以下是小编为大家准备的第二课时:圆的周长 教案教学设计(人教新课标六年级上册),本文共14篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
篇1:第二课时:圆的周长 教案教学设计(人教新课标六年级上册)
教学内容:课本第63页~64页例1,完成相应的“做一做”题目和练习十五的第1~8题。
教学目标:
1.使学生理解圆周率的意义,掌握圆周率的近似值;
2.理解和掌握求圆的周长的计算公式,并能应用它解决简单的实际问题;www.xkb1.com
3.通过周长、直径变化时圆周率保持不变(即:圆的周长÷直径=π)的探索,对学生进行辩证唯物主义的教育;
4.结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。
重点难点:圆的周长的计算。建立圆周率的概念。
教具、学具:米尺、不同直径的圆三个,线、一角硬币。
教学过程:
一、课前导入:
以前所学的求直线形的周长都是求几条线段长度的和,那么,圆这闭合曲线的周长怎样求呢?这就是我们今天要学的内容。
板书课题:圆的周长。
二、展示学习目标:
1.掌握圆周率的近似值。
2.掌握圆的周长的计算公式。
三、自学讨论(一):
(1)圆周长的意义。
请学生拿出学具圆,跟教师摸教具、学具的圆一周,请学生试说一说什么叫做圆的周长?
(学生观察说明观点)
教师概括:围成圆的曲线的长叫做圆的周长。可用字母“C”来表示。
(2)圆周率的意义。
问题思考:
1.要想知道圆的周长是多少?那么可以怎样做?
a.出示一铁圈。b.出示一圆片。
2.你能用直尺测量圆的周长吗?试量一量你手中硬币的直径和周长。
讨论回答:
a.要想求这个圆的周长,我们可以把它剪开拉直,量出它的周长。
b.用双面胶布绕圆一周,剪去多余的部分,在黑板上滚动一周,让胶布贴在黑板上,然后量这胶布的长度(由曲转化为直来测量。)
c. 学生按书本上的方法,量出硬币的直径和周长。
引导学生观察小结,共同认识圆周率:圆的周长总是直径的3倍多一些,就是说它们的比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母π来表示。
(简述)
“π”是多少呢?约15前,我国古代数学家祖冲之发现了圆周率应在3.1415926~3.1415927之间,成为世界上第一个把圆周率的值精确到6位小数的人,他得出这样精确值的时间比外国数学家早了一千年,现在人们已经用计算机算出它的小数点后面上亿位。但是,在计算时一般只取它的近似值:π=3.14。
四、分组讨论,练习认知:
1.圆周长公式如何推导?
因为:圆的周长=直径的3倍多一些。
所以:圆的周长=直径×圆周率。
即:C=πd 或 C=2πr
2.圆周长计算公式的应用。
出示例1。
读题后,学生讲教师板书,并提醒书写格式与约等号使用。
3.14×0.95
=2.983
≈2.98(米)
答:这张圆桌面的周长是2.98米。
五、巩固练习。
1.课本第112页上半页的做一做。
2.练习二十六第1、2、3题。
总结:通过这节课的学习,我们知道了圆的周长随着直径的变化而变化,但是它们的幽会比值是个固定不变的数,这个比值叫做圆周率,用π表示。为此,今后要求某一个圆的周长时,只要知道直径或半径,我们就能直接运用C=πd 或 C=2πr来计算。
六、作业安排。 练习十五第4、5、6题。
篇2:第二课时:圆的周长/第三课时:圆的面积 教案教学设计(人教新课标六年级上册)
第二课时:圆的周长
教学内容:课本第63页~64页例1,完成相应的“做一做”题目和练习十五的第1~8题。
教学目标:
1.使学生理解圆周率的意义,掌握圆周率的近似值;
2.理解和掌握求圆的周长的计算公式,并能应用它解决简单的实际问题;www.xkb1.com
3.通过周长、直径变化时圆周率保持不变(即:圆的周长÷直径=π)的探索,对学生进行辩证唯物主义的教育;
4.结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。
重点难点:圆的周长的计算。建立圆周率的概念。
教具、学具:米尺、不同直径的圆三个,线、一角硬币。
教学过程:
一、课前导入:
以前所学的求直线形的周长都是求几条线段长度的和,那么,圆这闭合曲线的周长怎样求呢?这就是我们今天要学的内容。
板书课题:圆的周长。
二、展示学习目标:
1.掌握圆周率的近似值。
2.掌握圆的周长的计算公式。
三、自学讨论(一):
(1)圆周长的意义。
请学生拿出学具圆,跟教师摸教具、学具的圆一周,请学生试说一说什么叫做圆的周长?
(学生观察说明观点)
教师概括:围成圆的曲线的长叫做圆的周长。可用字母“C”来表示。
(2)圆周率的意义。
问题思考:
1.要想知道圆的周长是多少?那么可以怎样做?
a.出示一铁圈。b.出示一圆片。
2.你能用直尺测量圆的周长吗?试量一量你手中硬币的直径和周长。
讨论回答:
a.要想求这个圆的周长,我们可以把它剪开拉直,量出它的周长。
b.用双面胶布绕圆一周,剪去多余的部分,在黑板上滚动一周,让胶布贴在黑板上,然后量这胶布的长度(由曲转化为直来测量。)
c. 学生按书本上的方法,量出硬币的直径和周长。
引导学生观察小结,共同认识圆周率:圆的周长总是直径的3倍多一些,就是说它们的比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母π来表示。
(简述)
“π”是多少呢?约1500年前,我国古代数学家祖冲之发现了圆周率应在3.1415926~3.1415927之间,成为世界上第一个把圆周率的值精确到6位小数的人,他得出这样精确值的时间比外国数学家早了一千年,现在人们已经用计算机算出它的小数点后面上亿位。但是,在计算时一般只取它的近似值:π=3.14。
四、分组讨论,练习认知:
1.圆周长公式如何推导?
因为:圆的周长=直径的3倍多一些。
所以:圆的周长=直径×圆周率。
即:C=πd 或 C=2πr
2.圆周长计算公式的应用。
出示例1。
读题后,学生讲教师板书,并提醒书写格式与约等号使用。
3.14×0.95
=2.983
≈2.98(米)
答:这张圆桌面的周长是2.98米。
五、巩固练习。
1.课本第112页上半页的做一做。
2.练习二十六第1、2、3题。
总结:通过这节课的学习,我们知道了圆的周长随着直径的变化而变化,但是它们的幽会比值是个固定不变的数,这个比值叫做圆周率,用π表示。为此,今后要求某一个圆的周长时,只要知道直径或半径,我们就能直接运用C=πd 或 C=2πr来计算。
六、作业安排。 练习十五第4、5、6题。
第三课时:圆的面积
教学内容:课本例1,第70页练习十六的第1~5题。
教学目标:1.通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;
2.能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。
重点难点:圆面积计算公式。圆面积计算公式的推导。
教具、学具:圆的面积演示教具;厚纸做的圆及剪刀与胶布。
教学过程:
一、学前导入:
1.口算:
2.已知圆的半径是2.5分米,它的周长是多少?
