1,2,3.

【补充练习】

1. -1的倒数是1还是-1?为什么?

2. 的倒数是______;0的倒数________.

3. _____________的两个数互为相反数._______的两个数互为倒数.

若a+b=0,则a、b互为_____数,若ab=1,则 a、b互为_____数.

4.计算:(1)(-6)4=______=____;

(2) - =_________=_____.

5.在数-5,1,-3,5,-2中任取3个相乘,哪3个数相乘的积最大? 哪3个数相乘的积最小?

1.4.1 有理数的乘法(2)

【教学目标】

1.巩固有理数乘法法则;

2.探索多个有理数相乘时,积的符号的确定方法.

【对话探索设计】

〖探索1

1.下列各式的积为什么是负的?

(1)-2345

(2)2(-3)4(-5)6789(-10).

2.下列各式的积为什么是正的?

(1)(-2)(-3)456

(2)-2345(-6)78(-9)(-10).

〖观察1

P38. 观察

〖思考归纳

几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?

(见P38.思考)

与两个有理数相乘一样,几个不等于0的有理数相乘,要先确定积的符号,再确定积的'绝对值

〖例题学习

P39.例3

〖观察2

P39. 观察

〖练习

P39.练习

〖作业

P46.7.(1),(2)(3),8,9,10,11.

〖补充练习

1.(1)若a = 3,a与2a哪个大?若 a= 0 呢? 又若 a=-3呢?

(2)a与2a哪个大?

(3)判断:9a一定大于2a;

(4)判断:9a一定不小于2a.

(5)判断:9a有可能小于2a.

2.几个数相乘,积的符号由负因数的个数决定 这句话错在哪里?

3.若ab,则acbc吗?为什么?请举例说明.

4.若mn=0,那么一定有( )

(A)m=n=0.(B)m=0,n0.(C)m0,n=0.(D)m、n中至少有一个为0.

5.利用乘法法则完成下表,你能发现什么规律?

3 2 1 0 -1 -2 -3

3 9 6 3 0 -3

2 6 2 2

1 3 2 1

-1

-2

-3

6.(1)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为-a,你认为哪家商店该彩电的降价的百分率大?为什么?

(2)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为1.2a,你认为哪家商店该彩电的降价的百分率大?为什么?

1.4.1 有理数的乘法(3)

【教学目标】

1.熟练有理数乘法法则;

2.探索运用乘法运算律简化运算.

【对话探索设计】

〖探索1

你知道乘法的交换律和结合律吗?你会用字母表示它们吗?在有理数范围内,它们仍然成立吗?

〖阅读理解

乘法交换律和结合律(见P40)

〖探索2

下列计算若按顺序依次相乘怎样算? 用运算律为什么能简化运算?

(1)25 (2) - .

〖探索3

运用运算律真的能节省时间吗?分两个大组,比一比:

计算 (-198)( ).

〖练习1

运用乘法交换律和结合律简化运算:

(1)1999125 (2) -1097 ( ).

〖探索4

1.每千克大米1.60元,第一天购进3590千克,第二天又购进6410千克,两天一共要付多少钱?你知道这道题有哪两种算法吗?哪一种简便?

2.如右图,你会用两种方法求长方形ABCD的面积吗?

〖阅读理解

(乘法对加法的)分配律(见P41)

〖例题学习

P41.例5

〖作业

P41.练习

〖补充作业

1.计算(注意运用分配律简化运算):

(1)-6(100- ); (2) (-12).

3.下列各式的积是正的还是负的?为什么?

(1) 2(-3)(-4)56789(-10);

(2)2(-3)4(-5)(-6)789(-10);

(3) 2(-3)4(-5)(-6)0789(-10);

4.下列各式的积(幂)是正的还是负的?为什么?

(1)(-3)(-3)(-3)(-3)

(2) ;

*(3) .

5.运用乘法交换律和结合律简化运算:

(1)-98 (-0.6); (2)-1999 (- ) ( )

【补充练习】

1.某地气象统计资料表明,高度每增加1000米,气温就降低大约6℃.现在地面气温是37℃,则在10000米的高空的气温是多少?

2.运用分配律化简下列的式子:

(1)例3x+9x+x (2)13x-20x+5x;

=(3+9+1)x

=13x;

(3)12-9 (4)-z-7z-8z.

3.如右图,用两种方法表示长方形ABCD的面积.

4.〖议一议如图,正方形ABCD的边长为(a+b),小明认为它的面积可以记为 ;小芳发现它的面积还可以记为 ;小勇进一步得出结论:无论a、b为何值,式子 = 总是成立的.你认为他们的看法正确吗?为什么?

篇2:《乘除法两步应用题》教学设计

《乘除法两步应用题》教学设计

教学过程:

一、复习:

1.口算:

5×7=  45÷9= 63÷7= 18÷9=

32÷4= 56÷7= 27÷9= 6×8=

72÷9= 8×3=  35÷7= 64÷8=

9×4=  24÷3= 54÷9= 21÷7=

2.把32平均分成8份,每一份是多少?

3.56里面有几个7?

二、探究新知

1.出示第59页的例题4(课件)

(1)先认真观察第一幅图的画面,用自己的话说一说画面的内容。

(2)再认真观察第二幅图的画面,“我们这么多人,要坐多少辆呢?”这里的.“我们”是指什么人?

(3)把这两幅画面连起来编一道应用题。(小组合作)

(4)小组讨论:应该如何解决这一道题?

(5)汇报讨论结果。

重点强调:应用题解答完后,要记住写单位名称和答语。

(6)独立思考:怎样列综合算式?然后在练习本上完成。

三、练习

完成教科书第60页练习十三的第1题

(1)学生先自己看图,口头编应用题

(2)学生独立分析列式解答,教师鼓励学生列综合算式

(3)全班讲评(讲评时要学生说出每一步算式的意思)

完成教科书第60页练习十三第2题

(1)让学生自己看图,口头编应用题,

(2)说出这一道题目的已知条件和问题,

(3)独立分析列式解答

(4)教师讲评,讲评时要学生说出每一步算式的意思,为什么要添上括号?

四、全课总结:

通过这节课的学习,你想说些什么?

篇3:分数乘除法应用题教学设计

分数乘除法应用题教学设计

您现在正在阅读的《分数乘除法应用题》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《分数乘除法应用题》教学设计教材分析:分数连除和乘除复合应用题这节课的教学是在前面学过的分数乘除一步应用题的基础上发展起来的分数连除应用题和乘除复合应用题,所以在设计复习导入部分作了全面的练习和知识点的概括。本节课的重点是:找准题中的单位1和数量关系。难点是:掌握两类应用题的结构特点,明确数量关系。

在设计授新课部分,为了避免学生觉得枯燥,我谈话引入本校情况,并对两道例题做了更改。在实施教学过程中,注意到适当的引和放,以培养学生分析问题和解答问题的能力。

本节课计算是次,分析列式是主,所以在设计练兵场1、2时,我做了明确要求,男生做1题,女生做2题,这样学生实际完成了1道题,但在同桌互查和集体订正的过程中就自然列出了另一题的算式。

巩固练习阶段,我分成了两个层次,一是基础练习。设计时题目要求只列式不计算,是为了达到节时高效的目的。二是变式和拓展练习。题目中只有1个单位1,目的在于和前面的题目和解法形成对比,使学生养成认真分析数量关系的好习惯。

小结时,师引导学生说内容,说方法,并强调喜欢哪种用哪种,目的在于让学生在课后优化算法。当然在教学的实施过程中还有许多不足,还望各位老师批评指正,以提高我的教学水平。

教学目标:

1、掌握分数连除应用题和乘除复合应用题的结构特点与数量关系,学会分析解答相关应用题。

2、培养学生分析问题和解答问题的能力。

教学重点:找准每一步的单位1和数量关系。

教学难点:掌握两类应用题的结构特点,找准数量关系。

教学过程:

一、复习导入

1、口算天天练。(课件示题,指名口答)

渗透个别算式的知识点。

2、看谁先找到题中的单位1。指名口答

3、分析分率句,口头列式解答。

教师小结:题目中已知了分率和单位1的量,求分率的对应量要用乘法计算;题目中已知了分率和分率的对应量,求单位1的量,要用除法计算。

4、谈话引入新课。

东华小学的`校园文化生活是丰富的,我们学校也不错。课前老师还对我校部分兴趣小组的人数情况作了了解,来一起看。(指名读题)

问:在这道题中,有几个单位1?这两个单位1的量是已知还是未知?

