以下是小编精心整理的高等数学教学课件,本文共20篇,希望对大家有所帮助。
篇1:高等数学教学课件
一、重视绪论课,激发学生对高等数学的学习热情:
开篇第一课要首先简单介绍微积分的发展历史,从欧多克斯、阿基米德、牛顿、莱布尼兹等数学家对发现微积分的贡献,谈到认知世界的一般规律,即感性到理性、从定性到定量、从常量到变量,结合我国庄子的《天下篇》、刘徽的“割圆求周”到赵州桥的建造,都深刻地揭示了微积分中的“以直代曲”“不变代变”的辩证思想。同时介绍本课程的研究对象、研究内容和研究工具,将主要内容用一条线穿起来给学生一个整体印象。明确告诉学生微积分对自然科学的发展起了决定性的作用。
二、通过教学使学生逐步树立学好高等数学的信心
近几年来我主要从事自考院高等数学的教学工作,针对学生的数学基础比较薄弱,过关率不高,有很多学生一开始就对学好高等数学没有信心等情况。我决定,必须因材施教,在课堂上应尽可能的用通俗易懂的语言来描述数学概念,让学生逐步明白学习高等数学不是简单地从“高三”到“高四”,更主要是思维方式的转变。使学生明白基础不好未必就学不好高等数学,只要方法得当是可以学好高等数学的。
三、注重教学效果
加强对学生的了解与交流,建立良好的师生关系,有助于将单纯的教育教学过程变成师生平等对话、合力互动、教学相长的友好合作的过程。心理学认为:满足人们对理解、尊重和追求的需要,就能激发人的潜能,使人有一股内在的动力,朝所期望的目标前进。因此教师要树立以学生为主体的生本教育观念,要尊重学生、赏识学生、鼓励学生、相信学生,达到激发学生学习兴趣的目的。另外,教师要注意调控好个人的情绪,不能随意把自己的喜怒哀乐带进教室。良好的教学情绪,积极的教学情感,能唤醒学生愉快的情绪体验,使之精力充沛,兴趣盎然。
好的提问方式常常能激起学生的求知欲和探索欲,引发辩论,引导学生全身心地投入到深层次的思维活动中,从而增强学生的学习兴趣。为此,可以通过以下两个途径:
1、重视预习。预习是学习过程中很重要的一个环节,一方面让学生带着问题来听课,以提高听课的效率。更重要的是逐步培养学生的自学能力。在我看来,大学教育的主要的目的之一就是培养学生的自学能力。教师在每次授课结束时明确提出下次授课的具体内容和预习要求,让学生对将要学习的内容有问可提,才真正达到预习的目的。
2、引导学生分析归纳所提的问题,并学会做出恰当的评价。以鼓励为主,学生提的问题越是多样就表明他们预习效果越好,然后鼓励他们把这些问题分类,教师因势利导地再提出新的问题,并在讲解过程中逐步使学生理解所提问题的价值,分析问题之间的关系,了解其中的含义。
四、重视数学概念和定理的讲述
在讲叙数学概念和定理时,不仅要向学生传授这些知识,还要向他们传授这种抽象、概括问题的思维方法,让学生学会从具体内容中抽象概括,找出事物的本质。例如,在建立定积分概念时,通过对两个具体问题一一曲边梯形的面积和变速直线运动的路程的计算,可以看到:前者是几何量,后者是物理量,实际意义并不相同,但它们的数学思想和计算方法是相同的。排除其具体内容,抽出其本质特征,即单从数量关系看,都具有一种相同结构的特定形式,从而抽象概括出定积分的普遍性定义。
分析与综合是数学学习中最常用的方法。分析是从未知“看”需知,“逐步靠拢到”已知的过程;而综合则是从已知“看”可知,“逐步推到”未知的过程。两者对立统一,它们相互依存、相互转化。所以在讲解一些证明或者比较复杂的问题时,两者一定要结合着用,先用分析法来探求解题的途径,再用综合法加以叙述。比如在证明一些中值定理的命题时,我们常用的“构造辅助函数法”,就是利用这种思路去找辅助函数证明结论的。
其次要注重培养学生的发散性思维。发散性思维是一种不依常规、寻求变易、从多方面思索答案的思维方式。在这种思维方式的驱动下,学生思想活跃、勇于探索、善于发现.对学生发散性思维的培养应体现在:(1)在问题求解前要尽可能提出许多设想,多种解法,充分调动学生的积极性,启发他们从多方面去探求原因,抓住问题的关键,找出其最好的解答方法。(2)在求解问题的过程中重点要放在对题目的分析过程上,把教师精讲和学生的多练结合起来,选择有代表性的范例,从多方面分析题目的解题思路和解答方法,尽量做到一题多解、一题多变、一题多问,以加深学生对所学知识的理解,激发学生的发散性思维。?