我们已经学会圆周长的有关计算,这节课我们要学习圆的面积的有关知识。 (板书课题:圆的面积)
二、展示学习目标:
1.理解圆的面积公式的推到过程。
2.掌握求圆的面积的方法并能正确计算。
三、自学指导(一):
1.面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)
2.圆的面积指的是什么?。(圆所围成平面的大小,叫做圆的面积。)
提示:以前学过长方形面积的含义是指长方形所围成平面的大小。
四、动手操作,分组讨论:
把圆等分成16份,圆周部分近似看作线段,其中的一份是个近似的三角形,底是多少?(C/16) 高是多少?( r)
(1) 指导学生动手摆学具,并思考问题:
①你摆的是什么图形?
②你摆的图形的面积与圆的面积有什么关系?
③所摆图形的各部分相当于圆的什么?
④你如何推倒出圆的面积?
(学生动手摆学具,四人一组讨论,然后发言。)
说明:如果分成的份数越多,每一份就会越小,拼成的图形就会越接近长方形。结合教材68页上面的图加以说明。
讨论所得:从图中可以看出圆的半径是r,长方形的长是 ,宽是r。
长方形的面积=长×宽
圆的面积 = × =
如果用S表示圆的面积,那么圆的面积公式就是
五、巩固练习:
1.根据下面所给的条件,求圆的面积。
(1) 半径2分米。
(2) 直径10厘米。(先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)
2.练习二十七的第1~4题。
强调书写格式,运算顺序与单位名称。
总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式 计算。
六、作业安排:
练习十六第5、6题。
篇3:第三课时:圆的周长和面积(1)圆的周长 教案教学设计(人教新课标六年级上册)
教学目标:
1、使学生理解圆的周长和圆周率的意义,理解并掌握圆的周长公式,并能正确计算圆周长。
2、培养学生的观察、比较、概括和动手操作的能力。
3、对学生进行爱国主义教育。
教学重点:
圆的周长和圆周率的意义,圆周长公式的推导过程。
教学难点:
圆周长公式的推导过程。
教学准备:多媒体课件、实物投影、圆、绳子、直尺、圆规等。
教学过程:
一、情境创设。
1、课件出示一个正方形花坛和一个圆形花坛。
。
问:这是什么图形?围着花坛跑一圈,哪个长哪个短呢?
学生想办法:(1)看哪个跑得步子多。
(2)计算它们的周长,进行比较更为简便。
2、什么是长方形的周长?怎样计算?这个长方形的周长与长和宽有什么关系? C=(a+b)×2
3、什么是圆的周长?
让学生上前比划,圆的周长在那?那一部分是圆的周长?
得出定义:围成圆的曲线的长叫做圆的周长。
二、新知探究
(一)圆周长的公式推导。
1、探索学习。
(1)你可以用什么办法知道一个圆的周长是多少?
(2)学生各抒己见,分别讨论说出自己的方法:
A、用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,
即可得出圆的周长。
B、把圆放在直尺上滚动一周,直接量出圆的周长。
C、用一条小线的一端栓上小球在空中旋转。这样你能知道空中出现的圆的周长吗?
用滚动,绳测的方法可测量出圆的周长,但是有局限性。今天我们来探讨出一种求圆周长的普遍规律。
2、动手实践。
(1)4人小组,分别测量学具圆,报出自己量得的直径,周长,并计算周长和直径的比值。
(2)引生看表,问你们看周长与直径的比值有什么关系?
(3)你有办法验证圆的周长总是直径的3倍多一点吗?
(4)阅读课本P63,介绍圆周率,及介绍祖冲之。
∏=3.1415926535…… 是一个无限不循环小数。
3、得出计算公式。
圆的周长=圆周率×直径
C = ∏d
C = 2∏r
(二)、解决新问题。
1、解决情境题中的问题。
学生独立完成,小组内订正。
2、教学例1 : 圆形花坛的直径是20m,它的周长是多少米?小自
行车车轮的直径是50m,绕花坛一周车轮大约转动多少周?
小组内想出解决的办法,并在全班交流。
第一个问题: 已知 d = 20米 求:C = ?
根据 C =πd
20×3.14=62.8(m)
第二个问题: 已知: 小自行车d = 50cm
先求小自行车C = ? c=πd
50cm=0.5m
0.5×3.14=1.57(m)
再求绕花坛一周车轮大约转动多少周?
62.8 ÷1.57=40(周)
答:它的周长是62.8米。绕花坛一周车轮大约转动40周。
三、当堂测评
1、求下列各题的周长。(60分)
书本65页练习十五的第1题
2、判断正误。(40分)
(1)圆的周长是直径的3.14倍。 ( )
(2)在同圆或等圆中,圆的周长是半径的6.28倍。 ( )
(3)C =2πr =πd 。 ( )
(4)半圆的周长是圆周长的一半。 ( )
四、课堂质疑。
通过这节课的学习你都知道了什么?还有什么不懂得呢?
设计意图:
这节课我从以下几处着手:
1、来源于生活,回归于生活。课前从生活中的实际问题入
手,提高学生学习兴趣,激起求知欲。在得出公式时及时解决问
题,体现数学课的应用价值。
2、重视动手操作,深刻理解公式。对于公式的探究,我改变
以往的教师演示教学法,而是让学生通过具体的动手操作,让他们
体会知识概念的形成。教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。
教学后记:
篇4:第四课时:圆的周长(2)/第六课时:圆的面积 教案教学设计(人教新课标六年级上册)
教学目标:
1、通过教学使学生学会根据圆的周长求圆的直径、半径。
2、培养学生逻辑推理能力。
3、初步掌握变换和转化的方法。
教学重点:求圆的直径和半径。
教学难点:灵活运用公式求圆的直径和半径。
教具准备:多媒体课件、实物投影设备、挂钟。
教学过程:
一、旧知铺垫(课件出示)
1、口答。
4π 2π 5π 10π 8π
2、求出下面各圆的周长。
C=πd c=2πr
=3.14×2 =2×3.14×4
=6.28(厘米) =8×3.14
=25.12(厘米)
二、新知探究。
1、提出研究的问题。
(1)下面公式的每个字母各表示什么?这两个公式又表示什么?
C=πd C=2πr
(3)根据上两个公式,你能知道:
直径= 半径=
学生根据前面的公式推出:d= C/π r= C/2π
2、学习练习十四第2题。
(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)
学生根据公式独立解答,教师巡回指点,照顾差生。
小组代表汇报,全班交流。
已知:c=3.77m 求:d=?
解法1 解法2 解:设直径是x米。
3.77÷3.14 3.14x=3.77
≈1.2(米) x=3.77÷3.14
x≈1.2
(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)
已知:c=1.2米 r=c÷(2Π) 求:r=?
解:设半径为x米。
3.14×2x=1.2 1.2÷2÷3.14
6.28x=1.2 = 0.191
x=0.191 ≈0.19(米)
x≈0.19
三、当堂测评(课件出示)
1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?(20分)
2、求下面半圆的周长,选择正确的算式。(20分)
⑴ 3.14×8
⑵ 3.14×8×2
⑶ 3.14×8÷2+8
3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?(30分)
(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的 ,也就是走了整个圆的 。而钟面一圈的周长是多少?