这就是今天我们要学习的分数乘除法应用题的其中一个类型。(板书课题)

二、新授课

您现在正在阅读的《分数乘除法应用题》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《分数乘除法应用题》教学设计1、教学例4。

1.)师引导学生分析题目中的数量关系。

2.)我们还可以用线段图来表示题中的数量关系,生说画法,师画线段图。

3.)师引导,学生确定每一步的算法。

师小结:刚才我们用连除的方法解答了题目中有两个单位1并且都未知时,求其中一个单位1的量的这类问题。

4.)你愿意根据题中的数量关系用列方程的方法解答这道题吗?(指名板演)

2、完成练兵场1中的题目。(要求男生做第1题,女生做第2题,然后同桌交换检查,最后集体订正。)

更让老师感兴趣的是:我校舞蹈队人数、英语组人数及我班学生总数三者有个巧合。想知道吗?

3、教学例5。

1.)出示例题,齐读题目。

2.)师引导学生分析题目中的数量关系。

3.)我们怎样用线段图来表示题中的数量关系呢?师引导学生完成线段图。

4.)师引导,学生确定每一步的算法。

师小结:刚才我们用乘除混合计算的方法解答了题目中有两个单位1并且一个已知,一个未知时,求其中未知的一个单位1的量的这类问题。

5.)谁还会用列方程的方法解答这道题?(指名板演)

4、完成练兵场1中的题目。集体订正。

三、巩固练习

1、基本练习。只列式,不计算

要求先独立做,然后集体订正。

下面几道题和前面的稍稍有点不同,敢挑战吗?

2、变式练习。

3、拓展练习。

四、小结

今天我们学习了题目中含有两个单位1的应用题,解答这类题我们可以借助线段图分析题中的数量关系,可以用算术方法的连除或乘除混合运算的方法计算,还可以用列方程的方法解答。你喜欢哪种就用哪种。

五、布置作业

练习十一的2、3、6题。

篇4:分数乘除法应用题教学设计

分数乘除法应用题教学设计

教学目标:

(1)使学生掌握分数除法应用题的结构及数量关系,学会分析解答分数法除应用题,发展学生思维能力。

(2)引导学生充分自主探索,分组讨论,观察分析和比较,在自主学习中探究,在探究中发展提高。

(3)通过过师生交流总结,让学生获得学习数学的成功。让学生养成认真审题、积极思考的良好学习习惯。

教学重点:能用方程正确解答分数除法应用题。

教学难点:确定单位“1”、分析数量关系

教学过程:

以前我们学过了分数应用题,这节课我们继续研究分数应用题,(板书:分数应用题)。

没学新课之前老师要考考大家,可以吗?(生答略)

1.说说下面各题中应该把哪个看作单位“1”,数量之间相等关系怎样?

①吃了一筐白菜的2/5。

②一本书的价格正好是一支钢笔价格的2/5。

③小明体内的水分占体重的4/5。

2.小明的体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?

把答案讲给同学们听,说一说你怎样想的。

1、教学例1

同学们已经掌握了解了分数乘法应用题的方法那么同学们想不想利用这个方法去解答分数除法应用题呢?这节课我们就来研究分数除法应用题怎样解答好不好?

①小明体内所含的水分是28千克,占体重的4/5,他的体重是多少千克?

仔细观察看一看有没有什么发现?

独立做,做完组内交流,组长分好工,做好记录,看看哪个小组方法多,你们小组准备由谁发言,用几句话表达自己小组的方法。

小结:用方程解比较容易,因为它的解题思路与我们以前学的分数乘法应用题的思路是一致的,也是根据题中的叙述的条件明确把谁看作单位1,然后根据一个数乘分数的意义列出等量关系式,由于单位1是未知的,要设成x,列出方程进行解答。这也是我们本节课所要掌握的已知一个数的'几分之几是多少求这个数的应用题用方程解的方法。

2、教学例2。

师:同学们研究出了解答分数除法应用题的方法,那么你愿意不愿意用它帮助一下遇到困难的小明呢?

②小明买一条裤子是75元,是一件上衣的2/3,一件上衣是多少钱?

(看题)(独立完成后说说自己的想法)

谁愿意帮助小明?在本上写出你的答案,谁想把你的答案写在黑板上?解:设上衣的价格为x元。

x×2/3=75

x=75÷2/3

x=75×3/2

x=112。5

说一下你的想法

3、比较例1、例2有什么不同。

师:例1、例2虽然存在着不同指出,但是解题方法是类似的。我们再做两道题看看是不是这样。(投影出示做一做1、2)。请两名同学在投影片上做,其他同学在本上做,做后请同学叙述怎样做的,为什么这样做。

小结:通过以上的学习,同学们觉得分数应用题在解答时的关键是什么?

四、练习

1、判断下列说法是否正确。

①白兔只数是黑兔只数的2/5,单位“1”是黑兔,数量关系式:黑兔的只数×2/5=白兔的只数。

②黑兔只数的2/5是白兔的只数,白兔的只数是单位“1”()。

③苹果树占果园总面积的4/7,果园总面积是单位“1”,苹果树占地面积×4/7=果园的面积。()

2、①林庄果园占地面积是840公顷,苹果树果园总面积的3/4,苹果树占地多少公顷?

②林庄苹果树占地360公顷,占果园总面积的3/4,果园总面积有多少公顷?

3、新风小学去年植树320棵,相当于今年植树棵数的4/5。今年共植树多少棵?

五、总结全课

师:好了,同学们,这节课我们学习了列方程来解已知一个数的几分之几是多少,求这个数的应用题,学好这部分知识对于提高我们解决问题的能力,发展我们的思维有着重要的作用,同学们表现得非常好,希望你们继续努力。

篇5:《小数乘除法》优秀教学设计

《小数乘除法》优秀教学设计

教学目标:

1、使学生理解并掌握由小数点向左移动引起小数大小变化的规律;能应用规律正确口算一个小数除以10、100、1000的商。

2、在探索规律的过程中,培养学生初步的观察,比较,归纳,概括的能力和主动探索数学规律的兴趣。

教学重点:改写时应该怎样想

教学难点:改写时应该怎样想,如果位数不够,要用0补足。

教学过程:

一、复习

二、教学小数除以整数

1、学生共同研究相同的对象。

(1)、出示例5:21.5乘除以10、100、1000各是多少?

(2)学生用计算器计算21.510、100、1000的商

指名说说计算结果,并照下面的样子板书:

21.510 =2.15

21.5100 =0.215

21.51000 =0.0215

(3)引导观察、比较:每次除得的商与被除数21.5比较,小数点的位置有什么变化?

把一个小数除以10,就要把这个小数的小数点向什么方向移动几位?把一个小数除以100、1000呢?

(4)充实感性材料:以小组为单位,每组任意找2-3个小数,分别把它除以10,100,1000,看看小数点位置的变化情况。并在小组里交流。

(5)归纳:通过计算,你认为我们刚才的'发现的规律对不对?谁能用一句话说说你们发现的规律?

2、指导完成练一练

第1题:学生应用发现的规律直接写出得数。

注意:在移动小数点的位置时,如果数里原有位数不够,要用0补足,要指导学生怎样补0,弄清楚补在哪里,补几个0。如果小数点向右移动,原来数的小数部分缺少几位,可以在小数末尾添几个0;如果小数点向左移动,原来数的整数部分位数不够,可以在整数部分的最高位的前面补0。

练一练第2题:学生独立完成

再在小组里说说你是怎样想的。

练一练第3题:学生独立完成后说说算法和结果。

三、应用小数点位置的移动规律,进行计量单位的换算。

1、?教学例6

(1)、口答米=( )千米、5000米=( )千米

在这些简单的问题里体会只要除以1000,把小数点向左移动三位。

(2)、出示例6中的表格,让学生说说从表中能知道什么?

求喷气式飞机每秒飞行多少千米,只要怎么办?

(3)提问:500米=( )千米可以怎样想?先在小组里互相说说。

从较大单位的数量改写成较小单位的数量要乘进率和向右移动小数点,推理出较小单位的数量改写成较大单位的数量应该除以进率和向左移动小数点。

(4)组织交流,并明确:要把500米改写成以千米作单位的数,可以用500除以1000;计算500除以1000时,可以直接把500的小数点向左移动三位。

你是怎样把500的小数点向左移动三位的?愿意把你的好办法介绍给大家吗?

2.教学试一试

完成后说说你是怎样移动小数点的?