五、要重视习题课
习题课是高等数学教学的一个重要环节,是对所学知识的复习、巩固、运用和深化。通过上习题课可逐步培养学生的运算能力、抽象概括能力和综合运用所学知识分析问题、解决问题的`能力。如何才能上好习题课呢,我以为应注重下面几点。
1、首先应注重培养学生的逻辑思维能力。逻辑思维能力包括抽象与概括的能力、分析与综合的能力和归纳与演绎的能力。习题课上教师通过具体的例题对高等数学中的概念、定理和法则进行梳理,使学生加深对各个知识点的联系。
2、此外,在习题课上,对所学的基本定理、基本概念要重点强调它们的条件、应用范围及其相互关系,使其在学生思维中形成一个完整有机的知识体系,为培养学生的创造性思维创造有利条件。新旧知识要联系着讲,不仅仅要讲这一单元的知识,也要注重对以前单元知识的复习。随着时间的推移,有些知识可能会遗忘,若在讲题的过程中,把以前单元的知识也捎带着复习一下,不仅可以增加学生的记忆效果,还会加深学生对本单元知识的理解,起到温故而知新的作用。? 总之,数学学科自身的特点决定了要学好它就必须对它产生兴趣。为此,需要教师在教学过程的各个环节中,根据学生的具体情况和心理特点,因材施教,采用多样化的教学方法和技巧,有计划、有目的地培养和激发学生的学习兴趣,最终达到较好的教学效果。
篇2:高等数学课件
关于高等数学课件
学习目标:
1.理解和掌握比例的意义,了解比例和比的区别。
2.能根据比例的意义正确判断两个比能否组成比例。
3.探索国旗中的数学知识,渗透爱国主义教育。
教学重点:理解比例的意义。
教学难点:应用比例的意义判断两个比能否组成比例。
教学过程:
一、创设情境
1.请同学们回忆一下比的知识,你能说说什么叫做比?(举例说明)
教师板书学生举的例子并注明比的各部分的名称。
2.我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让学生求出它们的比值。
12:16
3/4: 1/8
4.5:2.7
10:6
学生求出各比的比值后,再提问:你有什么发现?
(4.5:2.7的比值和10:6的比值相等。)
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)
[设计意图:在学习比例之前,就强调了两个比的比值相等,为学习新知识提供了“最佳关系”和知识的“固定点”。
二、自主探究,构建新知
1.学生观察课本情境图,激发爱国情操。
四幅情境图分别呈现的是什么情景?
天安门升国旗仪式,校园升旗仪式,教室场景,国家间的会议
师:四幅不同的场景,都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽是多少吗?
2.板书国旗的长和宽,并提出问题。
天安门升国旗仪式:长5米,宽10/3米。
校园升旗仪式:长2.4米,宽1.6米。
教室场景:长60厘米,宽40厘米。
签约仪式:长15厘米,宽10厘米。
师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?
师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?
3.学生探索,发现问题。
师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?
学生自主观察、计算,发现国旗的长和宽的比值相等。
(1)比较学校操场上和教室里的国旗长与宽的比值。
2.4:1.6=3/260:40=3/2
2.4:1.6=60:40
(2)在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?学生回答,教师板书(说明:四面国旗的大小不同,但因为是按照一定的比制作的,它们的长与宽的比值是相等的。)
像这样表示两个比相等的式子叫做比例。
[设计意图:为学生提供四个实际情境图,创设这个情境有五方面的考虑:一是使学生通过现实情境体会比例的应用;二是“四面国旗的大小不同,但因为是按照一定的比制作的,它们的长与宽的比值是相等”,由此引入比例意义的教学;三是依据四面国旗长与宽可以组成多个比例式,为比例意义的教学提供较多的资源;四是为以后学习图形的放大与缩小做铺垫;五是有助于在教学中渗透爱国主义教育,注重了“数学化”和“生活化”的结合,使这节概念课不是对知识简单的复述和再现,恰恰是通过教师的“再创造”,为学生展现出了“活生生”的思维活动过程,让学生自己观察比较,总结得出比例的意义。让学生通过自己的'分析、思考、概括出了较为简洁的数学概念,学生感受到成功的喜悦,参与课堂的主动性被充分调动。]
4.我们也学过不同的两个量也可以组成一个比,如:
一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
时间(时)25
路程(千米)80200
指名学生读题。
教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。
这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问边填写表格。)
“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答,板书:
第一次所行驶的路程和时间的比是80:2
第二次所行驶的路程和时间的比是200:5
让学生算出这两个比的比值。
指名学生回答,教师板书:80:2=40,200:5=40。
让学生观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40,这两个比相等。)
教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。
[设计意图:应用上面的方法,在学生原有知识的基础上提出新问题,使学生由感性认识过渡到理性认识。引导学生自己思考解决问题,用自己理解后的语言叙述比例意义,培养了学生的思维能力,使学生既长知识又长智慧。
指着比例式,引导学生观察得知,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?