(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的 ,也就是走了整个圆的 。则:钟面一圈的周长是多少?
45分钟走了多少厘米?
4、下图的周长是多少厘米?你是怎样计算的?(30分)
学生独立完成,教师巡回查看,发现疑难。
教师讲评,小组内打分,明确错误原因。
四、回放知识目标,学生谈掌握情况。
设计意图:
(1)重视公式的推导,提高学生推理、探究能力。
(2)通过当堂测评,丰富课堂知识面,了解学生对知识的掌握情况。
教学后记:
第五课时:练习课
教学目标:⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问题。
⒊渗透转化的数学思想。
教学重点:圆面积的含义。圆面积的推导过程。
教学难点:圆面积的推导过程。
教学准备:教师准备:多媒体课件、
学生准备:同样的三角板两个/每人。
教学过程:
一、旧知铺垫(课件出示)
1、已知r,周长的一半怎样求?
2、用手中的三角板拼三角形,长方形、正方形、平行四边形等,
说出这些图形的面积计算公式。
s=ab s=a2 s= ah s= ah s= (a+b)h
二、新知探究
1、什么是圆的面积?(出示纸片圆让生摸一摸)
圆所占平面大小叫做圆的面积。
2、推导圆的面积公式。
(1)演示:将等分成16份的圆展开,问可拼成一个什么样的图形?
若分的分数越多,这个图形越接近长方形。
(1)找:找出拼出的图形与圆的周长和半径有什么关系?
圆的半径 = 长方形的宽
圆的周长的一半 = 长方形的长
长方形面积 = 长 ×宽
所以: 圆的面积 = 圆的周长的一半×圆的半径
S = πr × r
S圆 = πr×r = πr2
3、你还能用其他方法推算出圆的面积公式吗?
(1)将圆16等份,取其中一份,看作是一个近似的三角形,三角形的面积是这个圆面积的 。这个三角形底是圆周长的 ,三角形的高是圆的半径。
因为:三角形面积= ×底×高
圆面积= ×
=πr2
(2)将圆16等分,取其中两份,可以拼成一个近似的平行四边形。平行四边形面积是圆面积的 ,平行四边形的底是 ,三角形的高即一个半径,
因为:平行四边形面积 = 底×高
圆面积 = ×r÷
=πr2
三、运用知识解决实际问题。(课件出示)
1、例1 一个圆的直径是20m,它的面积是多少平方米?
已知:d=20厘米 求:s=?
r=d÷2 20÷2=10(m)
s=Лr2
3.14×102
=3.14×100
=314(平方厘米)
四、当堂测评(课件出示)
1、根据下面所给的条件,求圆的面积。(40分)
r=5cm d =0.8dm
2、解答下列各题。(60分)
(1)一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?
(2)公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?
学社独立完成,教师巡回指点,发现疑难。
小组内订正,评比、得分。
全班内评比出优胜小组。
五、谈收获、表决心。
教学后记
篇5:第七课时:圆的面积(2)/第八课时:圆的周长和面积的练习课 教案教学设计(人教新课标六年级上册)
教学目标:
1、使学生学会已知圆的周长求圆的面积的解题思路与方法,理解
并学会环形面积。
2、培养学生灵活、综合运用知识的能力,运用所学的知识解决简
单的实际问题。
3、培养学生的逻辑思维能力。
教学重点:培养综合运用知识的能力。
教学难点:培养综合运用知识的能力。
教具准备:多媒体课件、实物投影、环形教具。
教学过程:
一、旧知铺垫(课件出示)
1、口算:
32 42 52 82 92 202
2π 3π 6π 10π 7π 5π
1、填表
r d C S
3cm
9cm
10m
12.56m
填写要求
(1)学生独立计算,教师巡视进行个别指导。
(2)汇报解答过程及结果。
(3)周长是12.56时面积也是12.56,能说周长和面积相等吗?
三、新知探究
(一)、教学环形面积。
1、结合实物光盘,课件出示题目要求
例2 光盘的银色部分是个圆环,内圆半径是
2cm,外圆半径是6cm。它的面积是多少?
2、课件出示自学提纲:
(1)认真读题,理解题意。分析已知条件及问题。
(2)想一想如何解决这个问题。
(3)小组内交流自己的想法。
3、小组汇报不同的解题思路。
解法1:环形面积 = 大圆面积 - 小圆面积
3.14×62 3.14×22
=3.14×36 =3.14×4
=113.04(平方厘米) =12.56(平方厘米)
113.04-12.56=100.48 (平方厘米)
解法2:3.14×(62-22)=100.48(平方厘米)
4、小结环形的面积计算公式:
S=πR2-πr2 或 S=π×(R2-r2)
(二)完成做一做:
一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花
坛,其他地方是草坪。草坪的占地面积是多少?
三、当堂测评(课件出示)
1、学校有个圆形花坛,周长是18.84米,花坛的面积是多少?
选择正确算式
A、(18.84÷3.14÷2)2×3.14
B、(18.84÷3.14)2×3.14
C、18.842×3.14
2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?
学生独立完成,教师巡视发现存在问题。
学生汇报解题方法及结果。
自我评价。
四、课堂小结。
1、这节课的学习内容是什么?
2、求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?
已知半径求面积 S=πr2
已知直径求面积 S=π( )2
已知周长求面积 S=π( )2
3、环形面积: S=π(R2-r2)
设计意图:
1、 重视教具的作用。在圆面积的教学中,在我带领着学生利用教具进行操作,在此基础上,让学生自主发现圆的面积与拼成长方形面积的关系,圆的周长、半径和长方形的长、宽的关系,并推导出圆的面积计算公式。
2、培养学生自主学习的习惯。教学环形的面积计算时,我充分放手给学生,让学生通过思考讨论领悟出求环形的面积是用外圆面积减去内圆面积,并引导他们发现这两种算法的一致性,同时提醒学生尽量使用简便算法,减少计算量。
教学后记
第八课时:圆的周长和面积的练习课
教学目标:
1、通过教学使学生理解并掌握圆的周长和面积计算方法。
2、培养学生分析问题和解决问题的能力,发展学生的空间观念。
3、灵活解答几何图形问题。
教学重点:认真审题,分辨求周长或求面积。
教具准备:多媒体课件
教学过程:
一、旧知铺垫(课件出示)
1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。
2、分辨面积与周长有什么不同?
(1)概念
圆的周长是指圆一周的长度
圆的面积是指圆所围成的平面部分的大小。
(2)计算公式
求圆的周长公式:C=πd 或 C=2πr
求圆的面积公式:S=πr2
(3)使用单位
计算圆的周长用长度单位
计算圆的面积用面积单位
二、练习巩固
1、判断下面各题是否正确,对的打“√”,错的打“”。
(1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)。 ( )
(2)半径为2厘米的圆的周长和面积相等。 ( )
(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内) ( )
(4) 面积:3.14×62=3.14×12=37.68 ( )
2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。
⑴半圆的周长是多少厘米?
2×3.14+2×2
=6.28+4
r=2cm =10.28(cm)
(2)半圆的面积:
3.14×22 + =3.14×4
=12.56(平方厘米)
3、一个圆的周长是25.12米,它的面积是多少:
已知:C=25.12米 求:S=?
r=25.12÷(2×3.14) S=πr2
=4(米) =3.14×42
=50.24(平方米)
4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的面积是多少平方分米?