适当指导改写30米的写法

巩固练习

1、学生独立完成练习十二第4、5两题。

指导完成练习十二第6题

学生读题后提问:通过读题,你知道了什么?有谁知道为什么同样的物体在月球上会轻很多呢?适当介绍相关的知识。

3,指导完成练习十二第7题

分析数量关系,明确解决问题的思路。根据每10吨铁矿石可以炼铁6.05吨能求出什么问题?

四、全课总结(略)

教学后记

教学中要注意逆向思考,全面地掌握规律。反过来,这个规律还可以怎么说?(引导学生说说如果把一个小数的小数点分别向左移动一位、两位、三位就相当于这个小数分别除以多少?)

篇6:《分数乘除法应用题》教学设计

《分数乘除法应用题》教学设计

教材分析:分数连除和乘除复合应用题”这节课的教学是在前面学过的分数乘除一步应用题的基础上发展起来的分数连除应用题和乘除复合应用题,所以在设计复习导入部分作了全面的练习和知识点的概括。本节课的重点是:找准题中的单位“1”和数量关系。难点是:掌握两类应用题的结构特点,明确数量关系。

在设计“授新课”部分,为了避免学生觉得枯燥,我谈话引入本校情况,并对两道例题做了更改。在实施教学过程中,注意到适当的“引”和“放”,以培养学生分析问题和解答问题的能力。

本节课计算是次,分析列式是主,所以在设计“练兵场1、2”时,我做了明确要求,男生做1题,女生做2题,这样学生实际完成了1道题,但在同桌互查和集体订正的过程中就自然列出了另一题的算式。

巩固练习阶段,我分成了两个层次,一是基础练习。设计时题目要求只列式不计算,是为了达到节时高效的目的。二是变式和拓展练习。题目中只有1个单位“1”,目的在于和前面的题目和解法形成对比,使学生养成认真分析数量关系的好习惯。

小结时,师引导学生说内容,说方法,并强调喜欢哪种用哪种,目的在于让学生在课后“优化算法”。当然在教学的实施过程中还有许多不足,还望各位老师批评指正,以提高我的教学水平。

教学目标:1、掌握分数连除应用题和乘除复合应用题的结构特点与数量关系,学会分析解答相关应用题。

2、培养学生分析问题和解答问题的能力。

教学重点:找准每一步的单位“1”和数量关系。

教学难点:掌握两类应用题的结构特点,找准数量关系。

教学过程:

一、复习导入

1、口算天天练。(课件示题,指名口答)

渗透个别算式的知识点。

2、“看谁先找到题中的单位‘‘1‘‘。”指名口答

3、分析分率句,口头列式解答。

教师小结:题目中已知了分率和单位“1”的'量,求分率的对应量要用乘法计算;题目中已知了分率和分率的对应量,求单位“1”的量,要用除法计算。

4、谈话引入新课。

东华小学的校园文化生活是丰富的,我们学校也不错。课前老师还对我校部分兴趣小组的人数情况作了了解,来一起看。(指名读题)

问:在这道题中,有几个单位“1”?这两个单位“1”的量是已知还是未知?

这就是今天我们要学习的分数乘除法应用题的其中一个类型。(板书课题)

二、新授课

1、教学例4。

1.)师引导学生分析题目中的数量关系。

2.)我们还可以用线段图来表示题中的数量关系,生说画法,师画线段图。

3.)师引导,学生确定每一步的算法。

师小结:刚才我们用连除的方法解答了题目中有两个单位“1”并且都未知时,求其中一个单位“1”的量的这类问题。

4.)你愿意根据题中的数量关系用列方程的方法解答这道题吗?(指名板演)

2、完成“练兵场1”中的题目。(要求男生做第1题,女生做第2题,然后同桌交换检查,最后集体订正。)

更让老师感兴趣的是:我校舞蹈队人数、英语组人数及我班学生总数三者有个巧合。想知道吗?

3、教学例5。

1.)出示例题,齐读题目。

2.)师引导学生分析题目中的数量关系。

3.)我们怎样用线段图来表示题中的数量关系呢?师引导学生完成线段图。

4.)师引导,学生确定每一步的算法。

师小结:刚才我们用乘除混合计算的方法解答了题目中有两个单位“1”并且一个已知,一个未知时,求其中未知的一个单位“1”的量的这类问题。

5.)谁还会用列方程的方法解答这道题?(指名板演)

4、完成“练兵场1”中的题目。集体订正。

三、巩固练习

1、基本练习。只列式,不计算

要求先独立做,然后集体订正。

下面几道题和前面的稍稍有点不同,敢挑战吗?

2、变式练习。

3、拓展练习。

四、小结

今天我们学习了题目中含有两个单位“1”的应用题,解答这类题我们可以借助线段图分析题中的数量关系,可以用算术方法的连除或乘除混合运算的方法计算,还可以用列方程的方法解答。你喜欢哪种就用哪种。

五、布置作业

练习十一的2、3、6题。

篇7:《小数乘除法复习课》教学设计

教学内容:人教版小学数学教材五年级上册第113页第1题及相关练习。

教学目标:

(一)知识与技能

归纳小数乘除法的计算方法与整数乘除法的相同点与不同点,归纳其计算法则,并用其解决问题。

(二)过程与方法

通过对比与归纳的方法总结计算法则,根据实际需要,引导学生灵活选择解决问题的策略,掌握解决问题的方法,获得正确结果。

(三)情感态度和价值观

运用计算知识解决生活中的问题,提高解决问题的能力,养成良好的计算习惯。

目标解析:小数乘除法的复习分为两部分:小数乘除法的计算法则和运用小数乘除法解决实际问题。由于小数乘除法和整数乘除法在计算方法上有着非常密切的联系,这里把整数乘除法与相应的小数乘除法进行对比复习,使学生在比较两者计算方法的联系和区别的基础上,进一步巩固小数乘除法的计算法则。解决问题的复习要求学生结合具体问题情境,根据数量关系,综合运用小数乘除法的知识和技能解决生活中的问题。

教学重点:归纳小数乘除法的计算法则。

教学难点:在具体情境中,综合运用小数乘除法的知识和技能解决生活中的问题。

教学准备:课件。

教学过程:

一、谈话导入

本学期我们学习了哪些有关计算的知识?(小数乘法与小数除法)

现在我们就一起来计算。

二、对比练习,归纳方法

1.课件出示教材第113页第1题第(1)小题。

一边计算一边思考:左右两边的算式分别有什么共同点与不同点?在计算时,它们有什么相通的地方?

让学生先独立完成两组习题,给予学生独立的'空间回顾小数乘除法的计算法则,利用已学的知识进行独立计算,发现自己还存在哪些方面的问题,为后面的针对性复习提供依据。边练习边思考两组习题的异同点,通过对比更容易总结出计算小数乘除法时需要注意的问题。

2.汇报结果。

(1)小数乘法

①说说上述习题的异同点。

因数异同点:几道习题的因数数字都是一样的,但小数的位数不一样。

积的异同点:积的数字也是相同的,但小数的位数不相同(积的小数的位数与因数有关,因数一共有几位小数,积就有几位小数。)

②说说你是怎样计算2.7×0.03的?

教师根据学生的发言进行板书。

学生:把因数的末尾对齐列竖式,再按整数27×3的方法计算,然后数出因数一共有三位小数,那么积也有三位小数,积的小数数位不够,在前面用0补足,最后点上小数点,即得0.081(如下图所示)。

(2)小数除法

①说说上述习题的异同点。

被除数与除数的异同点:每道题的被除数数字相同,除数的数字也相同,但小数的位数不同。

商的异同点:商的数字相同,商的小数位数有的相同,有的不相同。

②为什么式子各不相同,有的商却是相同的呢?

24÷4与2.4÷0.4的商是相同的,因为被除数与除数同时扩大相同的倍数,商不变。

③说说你是怎样计算2.4÷6的?

教师根据学生的发言进行板书。

学生:整数部分不够商1要商0,商的小数点要与被除数的小数点对齐。

说说你是怎么计算2.4÷0.06的?