已知:R=7厘米=0.7分米 r=0.5分米 求:S=?
S环=π×(R2-r2)
3.14×(0.72-0.52)
=3.14×0.24
=0.7536(平方分米)
三、课堂提高
1、思考题p71 (8)
一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)
(1)围成长方形: 31.4÷2=15.7(m)(长和宽的和)
长 × 宽 = 面积
当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.
(2)围成圆形
直径:31.4÷3.14=10(m)
半径:10÷2=5(m)
面积:3.14× 52=78.5(m2 )
(3)比较:长方形面积:61.6 m2 正方形面积:61.6225 m2 圆面积:78.5 m2
围成圆的面积最大。
2、思考题 p71 (9)、(10)
四、课堂总结
设计意图
本节课是是为避免学生把圆的面积与周长混淆。因此我特意设计了本堂对比课。对比我,我引导学生分清以下几点:
(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。
(2)求圆面积公式是S=πr2 ,求圆周长的公式是 C=πd 或 C=2πr。
(3)计算圆的面积用面积单位,计算圆的周长用长度单位。
根据以上三方面,帮助学生理清了圆的面积和周长的不同之处,我想练习中反映出来的情况会较好。
教学后记:
第九课时:整理和复习
篇6:第三课时):圆的周长和面积的练习课/(第四课时):确定起跑线 教案教学设计(人教新课标六年级上册)
(第三课时):圆的周长和面积的练习课
教学目标:
1、通过教学使学生理解并掌握圆的周长和面积计算方法。
2、培养学生分析问题和解决问题的能力,发展学生的空间观念。
3、灵活解答几何图形问题。
教学重点:认真审题,分辨求周长或求面积。
教学过程:
一、复习。
1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。
C=πd S=πr2
3.14×7 3.14×32
=21.98(厘米) =3.14×9
=28.26(平方厘米)
2、分辨面积与周长有什么不同?
(1)概念
圆的周长是指圆一周的长度
圆的面积是指圆所围成的平面部分的大小。
(2)计算公式
求圆的周长公式:C=πd 或 C=2πr
求圆的面积公式:S=πr2
(3)使用单位
计算圆的周长用长度单位
计算圆的面积用面积单位
二、练习。
1、判断下面各题是否正确,对的打“√”,错的打“”。
(1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)。 ( )
(2)半径为2厘米的圆的周长和面积相等。 ( )
(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内) ( )
(4) 面积:3.14×62=3.14×12=37.68 ( )
2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。
⑴半圆的周长是多少厘米?
(2)半圆的面积:
3.14×22 3.14×2+2×2
r=2cm =3.14×4 =6.28+4
=12.56(平方厘米) =10.28(cm)
3、一个圆的周长是25.12米,它的面积是多少:
已知:C=25.12米 求:S=?
r=25.12÷(2×3.14) S=πr2
=4(米) =3.14×42
=50.24(平方米)
4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的面积是多少平方分米?
已知:R=7厘米=0.7分米 r=0.5分米 求:S=?
S环=π×(R2-r2)
3.14×(0.72-0.52)
=3.14×0.24
=0.7536(平方分米)
三、巩固发展.
1、思考题p71 (8)
一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)
(1)围成长方形: 31.4÷2=15.7(m)(长和宽的和)
长 × 宽 = 面积
当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.
(2)围成圆形
直径:31.4÷3.14=10(m)
半径:10÷2=5(m)
面积:3.14× 52=78.5(m2 )
(3)比较:长方形面积:61.6 m2 正方形面积:61.6225 m2 圆面积:78.5 m2
围成圆的面积最大。
2、思考题 p71 (9)、(10)
四、作业。新课标第一网
课本P71第6、7
(第四课时):确定起跑线
教学目标:
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
教学重点:如何确定每一条跑道的起跑点。
教学难点:确定每一条跑道的起跑点。
教学过程:
一、提出研究问题。(出示运动场运动员图片)
跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)
2、各条跑道的起跑线应该相差多少米?
二、收集数据
1、看课本75页了解400m跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)
三、分析数据
学生对于获取的数据进行整理,通过讨论明确一下信息:
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
四、得出结论
1、看书P76页最后一图:
2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5π)
五、课外延伸
200m跑道如何确定起跑线?
篇7:第二课时解决问题 教案教学设计(人教新课标六年级上册)
教学内容:教科书第39页的例2。
教学目标:
1. 学习运用线段图帮助分析数量关系。
2. 学习列出方程,解决已知一个数的几分之几是多少,求这个数的实际问题。
3. 在分析数量关系,列出方程解决实际问题的过程中,提高分析问题、解决的能力。
教学过程:
一、复习与准备
1. 根据题意,看图写出代数式。
(1)苹果有x kg,西瓜的质量比苹果重1/4。
西瓜比苹果重kg,西瓜重()kg。
(2)鸡有x只,鸭的只数比鸡少1/3。
鸭比鸡少()只,鸭有()只。
2. 根据题意列出方程。
(1)六(1)班有15人参加了合唱队,占全班人数的1/3,六(1)班有多少人?
(2)美术小组的人数比航模小组多1/4,美术组的人数比航模组多5人。航模组有多少人?
二、教学例2
出示例2。
1. 审题。
(1)看例题的插图,理解题目的意思。
复述题意,说说知道了什么,要求什么。
(2)分析题意,说说你对“美术小组的人数比航模小组多1/4”这一条件的理解。
(航模小组人数看作单位“1”,美术小组的人数多,多的人数相当于航模小组4等份中的1份。)
(3)理解数量关系,让学生自己试着画图表示两个小组的人数关系。(学生可以选用条形、线段或其他图形表示人数)
2. 分析、解答。
(1)出示线段图。
(2)说说数量关系。
根据已知条件“美术小组的人数比航模小组多1/4”直接得出数量关系:
航模小组的人数+美术小组比航模小组多的人数=美术小组的人数
或者:航模小组的人数+航模小组的人数×1/4=美术小组的人数
(3)学生根据得到的数量关系列方程解答。
(4)交流各自的解法。
(5)阅读课本,完成课本上的填空。
3. 改变例2。
出示:航模小组有20人,美术组的人数比航模小组多1/4,美术小组有多少人?
(1)根据题意改变线段图。(只要改变已知数与未知数的位置)
(2)根据图意解答。
(3)启发学生与例2进行比较,说说你发现什么?
(数量关系相同,已知条件与未知问题交换后,仍然可以根据例2的数量关系列式)
教师:上面用方程解例2的思路与分数乘法问题的思路统一,我们应该好好理解、掌握它。
4. 再次改变例2。
出示:美术小组有24人,美术小组的人数比航模小组少14,航模小组有多少人?
(1)根据题意改变线段图。
(2)改变方程,解方程。
5. 小结:关键是搞清哪两个量比较,谁多谁少,多或少了谁的几分之几。
(三)运用新知,解决问题
1. 看图口头编实际问题。
(1)
(2)
2. 根据条件列方程。
(1)小红买了一本书和一枝钢笔,书的价格是10元,正好比钢笔价格少3/8,钢笔的价格是多少元?
(2)白兔的只数比黑兔多2/3,白兔有450只,黑兔有多少只?
(3)白兔的只数比黑兔多2/3,白兔比黑兔多180只,黑兔有多少只?
3. 根据所给方程口头编实际问题。(小组内交流)
四、全课总结(略)
篇8:(第二课时):环形面积 教案教学设计(人教新课标六年级上册)
教学目标:
1、使学生理解环形面积的含义,掌握环形面积的计算方法,并能正确地进行计算。
2、培养学生灵活、综合运用知识的能力,运用所学的知识解决简单的实际问题。
3、培养学生的逻辑思维能力。
教学重点:理解环形面积的含义。
教学难点:能根据已知条件准确地求环形面积。
教学过程:
一、复习。xkb1.com
1、口算:
32 42 52 82 92 202
2π 3π 6π 10π 7π 5π
2、思考:
(1)圆的周长和面积分别怎样计算?二者有何区别?
(2)求圆的面积需要知道什么条件?
(3)知道圆的周长能够求它的面积?
二新授:教学例4:
街心花园中圆形的花坛的周长是18.84米,花坛的面积是多少平方米?www.xkb1.com
板书课题:公式的运用。
第一步:弄清题意。
条件:圆周长C=18.84米
问题:圆面积S=?平方米
第二步:分析数量关系,列式计算。
明确:要求圆面积,需要知道什么?怎样由给的圆的周长这个条件求出圆的半径?
求出了半径,再怎样求花坛的面积?
全班齐练,教师巡视,个别辅导。
让学生看课本第95页例4的分析与解的过程,掌握解题格式,并做完书中的空。
练一练:课本第95页“做一做”中第2题。 教学例5:
A、什么是环形?
学生动手,每人拿出准备好的图形,用小剪刀剪去半径是10厘米的圆。
明确:剩下的图形是环形,剩下的面积就是环形的面积。
板书课题:环形面积。
b.怎样求环形的面积?
(1)老师演示教具(一个圆中间取出一个同圆心的小圆),让学生明确,求环形面积就是从外圆面积中减去内圆面积,因此先要分别求出内、外圆的面积,再求环形面积。
(2)自学课本第96页例5:新课标第一网
提问:
计算环形面积一般应该分几步做?先算什么?再算什么?最后算什么?谁会列综合算式?怎样列综合算式点名学生回答:
C.练一练:课本第96页“做一做”中的题。
三、巩固练习
1、 光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?
已知:R=6厘米 r=2厘米 求: s=?
3.14×62 3.14×22
=3.14×36 =3.14×4
=113.04(平方厘米) =12.56(平方厘米)
113.04-12.56=100.48 (平方厘米)
第二种解法:3.14×(62-22)=100.48(平方厘米)
(2)小结:环形的面积计算公式:
S=πR2-πr2 或 S=π×(R2-r2)
2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?
3、课堂小结。
(1)这节课的学习内容是什么?
(2)求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?
已知半径求面积 S=πr2
已知直径求面积 S=π( )2
已知周长求面积 S=π( )2
(3)环形面积: S=π(R2-r2)
四、作业
课本P70第4、6、7题。
篇9:第一课时:圆的认识 教案教学设计(人教新课标六年级上册)
-上学期六年级上册《数学》科教案
第四单元
主备人:薛雯
教学内容:课本第56~57页内容,完成相应的“做一做”题目和练习十四的第1~4题。
教学目标:
1. 使学生认识圆,掌握圆的特征;
2. 了解圆的各部分名称,会用字母表示圆心、半径与直径;
3. 理解掌握同圆或等圆中半径和直径的关系;使学生能正确地较熟练地掌握用圆规画圆的操作步骤。
重点难点:圆的特征;圆的半径、直径及其关系。掌握圆的正确画法。
教具准备:圆规、直尺、长方形、正方形、三角形、平行四边形、梯形及圆形的教具。
教学过程:
一、导入新课。
我们已学过了一些平面直线图形,如长方形、正方形,但我们周围还有很多物体,如硬币、钟面、圆桌面、CD唱片等,这些物体形状是不是直线形?(不是)是什么形?(圆形)我们今天就来研究圆的一些基本特征。
板书课题;圆的认识。
二、展示学习目标:
1.通过动手操作、观察、思考等教学活动,认识圆并掌握圆的特征。
2.理解同一圆中直径和半径的关系,学会用圆规画圆。
三、动手实践,讨论发现:
1.通过对比认识圆。
现在请同学们比较一下,以前学过的平面直线图形(教师把准备好的长方形、正方形、三角形、平行四边形、梯形逐一出示。)与老师手上的圆有什么不同呢?(圆由曲线所围成的)
2.找圆心。
请学生都拿出已备好的圆形纸,让学生把圆进行对折,使上、下两部分完全重合,打开;再换个方向对折,反复几次。让学生把折痕用铅笔画下来。问:你发现了什么?(引导学生观察得出:这些折痕都相交于一点)
说明:这些折痕相交于圆中心的一点。我们把这一点叫做圆心。圆心一般用字母O表示。
3.半径与直径。
让学生用刻度尺量一量圆心到圆上任意一点的距离;请学生报出测量的结果,并想一想发现了什么?(引导学生得出:圆心到圆上任意一点的距离都相等。把有关数据写在黑板上)
教师在黑板的图中连接圆心和圆上任意一点的线段,告诉学生这线段叫做半径。
让学生在自己的学具圆里用笔画出几条半径,再量一量它们的长度。问:你还发现什么?(引导学生得出:在同一个圆里,可画无数条半径,所有的半径都相等。)
再让学生量一量在自己的学具圆用笔画的通过圆心的线段(折痕),问:通过量度,你又发现什么?(学生得出:这些线段都相等。把有关数据写在黑板上。)新课标第一网xkb1.com
说明:我们把圆对折时,看到每条折痕都通过圆心。这些通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。
让同桌的两位同学把两个圆重叠在一起,说明:这两个是等圆。通过刚才的量度,你发现了什么?(在两上等圆里半径都相等,直径也都相等。)
让学生观察黑板上的数据,问:“在同一个圆或等圆里,直径和半径的长度有什么关系?”(直径长度等于半径的两倍,或者说半径长度等于直径的一半。)
板书: d=2r 或
小结:在同一个圆或等圆里,所有的半径都相等,所有的直径也都相等;直径等于半径的2倍。
阅读课本,让学生把课本中有关圆心、半径、直径的定义读一遍。
练习:做第58页的“做一做”。
4.圆的画法。
(1)认识画圆的工具和使用。
画圆的工具有很多,这里着重介绍圆规。圆规有两脚,它的一脚有针尖,另一脚有铅笔尖(或粉笔)。使用时针尖一脚固定在一点上,右手握圆规,左手按住纸,不要用力过大,另一脚旋转画圆。
正是根据圆心到圆上任意一点的距离(即半径),都相等这一原理,我们才可以用圆规来画圆。
(学生亲手操作,互相交流,归纳圆规画圆的步骤)
(2)用圆规画圆的步骤。
A.把圆规的两脚分开,定好两脚间距离(即半径)。
B.把有针尖的一只脚固定在选好的一点(即圆心)上。
C.把装有铅笔尖的一只脚旋转一周,就画出一个圆。
学生阅读课本第57页的内容。
提示学生注意:在画圆的过程中,定在一点上的圆规的针尖一定不能移动。圆规两脚之间的距离在画圆的过程中不能改变。
小结:圆的位置和大小是由圆心和半径决定的;但圆的大小取决于半径的长短,与圆心无关。
四、巩固练习。
练习二十四的第3题和做一做。
总结:
① 圆的半径与直径是射线呢?直线呢?还是线段?