教师根据学生的发言进行板书。

学生:把除数0.06扩大100倍,转化成整数,根据商不变性质,被除数2.4也要扩大100倍,小数点向右移动两位,被除数数位不够,添0补足(为240)。

板书:

通过分析两组习题的异同,让学生从整体上把握小数乘除法在计算时需要注意的问题,再通过具体的习题的讲解,让学生进一步巩固:小数乘法时,积的小数位数是两个因数的小数位数的和;被除数一定要和除数扩大相同的倍数,商不变;商的小数点要和被除数的小数点对齐;不够商1要商0;位数不够要添0补足等。

三、学以致用,解决问题

小数乘除法在生活中有着广泛的应用,现在我们就用所学的知识去解决问题吧。

1.课件出示教材第113页第1题第(2)小题,请学生说说发现的信息与问题。

2.分析问题,确定数量关系。

要想知道购买苹果的总价,得知道苹果的单价与数量,数量是已知的,为3千克。要想知道苹果的单价,还要知道橙子的单价,根据“10元买了2.5kg的橙子”可以求出橙子的单价。

橙子的总价÷橙子的数量=橙子的单价;

橙子的单价×1.6=苹果的单价;

苹果的单价×3=苹果的总价。

3.列式解答。

此题是应用刚复习的小数乘除法的知识来解决生活中的实际问题,使学生感到学习小数乘除法的意义所在,并建立系统的观点,学会观察、分析、解决实际问题,并在解决问题的过程中帮助学生分析问题,确定数量关系。

四、练习巩固,深化认知

1.课件出示教材第115页练习二十五第2题。

(1)指名上黑板板演,其他同学在练习本上列算式计算。

(2)汇报评价。

2.课件出示教材第115页练习二十五第3题。

(1)复习乘法交换律与乘法结合律。

(2)学生弄清题目的要求与给出的条件后独立完成。

(3)汇报评价。

3.课件出示教材第115页练习二十五第5题。

(1)读题,请学生说说获得的信息与问题。

直接信息:年降水量可达2033.9mm。

隐性信息:一年有12个月。

问题:平均每月降水量大约有多少毫米?

(2)说出数量关系。

年降水量÷12=月降水量。

(3)学生独立解答,结果可以保留一位小数。

练习二十五第2题是小数乘除法的计算练习,让学生进一步熟练计算技能;第3题是运用运算定律,观察算式,利用其中的等量关系,在方框内填数,在圆圈内填符号,巩固相关的运算定律,培养学生的运算直觉;第5题是配合小数乘除法运算,应用数学知识解决简单实际问题的练习,并复习求结果的近似数的知识,根据实际需要,引导学生灵活选择解决问题的策略,掌握解决问题的方法,获得正确的结果。

五、全课总结

通过本节课的学习,你巩固了哪些知识?

再一次完整地梳理一遍小数乘除法的运算法则,并将课中接触到的其他知识进行回顾,加深学生的印象,使学生学会系统地归纳知识。

篇8:9的乘除法优秀教学设计

教学内容:课本第47.48页。

教学目标:

1、引导学生经历形成“9的乘法”的一系列活动,理解9的乘法含义,培养学生的探究能力,推算能力,归纳编撰能力。

2、熟练掌握因数为9的乘除法。

3、结合生活实践,培养学生收集信息,处理信息的能力及问题解决能力。

【设计思路】

《9的乘,除法》教材先通过数射线“小兔跳格”直观展示9的乘法意义,其后探索,推算一组9的乘法算式,并尝试归纳,编撰乘法口诀,最后让学生通过解决生活实际问题理解9的乘,除法的关系,巩固9的乘除法,循序渐进,逐步生成。

这是最后一个涉及乘法口诀教学的内容,学生已有了大量的知识基础与学习经验,具备一定的能力,掌握一些技巧。

结合上述特征,本堂课采用“学生自主学习为主,教师指点辅导为辅”的教学策略,充分发挥学生的主体性,在感知的基础上,通过探寻规律,合编口诀;自寻方法,熟记口诀;手指操等途径,真正掌握本课知识。同时结合生活实际,培养学生解决实际问题的能力,分析与表达的能力。整堂课充分体现学生是主体,教师是组织者,引导者,参与者和点拨者。

【教学过程】

一、迁移与感知

复习3,6 的乘法口诀。

2,3,6,9之间的相互关系。

(1)回忆:3的乘法于6的乘法有什么关系

(2)3的3倍是( )

3、揭示课题

〖复习3,6的乘法口诀,回忆3和6之间的相互关系,为学习9的乘法做好铺垫。

二、自主探究 建构新知

(一)主动建构 “9的乘法”

观察与思考 媒体出示 “主题图”让学生观察,思考,感知。

操作与感悟

学生独立完成:画弧线,填数,写出几个几。

交流描述 强化乘法含义 写乘法算式

想一想:这一组乘法题有什么规律 (让学生充分地说)

编一编:同桌合编9的乘法口诀。

看看想想:9的乘法口诀中有几句是新学的 1分钟时间读背,同桌之间互相抽背。

试一试:P48/5

算一算:练习册P23/2(1-18)

游戏:九的乘法口诀的手指操。

(二)互动推出“9的除法”

1、写出下列乘法口诀的“兄弟姐妹”.

四九三十六 七九( )

( )×( )=( ) ( )×( )=( )

( )×( )=( ) ( )×( )=( )

( )÷( )=( ) ( )÷( )=( )

( )÷( )=( ) ( )÷( )=( )

2、根据乘法口诀写除法算式。(完成后交流核对)

六九五十四 三九( ) ( )九七十二

( )÷( )=( ) ( )÷( )=( ) ( )÷( )=( )

( )÷( )=( ) ( )÷( )=( ) ( )÷( )=( )

三、巩固练习内化新知

1、p48题2 (读题,怎样看图 怎样想 怎样列式 )

板书:想:6个9是几 9的'6倍是几

6×9=54(个) 答:装满六盒一共需要54个苹果。

2、p48题3 (读题,怎样想 怎样算 )

板书:想:7个9是几 9的7倍是几

7×9=63(颗)答:它们一共背了63颗红果。

3、p48题4

(摘录信息:在图片下方写上单价)

同桌合作编题(贵多少元 一共多少元 几倍 买3盆水仙和一盆玫瑰共多少元 等等)

交流并板书

一盆水仙花9元,一盆玫瑰花45元,买两盆花需要多少钱

9+45=54(元) 答:买两盆花需要54元。

一盆水仙花9元,一盆玫瑰花45元,一盆玫瑰花的价钱比水仙花贵多少钱

45-9=36 (元) 答:一盆玫瑰花的价钱比水仙花贵36元。

一盆水仙花9元,一盆玫瑰花45元,一盆玫瑰花的价钱是一盆水仙花的几倍

45÷9=5 答:一盆玫瑰花的价钱是一盆水仙花的5倍。

d,买3盆水仙花和一盆玫瑰花共需要多少元

3×9+45=72(元) 答:买3盆水仙花和一盆玫瑰花共需要72元。

〖将数学知识与现实生活结合。解答时先放手让学生自主尝试,培养学生自我学习的能力,锻炼其思维。题4改编为一道开放性的题,抓住这一素材对前面学的“求差”“求和”等应用题进行复习。

……

4、作业练习册P23余下部分

五、体验收获 激励评价

篇9:有理数乘法教学设计

有理数乘法教学设计

设计理念

1、注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。教学中要注重让学生通过自己的活动来获取、理解和掌握这些知识。

2、本课注意降低了对运算的要求,尤其是删去了繁难的运算。注重使学生理解运算的意义,掌握必要的基本的运算技能。

3、数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。

教学目标1、知识与技能:使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性。

2、过程与方法:培养学生观察、归纳、概括及运算能力。

3、情感态度与价值观:让学生感知数学来源于生活,培养学生学习数学的兴趣。

重点有理数乘法的.运算。

难点有理数乘法中的符号法则。

方法合作交流课型

教学过程

教学环节教学内容

一、复习引入1.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)

2.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)

3.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?

(负数问题,符号的确定)

篇10:《有理数的乘除法》的教案

一、教学目标

知识与技能:

①使学生在了解乘法的基础上,掌握有理数乘法法则并初步掌握有理数乘法法则的合理性。

②会进行有理数乘法运算。

③了解有理数的倒数定义,会求一个数的倒数。

过程与方法:

①经历探索有理数乘法法则,发展,观察,归纳,猜想,验证的能力以及培养学生的语言表达能力。

②提高学生的运算能力

情感与态度:通过合作学习调动学生学习的积极性,激发学生学习数学的兴趣,提高学生认识世界的水平。

二、教学重点和难点

重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;

难点:有理数乘法中的符号法则.

三、教学过程

(一) 创设问题情景,激发学生的求知欲望,复习旧知,导入新课

前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题:甲水库的水位每天升高3㎝,乙水库的水位每天下降3㎝。4天后,甲、乙水库各自水位的总变化量是多少?