② 同圆或等圆中的半径与直径关系怎样?说出它们之间关系的公式?
③ “两端都在圆是的线段,叫做直径。”这句话对吗?为什么?
④ 用圆规画圆要按哪三个步骤?
⑤ 用圆规画圆要注意什么?
⑥ 圆的大小取决于什么?
五、作业安排。
练习十四第1、2、4题。
篇10:第三课时:圆的面积 教案教学设计(人教新课标六年级上册)
教学内容:课本例1,第70页练习十六的第1~5题。
教学目标:1.通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;
2.能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。
重点难点:圆面积计算公式。圆面积计算公式的推导。
教具、学具:圆的面积演示教具;厚纸做的圆及剪刀与胶布。
教学过程:
一、学前导入:
1.口算:
2.已知圆的半径是2.5分米,它的周长是多少?
我们已经学会圆周长的有关计算,这节课我们要学习圆的面积的有关知识。 (板书课题:圆的面积)
二、展示学习目标:
1.理解圆的面积公式的推到过程。
2.掌握求圆的面积的方法并能正确计算。
三、自学指导(一):
1.面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)
2.圆的面积指的是什么?。(圆所围成平面的大小,叫做圆的面积。)
提示:以前学过长方形面积的含义是指长方形所围成平面的大小。
四、动手操作,分组讨论:
把圆等分成16份,圆周部分近似看作线段,其中的一份是个近似的三角形,底是多少?(C/16) 高是多少?( r)
(1) 指导学生动手摆学具,并思考问题:
①你摆的是什么图形?
②你摆的图形的面积与圆的面积有什么关系?
③所摆图形的各部分相当于圆的什么?
④你如何推倒出圆的面积?
(学生动手摆学具,四人一组讨论,然后发言。)
说明:如果分成的份数越多,每一份就会越小,拼成的图形就会越接近长方形。结合教材68页上面的图加以说明。
讨论所得:从图中可以看出圆的半径是r,长方形的长是 ,宽是r。
长方形的面积=长×宽
圆的面积 = × =
如果用S表示圆的面积,那么圆的面积公式就是
五、巩固练习:
1.根据下面所给的条件,求圆的面积。
(1) 半径2分米。
(2) 直径10厘米。(先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)
2.练习二十七的第1~4题。
强调书写格式,运算顺序与单位名称。
总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式 计算。
六、作业安排:
练习十六第5、6题。
篇11:第二课时分数连乘应用题 教案教学设计(人教新课标六年级上册)
教学目标:使学生学会分析分数乘法应用题的数量关系,会应用一个数乘分数的意义解答两步计算的分数乘法应用题;培养学生解决问题的能力,提高学生的分析能力;进一步提高学生思考问题的逻辑性。
教学重,难点:掌握分数连乘的计算方法,突出一次计算,会解答分数连乘计算的实际问题。
教学过程:
(一)、导入
1、说出下面各题算式所表示的意义,再口算各题
1/2×2= 2/5×3= 2/3× 1/2= 3/4× 5=
2、说出下面各题中的两个量,应该把谁看着单位“1”。然后再给每题补充一个已知条件和一个问题,使它成为一道一步计算的分式乘法应用题。
母牛的头数是公牛的 1/3, 公牛头数的2/3 和母牛相等。
母牛的头数相当于公牛头数的 3/4, 公牛的头数相当于母牛头数的 1/2。
小组完成,集体订正。
(二)、教学实施
1.板书:公牛有30头,母牛的头数相当于公牛的1/3 ,小牛的头数相当于木牛的2/5 ,小牛有多少头?(认真读题,弄清题意)
2.指导学生画线段图:怎样用线段图表示已知条件和问题?要求小牛的头数,就要知道哪个量?(母牛的量)母牛的头数又和哪个数量有关?(公牛的头数)先画一条线段,表示哪个数量?(公牛的头数)崽化一条线段,表示哪个数量?(母牛的头数)画多长?根据什么?表示小牛的头数的线段应该怎样画?板书:
公牛: | | | | | | | | | | |
30头
母牛: | |
小牛:
?头
3.分析数量关系:
求小牛有多少头,必须先求什么?(母牛的头数)求母牛的头数应该怎样做?解答这道题需要几步?
4.列式解答:根据以上分析,这道题应该怎样解答?怎样列综合算式解答?板书:
30× 1/3× 2/5=
根据综合算式让学生说说每一步分别求的是什么,每一步分别是把哪个数量看着单位“1”。同时强调:分数连乘不必像整数,小数连乘那样,逐次计算,可以一次计算,遇到整数和分数相乘,要用整数与分数的分母约分,不能约分的直接与分数的分之相乘。
(三)巩固练习
完成第18页第4、5、9、10题,学生要说明每一步所表示的意义,每一步是把哪个数量看着单位“1”。
(四)课堂小结:解答两步计算的分数乘法应用题与解答一步计算的分数乘法应用题的相同点都是求一个数的几分之几是多少的应用题,不同点是分数连乘应用题要连续求一个数的几分之几是多少。解题关键是要找准每一步的单位“1”。
教学反思:
第三课时 求比一个数少几分之几的数是多少的实际问题
教学目标:使学生认识“求比一个数少几分之几的数是多少”的应用题的结构特征,学会利用线段图来分析数量关系,掌握解答这类应用题的思路和方法,并能正确列式计算;培养学生分析问题及综合运用所学知识的能力。
教学重、难点:了解“求比一个数少几分之几的数是多少”的应用题的结构特征;正确分析数量关系,比较熟练的画出线段图。
教学过程:(一)导入
板书:超市运来花生油和豆油共600桶,花生油的桶数占总桶数的 2/5。
(二)、教学实施
1.根据以上两个条件,我们可以提出以下数学问题:
花生油有多少桶?豆油有多少桶?豆油不花生油多多少桶?这些问题中哪个问题可以一步解决?明确任务,重点研究第二个问题
2.能用图表示豆油的部分吗?板书:
“1”
花生油占总桶数的
| | | | | |
豆油?桶
600桶
3.分析数量关系;看图想想,豆油占总桶数的几分之几?求豆油的桶数就是在求什么?交流讨论得出:豆油的桶数占总桶数的 ,求豆油的桶数也就是在求600的 是多少,用乘法计算。
4.列式: 600×(1 – 2/5 )或 600 - 600× 2/5
后者方法很容易理解,主要是从“总桶数 - 花生油的桶数 = 豆油的桶数”这个数量关系入手分析,也就是“和 - 一个量 = 另一个量”
5.出事例2: 明确题意:降低是指什么意思?(比原来少)减少了哪个量的 ?现在听到的声音分贝是原来噪音的几分之几?请个别学生尝试板演画线段图
“1”
原来:| | | | | | | |
85分贝
降低了
现在:| | | | | | | |
?分贝
根据线段图想到了什么?