如果用正号表示水位的上升、用负号表示水位的下降。那么,4天后,甲水库水位的总变化量是:3+3+3=34=12㎝

乙水库水位的总变化量是:(-3)+(-3)+(-3)+(-3)=(-3)4=-12㎝引出课题:有理数的乘法

(二)学生探索新知,归纳法则

学生分为四个小组活动,进行乘法法则的探索

设蜗牛现在的位置为点O,若它一直都是沿直线爬行,而且每分钟爬行2cm,问:

(1)向右爬行,3分钟后的位置?

(2)向左爬行,3分钟后的位置?

(3)向右爬行,3分钟前的位置?

(4)向左爬行,3分钟前的位置?

(学生思考后回答) 要确定蜗牛的位置需要知道:距离和方向。

为了区分方向:我们规定向右为正,向左为负;为区分时间:我们规定现在的时间前为负,现在的时间后为正。

(1) 情形一:蜗牛在现在位置的右边6㎝处。式子表示为:

(+2)(+3)=+6

数轴表示如右:

(2)情形二:蜗牛在现在位置的左边6㎝处。式子表示为: (-2)3=-6

数轴表示如右:

(3)情形三:蜗牛在现在位置的左边6㎝处。式子表示为: (+2)(-3)=-6

数轴表示如右

(4)情形四:蜗牛在现在位置的右边6㎝处。式子表示为: (-2)(-3)=+6

数轴表示如右:

仔细观察上面得到的四个式子:

(1)(+2)(+3)=+6

(2)(-2)3=-6

(3)(+2)(-3)=-6

(4)(-2)(-3)=+6

根据你对乘法的思考,你得到什么规律?

(三)学生归纳法则

a.符号:在上述4个式子中,我们只看符号,有什么规律?

(+)(+)=( ) 同号得

(-)(+)=( ) 异号得

(+)(-)=( ) 异号得

(-)(-)=( ) 同号得

b.任何数与零相乘,积仍为 。

(四)师生共同用文字叙述有理数乘法法则。

归纳:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积仍为0。

(五) 运用法则计算,巩固法则。

例1计算:(1) (-5) (2) (-7) (3) (-3) (4)(-3) (- )

引导学生观察、分析例1中(4)小题两因数的关系,得出:有理数中仍然有:乘积是1的两个数互为倒数.

例2. 见课本P30页

(六)分层练习,巩固提高。

(1)计算(口答):

① ② ③ ④

⑤ ⑥ ⑦ ⑧

四.课题小结

(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0。

(2)如何进行两个有理数的乘法运算: 先确定积的符号,再把绝对值相乘,当有一个因数为零时,积为零。

五.作业布置

课本P30页练习1,2,3.

1.4.2 有理数的乘法

(第2课时)

一、教学目标:

1、经历探索多个有理数相乘的符号确定法则.

2、会进行有理数的乘法运算.

3、通过对问题的探索,培养观察、分析和概括的能力.

二、教学重点和难点

学习重点:多个有理数乘法运算符号的确定

学习难点:正确进行多个有理数的乘法运算

三、教学过程

(一)、学前准备

请同学们先合作做个游戏: 用9张扑克牌(可以替代的纸片也行)全部反面向上放在桌上,每次翻动其中任意2张(包括已翻过的牌),使它们从一面向上变为另一面向上,这样一直做下去,看看能否使所有的牌都正面向上?

结果怎么样,你能明白其中的数学道理吗?

(二)、探究新知

1、观察:下列各式的积是正的还是负的?

234(-5),

23(-4)(-5),

2(3) (4)(-5),

(-2) (-3) (-4) (-5).

思考:几个不是0的数相乘,积的'符号与负因数的个数之间有什么关系?

分组讨论交流,再用自己的语言表达所发现的规律:

几个不是0的数相乘,负因数的个数是 偶数 时,积是正数;负因数的个数是 奇数 时,积是负数.

2、利用所得到的规律,看看翻牌游戏中的数学道理。

(三)、新知应用

1、例题3,(30页)例3,

请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?你能看出下列式子的结果吗?如果能,理由 几个数相乘,如果其中又因数为0,积等于0

例:7.8(-8.1)O (-19.6)

师生小结:几个数相乘,如果其中又因数为0,积等于0

2、练习

计算

1)、58(7)(0.25) 2)、

四、课堂小结

1、通过这节课的学习,我的感受是:几个数相乘,如果其中又因数为0,积等于0

五.作业布置

一、选择

1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )

A.一定为正 B.一定为负 C.为零 D. 可能为正,也可能为负

2.若干个不等于0的有理数相乘,积的符号( )

A.由因数的个数决定 B.由正因数的个数决定

C.由负因数的个数决定 D.由负因数和正因数个数的差为决定

3.下列运算结果为负值的是( )

A.(-7)(-6) B.(-6)+(-4); C.0 (-2)(-3) D.(-7)-(-15)

4.下列运算错误的是( )

A.(-2)(-3)=6 B.

C.(-5)(-2)(-4)=-40 D.(-3)(-2)(-4)=-24

二、计算 1、(-7.6) 2、.

1.4.3 有理数的乘法

(第3课时)

一、教学目标:

1、熟练有理数的乘法运算并能用乘法运算律简化运算.

2、让学生通过观察、思考、探究、讨论,主动地进行学习.

3、培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程.

二、教学重点和难点

教学重点:正确运用运算律,使运算简化

教学难点:运用运算律,使运算简化

三、教学过程

一、学前准备

1、下面两组练习,请同学们选择一组计算.并比较它们的结果:

1)(-7)8 8(-7)

[(-2)(-6)]5 (-2)[(-6)5]

2)(- )(- ) (- )(- )

[ (- )](-4) [(- )(-4)]

3)

请以小组为单位,相互检查,看计算对了吗?

二、探究新知

1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流.

2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?

3、归纳、总结

乘法交换律:两个数相乘,交换因数的位置,积 相等 .

即:ab= ba

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 相等

即:(ab)c= a(bc)

乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加

即:a(b+c)=ab+bc

三、新知应用

1、例题

用两种方法计算 ( + - )12

2、看谁算得快,算得准

1)(-7)(- ) 2) 9 15.

四、课堂小结

怎么样,这节课有什么收获,还有那些问题没有解决?

乘法交换律:两个数相乘,交换因数的位置,积 相等 .

即:ab= ba

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 相等

即:(ab)c= a(bc)

乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加

即:a(b+c)=ab+bc

五.作业布置

1、(-85)(-25) 2、(- )15(-1 );

3、( ) 4、(7).

5、-9(-11)+12(-9) 6、

1.4.4 有理数的除法

(第4课时)

一、教学目标:

1、理解除法是乘法的逆运算;

2、掌握除法法则,会进行有理数的除法运算;

3、经历利用已有知识解决新问题的探索过程.

二、教学重点和难点

教学重点:有理数的除法法则

教学难点:理解商的符号及其绝对值与被除数和除数的关系

三.教学过程

(一)、学前准备

1、师生活动

1)、小明从家里到学校,每分钟走50米,共走了20分钟.

问小明家离学校有 1000 米,列出的算式为 50 20=1000 .

2)放学时,小明仍然以每分钟50米的速度回家,应该走 20 分钟.

列出的算式为 1000 =20

从上面这个例子你可以发现,有理数除法与乘法之间的关系互为逆运算

(二)、合作交流、探究新知

1、小组合作完成

比较大小:8(-4) 8(一 );

(-15)3 (-15)

(一1 )(一2) (-1 )(一 )

再相互交流、并与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:1)、除以一个不等于0的数,等于 乘这个数的倒数.

2)、两数相除,同号得 正 ,异号得 负 ,并把绝对值相 加减 ,0除以任何一个不等于0的数,都得 0 .

2,运用法则计算:

(1)(-15)(-3); (2)(-12)(一 ); (3)(-8)(一 )

3,师生共同完成P34例5.

(三)1、练习:P35

2、P35例6、例7、

3、练习: P36第1、2题

四.课堂小结

通过这节课的学习,你的收获是:

1)、除以一个不等于0的数,等于 乘这个数的倒数.

2)、两数相除,同号得 正 ,异号得 负 ,并把绝对值相 加减 ,0除以任何一个不等于0的数,都得 0 .

五.作业布置

1、计算

(1)(+48)(+6); (2) ;

(3)4(-2); (4)0(-1000).

2、计算.

(1)(-1155)[(-11)(+3)(-5)]; (2)375

1、P39第1、2、3、4题

1.4.5有理数的除法

(第5课时)

一、教学目标:

1、学会用计算器进行有理数的除法运算.

2、掌握有理数的混合运算顺序.