3.分析数量关系:求现在听到的声音是多少分贝该怎样计算?先求什么,再求什么?(先求降低了多少分贝,再求现在听到的声音分贝是多少;还可以先求现在声音的分贝占原来声音分贝的几分之几,再求现在听到的声音是多少分贝。)
4.列式解答:
方法一:80 - 80× 1/8方法二: 80 ×(1 -1/8 )
=80-10 =80× 7/8
=70(分贝) =70(分贝)
(三)、深化练习
完成教材20 页的“做一做”;完成练习五的第2、4、5、8、10题
(四)课堂小结
今天我们学习了“求比一个数少几分之几的数是多少”的应用题,这类题需要两步完成,通过今天的学习我们能够准确地分析并计算出这类题。
课后反思:
篇12:第二课时:一个数乘分数 教案教学设计(人教新课标六年级上册)
教学目标:
1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。
2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。
教学难点:推导算理,总结法则。
教具准备: 多媒体课件
教学过程:
一、复习引入
1、计算下列各题并说出计算方法。
× × ×
2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。
3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。
二、新知探究
1、课件出示教学目标
理解一个数乘分数的意义。
掌握分数乘以分数的计算法则。
学会分数乘分数的简便计算。
2、教学例3
(1)出示条件和问题:每小时粉刷这面墙的 , 小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,学生列式: ×
(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的 ,第二步再涂出 小时粉刷这面墙的面积,即 的 ,由此得出 × 这个乘法算式表示“ 的 是多少?”
(3)根据直观的操作结果,得出 × = ,根据刚才操作的过程和结果推导出计算方法: × = = 。
(4)提出问题: 小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。
3、小结一个数乘分数的意义和计算方法。
(1)意义:一个数乘分数,表示求这个数的几分之几是多少。
(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。
4、教学例4
(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式: × 。
教学目标:
1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。
教学重点:
理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。
教具准备:多媒体课件
教学过程:
一、旧知铺垫
1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)
2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)
3、观察下面各题,先说说运算顺序,再进行计算。
(1)36×2+15 (2)5×6+7×3 (3)15×(34-27)
二、新知探究
1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。(课件出示)
(1) + × (2) × -
(3) - × (4) × +
2、复习整数乘法的运算定律
(1)乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
(2)这些运算定律有什么用处?你能举例说明吗?
(3)用简便方法计算:25×7×4 0.36×101
3、推导运算定律是否适用于分数。
(1)鼓励学生大胆猜测并勇于发表自己的个人意见。
(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?
(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)
(3)各四人小组汇报讨论和计算结果。
4、教学例6
(1)课件出示: × × ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)
(2)课件出示: + × ,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 ×4和 ×4都能先约分,这样能使数据变小,方便计算)
(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。
三、课堂检测
练习三的第一题,第三题。
(1) 先让学生观察题目中的已知数的特点,想想怎样做简便?应用
了什么运算定律。再独立完成练习。教师巡回指点,发现存有问题。
(2)小组内评比,解决疑难问题。
(3)教师讲解疑难。
四、课堂自我评价
每个学生对自己这节课的表现进行自我评价,并提出问题。
设计意图
体现学生学习的主动性和自主性。这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,再利用四人学习小组相互探讨,利用实例进行验证,最后在班级这个大氛围内最后验证。
教学后记
篇13:第二课时一个数除以分数 教案教学设计(人教新课标六年级上册)
【教学过程】:
一、复习巩固上节知识
1、怎样计算分数除以整数?
2、口算下面各题
1/6÷3 4/7÷2 3/5÷2 6/7÷2
二、探究新知
教学例三
1、出示例三 小明2/3小时走了2千米,小红5/12小时走了5/6千米,谁走的快些?
2、指导列式
(1) 谁走得快是比两人的什么?(速度)
(2) 怎样求二人的速度?(自己列出算式,并与你所在的小组的同学交流你的算式及列式依据)
(3) 汇报并板书:小明平均每小时走2÷2/3
小红平均每小时走5/6÷5/12
(4) 你能直接求出这两个算式商的大小吗?(不能)
(5) 你会求出这两个算式的商吗?为什么?(不能,因为除数是分数)
我们这一节就来探究一个数除以分数的计算的方法(板书:一个数除以分数)
3、探究计算法则:
探究计算2÷2/3
(1) 指导学生画线段示意图:
①你能用线段图表示这道题的信息吗?试试看(由于用2/3小时行2千米,求1小时行多少千米,学生在画图时有一定困难,画图前可让学生讨论以下问题
a、2/3小时表示什么?(1小时的2/3)
b、2/3小时行驶的路程和1小时所行路程有什么关系?(2/3小时行的路程=1小时所行路程的2/3即:1小时所行路程的2/3是2千米)
此时学生就可根据乘法应用题画图的方法画出线段图了。
②把你的画图与同组同学交流一下,看是否相同。如果不同,比比谁的画图能更好的反映信息。
③打开教材第30页,看看你们的图与教材的图是否相同。
(2) 探究怎样计算2÷2/3
独立阅读教材第30页,体会教材中的推导过程,并在小组内说一说
(3)师生互动
师生共同探究计算过程,分析算理
① 1小时走多少千米就是求3个1/3小时走多少千米,必须先求1个1/3小时走多少千米
② 由2/3小时行2千米,即2个1/3小时行2千米,可求1个1/3小时走多少千米,也就求2千米的1/2是多少 ? 2×1/2
③ 3个1/3就行2×1/2×3千米
④ 由此推出2÷2/3=2×1/2×3
⑤ 由于1/2中的分母2和第三个因数恰好是原来除法算式中的数,为了便于分析,可用乘法结合律让它先算,即
2÷2/3=2×1/2×3=2×(1/2×3)=2×3/2
⑥ 分析2÷2/3和2×3/2的特征,你们有什么发现?(引导学生得出除以一个不等于0的数,等于乘以这个数的倒数。)
4、你们能用这个规律计算5/6÷5/12吗?试一试,并把你的计算与同组人交流。
三、课堂练习:
1、教材第31页“做一做”
2、练习八第4题
四、板书设计:
一个数除以分数
2÷2/3=2×1/2×3=2×3/2=3(千米)
简写:2÷2/3=2×3/2=3(千米)
5/6÷5/12=5/6×12/5=2(千米)
第三课时 分数四则混合运算
【教学过程】:
一、复习:
1、一个数除以一个不等于0的数应怎样计算?
2、计算:
24÷5/6 2/3÷3/4 5/7÷25/14
二、探究新知:
1、教学例4(1):混合运算应用题
小红用长8米的彩带做了一些花,每朵花用2/3米的彩带。他把其中的4朵送给了同学,小红还剩几朵花?
(1) 讨论问题
① 你从题中获得了哪些信息?
② 要求小红还剩几朵花,先应求什么?
③ 怎样列式?