3、通过探究、练习,养成良好的学习习惯

二、教学重点和难点

1、学习重点:有理数的混合运算

2、学习难点:运算顺序的确定与性质符号的处理

三、教学过程

(一)、学前准备

1、计算

1)(0.0318)(1.4) 2)2+(8)2

(二)、探究新知

1、由上面的问题1,计算方便吗?想过别的方法吗?

2、由上面的问题2,你的计算方法是先算 乘除 法,再算 加减 法。

3、结合问题1,阅读课本P36P37页内容(带计算器的同学跟着操作、练习)

4、结合问题2,你先猜想,有理数的混合运算顺序应该是 先算乘除法,再算加减法 。

5、阅读P36,并动手做做

三、新知应用

1、计算

1)、186(2) 2)11+(22)3(11)

3)(0.1) (100)

四.课堂小结:请你回顾本节课所学习的主要内容:

1、有理数的混合运算顺序应该是 先算乘除法,再算加减法 。

2、计算器的使用。

五、作业 1、P39第7题(4、5、7、8)、第8题

篇11:有理数的乘除法的说课稿

有理数的乘除法的说课稿

题目:有理数的乘除法所用教材:新人教版七年级上册本次说课我共分成教材分析、教学方法与手段、教学过程分析和几点思考四部分,具体内容如下:

一、教材分析:

(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节, “有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。所以本节课的学习具有一定的现实地位。

(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。

(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下

1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。

2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。

3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。

4、教学重点:会进行有理数的乘除法运算。

5、教学难点:有理数乘除法法则的探索与运用。确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。而确定重难点是根据新课标的要求,结合学生的'学情而确定的。

二、教学方法和手段:

根据本节课的内容特点及学生的学情,我选择的教学方法是引导探索、小组合作、效果反馈的教学方法。为了提高课堂的教学容量,增加实际问题的直观性,我选用多媒体辅助教学手段。关于学法:本节课里我主要指导学生采用了自主探索、合作交流、自我反思的学习方法,我想这样更能有效的培养学生学习数学的能力,更好的培养学生数学地思考问题。

三、教学过程分析:

本课共6课时,重点是有理数乘除法法则的教学,下面我重点说有理数乘法法则的教学。整体的教学程序包括:情景创设、提出问题;引导探索、归纳结论;知识运用、加深理解;变式练习、形成能力;回顾与反思、纳入知识系统;布置作业;板书设计七部分。设计七部分。

篇12:有理数的乘乘除法练习试题

1、计算:(1)(2)

(3)(4)1.6×

2、若ab>0,a+b<0,则a、b这两个数

A.都是正数B.都是负数C.一正一负D.不能确定

3、四个互不相等的整数的.积是9,那么这四个整数的和等于()

A.27B.9C.0D.以上答案都不对

4、计算:(1)

(2)

5、计算:(1)

(2)

6、计算:(1)(2)

7、计算:

8、计算:(1)

(2)

9、下列各组数中,互为倒数的是()

A.1和0B.C.-4和4D.-0.25和-4

10、计算:

11、下列说法正确的是()

A.倒数等于本身的数是1B.正数的倒数比自身小

C.任何有理数都有倒数D.一个非零数与其倒数之积为1

12、计算:

13、计算:

14、计算:

15、计算:

16、计算(1)(2)

(3)(4)

篇13:《有理数除法》教学反思

《有理数除法》教学反思

笔者于本年度暑假期间参加了县教研室组织的暑期培训,其一项目是磨课,课题是《有理数除法》,通过磨课,眼界大开,受益匪浅,同时也产生了几点看法,特记之,以供切磋。

一、关于课题引入

细细地揣摩这部分教材,不难发现教材编写者的意图:小学中已经学习了除法与乘法的关系,明确知道它们互为逆运算,所以,本节课开门见山,直接利用这个关系,通过一组具体的乘除法运算,验证了这种关系在有理数范围内也同样适用,然后通过小帖示,将这种关系一般化,整个设计过程体现了建构思想,同时也渗透了从特殊到一般的数学思想方法,可操作性、针对性是很强的。

在磨课的过程中,有些教师在如何引入这一节课时颇费心思,设计了许多异彩纷呈的情境:利润问题、统计问题等等,这些情境的引入无疑开阔了学生们的.视野,激发了其学习兴趣,加深了对有理数除法应用的认识,但也应看到,如果没有课前充分的预习、酝酿,这会增加学生对所学知识进一步认识的难度——很多学生还没转过神来,就被带到了下一个学习环节里去了。有点喧宾夺主的意味了。

二、有理数除法则(二)的给出

学生通过自主探究、交流、展示,师生整合后得出法则(一):“除以一个不等于0的数,等于乘这个数的倒数,用式子表示为a÷b=a×”之后,不少教师主张给出一个题组,如①(—8)÷(—4);②(—8)÷(—);③8÷(—4);④8÷(—);⑤(—8)÷4;⑥(—8)÷;⑦0÷(—8).让学生根据刚刚得到的法则进行运算,然后观察算式结构与结果特点,总结出有理数除法则(二):“两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个有理数,都得0”。这样处理,与新课标理念并无相悖之处,但教材编写者为什么就没有采用这种方法呢?仔细推敲来,笔者以为上述处理有不妥之处:淡化了有理数乘法与除法之间的内在联系——互逆关系。如此一来,两种算法则的推导就变得相对独立了,有另起炉灶之嫌,破坏了有理数运算体系的有机性,同时对本小节内容来讲,这样处理,使知识变得松散,重点不突出,且占用了较多的课堂时间。

三、完成上述两个法则的认识之后,可放手让学生尝试解决例5,教师通过巡视,发现解题的差异性,并予以展示,通过对比,引导灵活运用两个法则进行运算,使运算简便,然后进行强化训练,熟悉有理数除法运算,这样,层层递进,有利于减缓学生练习的盲目性,比一股脑儿塞给他们要好一点。

篇14:有理数的乘除法训练试题及答案

关于有理数的乘除法训练试题及答案

一.教学内容:

有理数乘除法

1.有理数的乘法法则及符号法则;

2.有理数的乘法运算律及其应用;

3.有理数的除法法则,倒数的意义;

二.知识要点:

1.有理数的乘法法则:两数相乘同号得正,异号得负,绝对值相乘。任何数与0相乘,积为0

2.有理数乘法运算步骤:(1)先判断积的符号(2)再把绝对值相乘。

有理数的乘法符号法则多个有理数相乘时积的符号由负因数个数决定,当负因数个数为奇数时,积为负;当负因数个数为偶数时,积为正,积的绝对值等于各个因数的绝对值的积。

3.乘法交换律:ab=ba

乘法结合律:a(bc)=(ab)c

乘法分配律:a(b+c)=ab+ac

4.有理数的除法法则:除以一个数等于乘以这个数的'倒数;

倒数的意义:乘积是1的两个数互为倒数;

三.重点、难点、考点:

重点:有理数乘除法;

难点:运算律的灵活运用;

考点:有理数乘除法是中考的必考内容,一般是融合在其他题目中考查,有时以填空,选择或简答题的形式出现。有理数乘除混合运算,还可以开放性、`探索性题目出现。

【典型例题】

例1.计算:(1)5×(-4)

(2)(-4)×(-9)

(3)(-0.6)×(-5)

(4)×(-)

解:(1)5×(-4)=-(5×4)=20

(2)(-4)×(-9)=4×9=36

(3)(-0.6)×(-5)=0.6×5=3

(4)×(-)=-(×)=-

指导:(1)(4)题是异号两数相乘,先确定积的符号为“-”,再把绝对值相乘;(2)(3)题是同号两数相乘,先确定积的符号为“+”,再把绝对值相乘。

例2.计算:(1)(-4)×9×(-2.5)

(2)×(-48)

解:(1)(-4)×9×(-2.5)=(-4)×(-2.5)×9=10×9=90

(2)()×(-48)

=×(-48)+×(-48)-×(-48)

=(-12)+(-16)-(-8)

=-20

指导:(1)用乘法交换律和结合律,(2)用乘法分配律。在运用乘法对加法的分配律时,不要漏乘某个加数或弄错符号,要细心。

例3.-3的倒数是()

A.B.C.-3D.3[来源:]

解:A

指导:倒数概念以及有理数除法运算是中考命题热点。求一个数的倒数,用1除以这个数的商即是。注意:负数的倒数是负数,0没有倒数。

例4.计算(-16)÷5×

解:(-16)÷5×=(-16)××=-

指导:这是一道乘除混合的同级运算题,没有括号,按照自左到右的顺序运算,不应先算5×。

例5.中百超市推出如下优惠方案:

(1)一次性购物不超过100元,不享受优惠;

(2)一次性购物超过100元,但不超过300元一律九折;

(3)一次性购物超过300元一律八折;某人两次购物分别付款80元,252元,如果他将这两次所购商品一次性购买,则应付款()。

A.288元B.332元C.288元或316元D.332元或363元

解:C

指导:本题渗透了分类讨论思想。当252元的实际价值是在300元以内时的实际价值应为:252÷0.9=280元,故应付款(280+80)×0.8=288(元);当252元的实际价值是在300元以上时的实际价值应为:252÷0.8=315(元),故应付款(315+80)×0.8=316(元)

【思想方法小结】

乘除法运算中同学们要善于“转化”,除法转化为乘法,复杂的转化为简单的,异号转化为同号。

篇15:有理数的除法教学反思

通过自己在初一的数学有理数的除法教学过程中,有那么一点感触,特和大家一起分享一下。

有理数的除法是学生已经掌握有理数加法、减法、乘法的基础上进行的,这些运算为学习有理数除法做了铺垫。其教学内容包括:1、有理数除法法则;2、倒数的求法;3、熟练的应用法则进行计算。新课程标准告诉我们初中数学是要让学生经历知识的产生过程,在学生的自主探索和合作交流中掌握知识,形成技能,发展智力。在数学活动中形成数学思想,学会数学的学习方法。因此在本课时中,我主要体现一下几点:

首先,注重知识的迁移,做到以旧代新。 有理数的除法和小学数学的除法的计算方法及其相似。不同之处只是符号问题。所以在新课教学中先复习“小学的除法是乘法的逆运算”和“除以一个数等于乘以这个数的倒数”,再告诉学生这些在有理数范围内同样适用。运用新旧知识的迁移,降低了教学难度,使学生能舒畅的根据乘法算式写出除法算式,为下面探索法则铺平道路。同时也让学生感受以旧代新这种便捷的学习方法。

其次,注重自主探索,体验知识的产生过程。 本课在教学过程中,注重学生主体意识的培养,鼓励学生用自己喜欢的方法进行探索学习。

篇16:有理数的除法教学反思

有理数的除法法则是怎么样的?前几节课采用的探索、讨论、验证的手段,是本节课继续学习的研究方法.总体上这节课我自我感觉还是良好的,现就几个方面做一下自我反思:

1.引入新课:学生在小学时已熟知乘法与除法互为逆运算,而且也熟悉“除以一个数等于乘以它的倒数的运算”的法则,所以我对新课的引入就是结合小学以及初一前面所学的有理数的乘法,用乘法引出除法,这种设计既复习了前面有理数的乘法,又合理的引出有理数的除法,这个环节中,学生不仅要回答计算结果,而且要说明理由,即叙述所依据的法则内容,另外因为题目简单,所以我应机会全部留给学习有困难的学生,让他们来回答并适当鼓励,以增强他们的自信.这点我觉得是做得比较好。

2.在讲解例题的时候,我采用这种讲法,给出三个例题,先让学生练着解题,三个题目都解出来以后再引导学生得出解题的步骤,这不失为一种好方法,可以更好地提高学生总结的'能力,这样通过自己的总结也可以印象更加深刻点。所以这种教学思想以后我将试着多用在教学过程中。而且还要注意道例题讲解时,要注意板书规范,体现除法法则的应用步骤.要一边板书,一边讲述法则的内容,可不要求书写每一步的依据,但应做到心中有数.

3.在探讨“除以一个数等于乘以这个数的倒数”这个知识点上,我通过提出两个问题来引导学生讨论从而得出。这个过程同学们的讨论还是比较激烈的,最后讨论结束后,我做得不大好的地方就是没让同学自己说出讨论的结果,没让学生自己分析两个等式左右两边的区别,而是由我自己说出来,体现不出学生的自主性,这点是以后教学中必须要注意的一个问题,在最大程度上以学生为主体,教师起到引导的作用。

总之,我认为数学的教学活动必须建立在学生的认识发展水平和已有的知识经验基础上,本节课正是考虑和分析到了这一事实,向学生提供了充分从事数学活动的机会,帮助学生在自主探索和合作交流的过程中真正理解和掌握有理数的除法法则,并在活动中获得了一定的数学活动经验。

篇17:有理数的除法教学反思

《有理数的除法》是学生已经掌握有理数加法、减法、乘法的基础上进行的,这些运算为学习有理数除法做了铺垫。其教学内容包括:1、有理数除法法则;2、倒数的求法;3、熟练的应用法则进行计算。新课程标准告诉我们初中数学是要让学生经历知识的产生过程,在学生的自主探索和合作交流中掌握知识,形成技能,发展智力。在数学活动中形成数学思想,学会数学的学习方法。因此在本课时中,我主要体现一下几点:

首先,注重知识的迁移,做到以旧代新。 有理数的除法和小学数学的除法的计算方法及其相似。不同之处只是符号问题。所以在新课教学中先复习“小学的除法是乘法的逆运算”和“除以一个数等于乘以这个数的倒数”,再告诉学生这些在有理数范围内同样适用。运用新旧知识的迁移,降低了教学难度,使学生能舒畅的根据乘法算式写出除法算式,为下面探索法则铺平道路。同时也让学生感受以旧代新这种便捷的学习方法。

其次,注重自主探索,体验知识的产生过程。 本课在教学过程中,注重学生主体意识的培养,鼓励学生用自己喜欢的方法进行探索学习。遵循知识的发展规律和学生的认知规律—由易到难,重视学生的亲身经历。 学生以小组合作的方式通过观察一组算式,找出被除数、除数、商的符号特征和绝对值的特点,进而猜测、推理出一般的除法算式的特点,最后归纳总结除法法则。学生亲历了知识产生的过程,将知识内化。

再次,注重分层教学,让不同层次的学生学有所得。 为了让不同的学生在数学上有不同的发展,一是课堂提问时根据不同难度的问题选择不同的学生;是通过设计有梯度的习题满足不同层次的学生;三是小组活动时,发挥优生的作用,采取一帮一的方法使学困生有所收获。尽量做到全面兼顾,提高课堂实效。 最后,注重突出重点,提高课堂效率。 教学中突出重点,突破难点。让学生在自主探索中弄清除法的两种运算方法:

1、在除式的项和数字不复杂的情况下直接运用除法法则求解,同时遵循“符号优先”原则,即先确定符号,再把绝对值相除。

2、在多个有理数进行除法运算,或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算法则解决问题。

篇18:有理数的除法教学反思

《有理数的除法》是学生已经掌握有理数乘法的基础上进行的。教学内容包括:1、有理数除法法则;2、倒数的求法;3、熟练的应用法则进行计算。新课程标准告诉我们初中数学是要让学生经历知识的产生过程,在学生的自主探索和合作交流中掌握知识,形成技能,发展智力。在数学活动中形成数学思想,学会数学的学习方法。因此在本课时中,我重要体现一下几点:

一、注重知识的迁移,做到以旧代新。

有理数的除法和小学数学的除法的计算方法及其相似。不同之处只是符号问题。所以在新课教学中先复习“小学的除法是乘法的逆运算”和“除以一个数等于乘以这个数的倒数”,再告诉学生这些在有理数范围内同样适用。运用新旧知识的迁移,降低了教学难度,使学生能舒畅的根据乘法算式写出除法算式,为下面探索法则铺平道路。同时也让学生感受以旧代新这种便捷的学习方法。

二、注重自主探索,体验知识的产生过程。

本课在教学过程中,注重学生主体意识的培养,鼓励学生用自己喜欢的方法进行探索学习。遵循知识的发展规律和学生的认知规律—由易到难,重视学生的亲身经历。 学生以小组合作的方式通过观察一组算式,找出被除数、除数、商的符号特征和绝对值的特点,进而猜测、推理出一般的除法算式的特点,最后归纳总结除法法则。学生亲历了知识产生的过程,将知识内化。

三、注重分层教学,让不同层次的学生学有所得。

为了让不同的学生在数学上有不同的发展,一是课堂提问时根据不同难度的问题选择不同的学生;二是通过设计有梯度的习题满足不同层次的学生;三是小组活动时,发挥优生的作用,采取一帮一的方法使学困生有所收获。尽量做到全面兼顾,提高课堂实效。

四、注重突出重点,提高课堂效率。

教学中突出重点,突破难点。让学生在自主探索中弄清除法的两种运算方法:1、在除式的项和数字不复杂的情况下直接运用除法法则求解,同时遵循“符号优先”原则,即先确定符号,再把绝对值相除。2、在多个有理数进行除法运算,或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算法则解决问题。