(2) 讨论要求:
① 先在小组内讨论问题
② 独立列算式,并在小组内交流
(3) 汇报讨论结果并板书
8÷2/3-4
=8×3/2-4
=12-4
=8(朵)
答:小红还剩8朵花。
2、教学例四(2)四则混合运算题
(2)计算1/5÷(2/3+1/5)×15
①先按运算顺序计算出题目的得数
③ 在上面的算式里。如果要先计算(2/3+1/50×15,就要用到中括号“[]”。在用到中括号后,就成了新算式,试一试,写出这个新算式。学生写出后教师板书:
1/5÷[(2/3+1/5)×15]
(1) 先议一议运算顺序,再独立计算,并在小组内交流。
(2) 议一议:一个算式里,如果既有小括号,又有中括号,应怎样计算?
(3) 在学生充分讨论归纳后,教师板书:
先算小括号里面的,再算中括号里面的。
三、课堂练习:
四、教科书第34页“做一做”
五、板书设计:
篇14:第三课时:圆的周长和面积/第四课时:圆的周长(2) 教案教学设计(人教新课标六年级下册)
(1)圆的周长
教学目标:
1、使学生理解圆的周长和圆周率的意义,理解并掌握圆的周长公式,并能正确计算圆周长。
2、培养学生的观察、比较、概括和动手操作的能力。
3、对学生进行爱国主义教育。
教学重点:
圆的周长和圆周率的意义,圆周长公式的推导过程。
教学难点:
圆周长公式的推导过程。
教学准备:多媒体课件、实物投影、圆、绳子、直尺、圆规等。
教学过程:
一、情境创设。
1、课件出示一个正方形花坛和一个圆形花坛。
。
问:这是什么图形?围着花坛跑一圈,哪个长哪个短呢?
学生想办法:(1)看哪个跑得步子多。
(2)计算它们的周长,进行比较更为简便。
2、什么是长方形的周长?怎样计算?这个长方形的周长与长和宽有什么关系? C=(a+b)×2
3、什么是圆的周长?
让学生上前比划,圆的周长在那?那一部分是圆的周长?
得出定义:围成圆的曲线的长叫做圆的周长。
二、新知探究
(一)圆周长的公式推导。
1、探索学习。
(1)你可以用什么办法知道一个圆的周长是多少?
(2)学生各抒己见,分别讨论说出自己的方法:
A、用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,
即可得出圆的周长。
B、把圆放在直尺上滚动一周,直接量出圆的周长。
C、用一条小线的一端栓上小球在空中旋转。这样你能知道空中出现的圆的周长吗?
用滚动,绳测的方法可测量出圆的周长,但是有局限性。今天我们来探讨出一种求圆周长的普遍规律。
2、动手实践。
(1)4人小组,分别测量学具圆,报出自己量得的直径,周长,并计算周长和直径的比值。
(2)引生看表,问你们看周长与直径的比值有什么关系?
(3)你有办法验证圆的周长总是直径的3倍多一点吗?
(4)阅读课本P63,介绍圆周率,及介绍祖冲之。
∏=3.1415926535…… 是一个无限不循环小数。
3、得出计算公式。
圆的周长=圆周率×直径
C = ∏d
C = 2∏r
(二)、解决新问题。
1、解决情境题中的问题。
学生独立完成,小组内订正。
2、教学例1 : 圆形花坛的直径是20m,它的周长是多少米?小自
行车车轮的直径是50m,绕花坛一周车轮大约转动多少周?
小组内想出解决的办法,并在全班交流。
第一个问题: 已知 d = 20米 求:C = ?
根据 C =πd
20×3.14=62.8(m)
第二个问题: 已知: 小自行车d = 50cm
先求小自行车C = ? c=πd
50cm=0.5m
0.5×3.14=1.57(m)
再求绕花坛一周车轮大约转动多少周?
62.8 ÷1.57=40(周)
答:它的周长是62.8米。绕花坛一周车轮大约转动40周。
三、当堂测评
1、求下列各题的周长。(60分)
书本65页练习十五的第1题
2、判断正误。(40分)
(1)圆的周长是直径的3.14倍。 ( )
(2)在同圆或等圆中,圆的周长是半径的6.28倍。 ( )
(3)C =2πr =πd 。 ( )
(4)半圆的周长是圆周长的一半。 ( )
四、课堂质疑。
通过这节课的学习你都知道了什么?还有什么不懂得呢?
设计意图:
这节课我从以下几处着手:
1、来源于生活,回归于生活。课前从生活中的实际问题入
手,提高学生学习兴趣,激起求知欲。在得出公式时及时解决问
题,体现数学课的应用价值。
2、重视动手操作,深刻理解公式。对于公式的探究,我改变
以往的教师演示教学法,而是让学生通过具体的动手操作,让他们
体会知识概念的形成。教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。
教学后记:
第四课时:圆的周长(2)
教学目标:
1、通过教学使学生学会根据圆的周长求圆的直径、半径。
2、培养学生逻辑推理能力。
3、初步掌握变换和转化的方法。
教学重点:求圆的直径和半径。
教学难点:灵活运用公式求圆的直径和半径。
教具准备:多媒体课件、实物投影设备、挂钟。
教学过程:
一、旧知铺垫(课件出示)
1、口答。
4π 2π 5π 10π 8π
2、求出下面各圆的周长。
C=πd c=2πr
=3.14×2 =2×3.14×4
=6.28(厘米) =8×3.14
=25.12(厘米)
二、新知探究。
1、提出研究的问题。
(1)下面公式的每个字母各表示什么?这两个公式又表示什么?
C=πd C=2πr
(3)根据上两个公式,你能知道:
直径= 半径=
学生根据前面的公式推出:d= C/π r= C/2π
2、学习练习十四第2题。
(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)
学生根据公式独立解答,教师巡回指点,照顾差生。
小组代表汇报,全班交流。
已知:c=3.77m 求:d=?
解法1 解法2 解:设直径是x米。
3.77÷3.14 3.14x=3.77
≈1.2(米) x=3.77÷3.14
x≈1.2
(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)
已知:c=1.2米 r=c÷(2Π) 求:r=?
解:设半径为x米。
3.14×2x=1.2 1.2÷2÷3.14
6.28x=1.2 = 0.191
x=0.191 ≈0.19(米)
x≈0.19
三、当堂测评(课件出示)
1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?(20分)
2、求下面半圆的周长,选择正确的算式。(20分)
⑴ 3.14×8
⑵ 3.14×8×2
⑶ 3.14×8÷2+8
3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?(30分)
(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的 ,也就是走了整个圆的 。而钟面一圈的周长是多少?
(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的 ,也就是走了整个圆的 。则:钟面一圈的周长是多少?
45分钟走了多少厘米?
4、下图的周长是多少厘米?你是怎样计算的?(30分)
学生独立完成,教师巡回查看,发现疑难。
教师讲评,小组内打分,明确错误原因。
四、回放知识目标,学生谈掌握情况。
设计意图:
(1)重视公式的推导,提高学生推理、探究能力。
(2)通过当堂测评,丰富课堂知识面,了解学生对知识的掌握情况。
教学后记:
第五课时:练习课
★第三课时:圆的周长和面积(1)圆的周长 教案教学设计(人教新课标六年级上册)
文档为doc格式