在这节课中不足之处有:由于学生的层次差异,少数学习有困难的学生明显觉得信心不足,要注意和他们交流、帮助他们把复杂的问题化为简单的问题;同时没有很好的把握教学时间,最后的拓展题没有时间展开讲解,有理数除法的应用没完成;教学中没有极大可能的调动学生的积极性。

篇19:有理数的乘除法过关训练试题和答案

有理数的乘除法过关训练试题和答案

一. 教学内容:

有理数乘除法

1. 有理数的乘法法则及符号法则;

2. 有理数的乘法运算律及其应用;

3. 有理数的除法法则,倒数的意义;

二. 知识要点:

1. 有理数的乘法法则:两数相乘同号得正 ,异号得负,绝对值相乘。任何数与0相乘,积为0

2. 有理数乘法运算步骤:(1)先判断积的符号(2)再把绝对值相乘。

有理数的乘法符号法则多个有理数相乘时 积的符号由负因数个数决定,当负因数个数为奇数时,积为负;当负因数个数为偶数时,积为正,积的绝对值等于各个因数的绝对值的积。

3. 乘法交换律:ab=ba

乘法结合律:a(bc)=(ab)c

乘法分配 律:a(b+c)=ab+ac

4. 有理数的除法法则:除以一个数等于乘以这个数的倒数;

倒数的意义:乘积是1的两个数互为倒数;

三. 重点、难点、考点:

重点:有理数乘除法;

难点:运算律的 灵活运用;

考点:有理数乘除法是中考的必考内容,一般是融合 在其他题目中考查,有时以填空,选择或简答题的形式出现。有理数乘除混合运算,还可以开放性、`探索性题目出现。

【典型例题】

例1. 计算:(1)5(-4)

(2)(-4)(-9)

(3)(-0.6)(-5)

(4) (- )

解:(1)5(-4)=-(54)=20

(2)(-4)(-9)=49=36

(3)(-0.6)(-5)=0.65=3

(4) (- ) =-( )=-

指导:(1)(4)题是异号两数相乘,先确定积的符号为-,再把绝对值相乘;(2)(3)题是同号两数相乘,先确定积的符号为+,再把绝对值相乘。

例2. 计算:(1)(-4)9(-2.5)

(2)( )(-48)

解:(1)(-4)9(-2.5)=(-4)(-2.5)9=109 =90

(2)( )(-48)

= (-48)+ (-48)- (-48)

=(-12)+(-16)-(-8)

=-20

指导:(1)用乘法交换律和结合律,(2)用乘法分配律。在运用乘法对加法的分配律时,不要漏乘某个加数或弄错符号,要细心。

例3. -3的倒数是 ( )

A. B. C. -3 D. 3[来源:]

解:A

指导:倒数概念以及有理数除法运算是中考命题热点。求一个数的倒数,用1除以这个数的商即是。注意:负数的倒数是负 数,0没有倒数。

例4. 计算(-16)5

解:(-16)5 =(-16) =-

指导:这是一道乘除混合的同级运算题,没有括号, 按照自左到右的顺序运算,不应先算5 。

例5. 中百超市推出如下优惠方案:

(1)一次性购物不超过100元,不享受优惠;

(2)一次性购物超过100元,但不超过300元一律九折;

(3)一次性购物超过300元一律八折;某人两次购物分别付款80元,252元,如果他将这两次所购商品一次性购买,则应付款( )。

A. 288元 B. 332元 C. 288元或316元 D. 332元或363元

解:C

指导:本题渗透了分类讨论思想。当252元的`实际价值是在300元以内时的实际价值应为:2520.9=280元,故应付款(280+80)0.8=288(元);当252元的实际价值是在300元以上时的实际价值应为:2520.8=315(元),故应付款(315+80)0.8=316(元)

【思想方法小结】

乘除法运算中同学们要善于转化,除法转化为乘法,复杂的转化为简单的,异号转化为同号。

【模拟试题】(答题时间:60分钟,满分100分)

一. 选择题(每题4分,共20分)

1. 一件标价为250元的商品,若该商品按八折销售,则该商品的实际售价是( )

A 180元 B 200元 C 240元 D 250元

2. 如果 0, 0,则下列说法错误的是( )

A. ac0 B. ab0 C. ac0 D. bc0

3. 下列说法错误的是 ( )

A. 小于-1的数的倒数大于其本身;

B. 大于1的数的倒数小于其本身

C. 一个数的倒数不可能等于它本身

D. (m-n)(其中mn)的倒数是

4. 下列说法不正确的是( )

A. 一个数与它的倒数之积是1

B. 两个数的积为1,这两个数互为倒数

C. 一个数与它的相反数之商 是1

D. 两数之商为-1,这两个数互为相反数。

﹡5. 已知abc0,ac,ac0,则下列结论正确的是:( )

A. a0,b0,c0 B. a0,b0,c0

C. a0,b0,c0 D. a0,b0,c0

二. (每题6分,共60分)

6. 计算(能用简便方法的用简便方法)

(1)( )( )

(2)0(-)

(3) (- )

(4)( ) (-0.25)

(5)(-1)(-100)(-0.01)(-10)

(6)(-14)( - )

(7)3(-4)+(-30)( - )

(8)( ) (-0.5)

﹡(9)(-56)(-32)-(-44)32

﹡(10)15 -16 -20

三. (20分)

﹡7. 已知︱x︱=3,︱y︱=4,xy0。求︱3x-5y︱的值。

【试题答案】

一. 1. B 2 A 3 C 4 C 5 B

二. 6. (1)1

(2)0

(3)-6

(4)

(5)10

(6)原式=(-14) +14 =-2+5=3

(7)原式=-12+(-30) -(-30) =13

(8)2

(9)原式=(-32)[(-56)+(-44)]=3200

(10)原式= (15-16-20)= 14

三.

7. 解:因为︱x︱=3,︱y︱=4,所以x=3,y= 4,

因为xy0 所以当x=3时,y=4;当x=-3时,y=-4

所以当x=3,y=4时,︱3x-5y︱=︱33-54︱=11

所以当x=-3,y=-4时,︱3x-5y︱=︱3(-3)-5(-4)︱=11

篇20:《小数乘除法》教学反思

一、小数加减法学完后,学生很明确计算的方法,小数点对齐,按整数加减法计算方法去算,而学小数乘法时,加减法小数点对齐的知识负迁移必然出现,探究明确乘法的计算方法后,又有学生把乘法的方法负迁移到小数加减法。虽然只发生在少数几个孩子身上,但说明在学新知时,这些学生的算理就没有真正的理解,无法将算理与算法和谐相融,带着错误问题去研究新的问题必然出现错误混淆的结局。

二、学生对计算的学科知识表现的学习热情比较淡化,没有探究的饱满情绪,所以课堂上优秀的孩子有了更多表达展示的机会,而其他三分之二的学生就成了听众。兴趣是最好的老师,如何提高学生对学科本身的兴趣,这是我们数学教师一直追寻的境界。用数学学科本身的`魅力去吸引学生才是长远之计。

三、两级分化:每有新的学习知识点,我都会让学生课前去预习自己去研究,让学生对新知有自己的建构,学生有了初见在课堂学习时就不会有陌生感与距离感,心理感觉就会亲近。然因学生的学习水平、学习习惯等有一定的差距,在探究时就表现出截然不同的状态,好的学生得到更多的锻炼机会,思维水平直线发展,后进的学生跟不上脚步,越学越茫然,还是需要教师课后去补习。所以小组学习的效率很重要。

四、错误率:

学生错误的原因无外这样几点:1.审题不清,抄错或看错题。说明学生学习的品质不佳,有的是感知有缺陷。2.根本方法有误,算理不清楚,算法不明确。3.检查的计算习惯没有,粗心却不重视。4.学习态度比较马虎,容易出现各种小问题。

每一个孩子都是教师关注的对象,每一个孩子身上所发生的不同的问题都是我需要静心思考研究的,尽管经常教同样的内容,尽管孩子的问题基本很类似,却为何依然没有找到解决问题的妙方,放手后所引发的问题更需要教师的智慧与理性。

《有理数的乘除法》 教学设计

《有理数的乘除法》的教案

人教版乘除法应用题教学设计

《小数乘除法》优秀教学设计

乘除法关系教学反思

初中生有理数教学设计

分式的乘除法教学反思

小数除法教学设计

分数除法教学设计

《分数除法》教学设计

《《有理数的乘除法》 教学设计(共20篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档