5.比较“比”和“比例”两个概念。
教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
比一个式子两数相除有两项
比例一个等式两个比相等有四项
三、练习反馈,巩固新知
做P33“做一做”。
让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。
[设计意图:通过这一组题的练习,增强了新知识的清晰度与稳定性,有利于学生掌握比例的意义,层次清楚。
四、拓展迁移,升华新知
1、填空。
5:2=80:()
2:7=:5
1.2:2.5=:4
[设计意图:此题有了数的形式的变化,兼备有意设难、激发挑战、活跃气氛的功效。
2、下面每组中的四个数能组成比例吗,把组成的比例写出来。(能写几个就写几个)
(1)4,5,12和15
(2)2,3,4和6
[设计意图:边讲边练逐步延伸了知识。提出条件让学生自己组成比例,有利于激发学生学习兴趣和调动学生思考的积极性。同时培养了思维的深刻性和灵活性。
五、总结
这节课你有什么收获?
篇3:高等数学学习课件
高等数学学习课件
高数学习技巧:【学霸版】
1 认真听老师讲课,注意记笔记,不要忽略老师上课讲的任何一道习题,它可能就是你以后考试的题目。
2配套的辅导书最好每一道题目都做几遍,反复做,多理解。太难的题目不要太纠结,知道精髓就行。
3作业认真完成,认真改错。
4有空闲可以买辅导书,做一做题目。
5定期翻看笔记,加强印象。
6提前预习
高数学习技巧:【学渣版】
1上课认真听讲,把老师的笔记都腾到笔记本,把所讲的例题都弄懂。
2作业独立完成,不会的问同学,一定要把每道题都弄懂,因为考试会出练习册上的原题和例题。
3考前把作业的题目再刷一遍,还有历年的高数试卷,出原题或类似的题目的可能性很大哦~还有考前一定一定跟着老师的重点走,它是复习的曙光啊!~
高数学习技巧:【实用版】
一、摒弃中学的学习方法,尽快适应环境
一个高中生升入大学学习后,不仅要在环境上、心理上适应新的学习生活,同时学习方法的改变也是一个不容忽视的方面。
从中学升入大学学习后,在学习方法上将会遇到一个比较大的转折。首先是对大学的教学方式和方法会感到很不适应。这在高等数学课程的教学中反应特别明显,因为它是一门对大一新生首当其冲的理论性较强的基础理论课程。而学生正是习惯于模仿性和单一性的学习方法。这是从小学到中学的教育中长期养成的,一时还难以改变。
中学的教学方式和方法与大学有质的差别,中学的学习学生是在教师的直接指导下进行模仿和单一性的学习,大学则是在教师的指导下进行创造性的学习。【例如,中学的数学课教学完全是按教材的内容进行的,老师在课堂上讲,学生听,不要求学生记笔记。教师授课慢,讲得细,计算方法举例多,课后只要求学生能模仿课堂上所讲的内容解决课后习题就可以了,没有必要去钻研教材和其他参考书(为了高考增强学生的解题能力而选择一些参考书,仅是为了训练学生的解题能力的需要)】。而大学高等数学课程的学习,教材仅是作为一种主要的参考书,要求学生以课堂上老师所讲的重点和难点为线索,课后去钻研教材和阅读大量的同类参考书,然后去完成课后习题。就这样反复地进行创造性学习。这是一种艰苦的脑力劳动,需要学生能反复地、自觉地进行学习。还要在松散的环境中能约束自己,大学生活是人生的一大转折点。大学时期注重于培养同学们的独立生活、独立思考、独立分析问题和解决问题的能力,而不像中学那样有一个依赖的环境。高等数学与高中数学相比有很大的不同,内容上主要是引进了一些全新的数学思想,特别是无限分割逐步逼近,极限等;从形式上讲,学习方式也很不一样,特别是一般都是大班授课,进度快,老师很难个别辅导,故对自学能力的要求很高。中学时期主要是老师领着学,学生只需要跟着老师的指挥棒走就可以了,而在大学时主要靠自学,教师只起一个引导的作用。新同学应尽快适应大学生活,形成一个良好的开端,这对四年的大学生涯是有益的。
二.注意中学数学和《高等数学》的区别与联系
中学数学课程的中心是从具体数学到概念化数学的转变。中学数学课程的宗旨是为大学微积分作准备。学习数学总要经历由具体到抽象、由特殊到一般的渐进过程。由数引导到符号,即变量的名称;由符号间的.关系引导到函数,即符号所代表的对象之间的关系。高等数学首先要做的是帮助学生发展函数概念——变量间关系的表述方式。这就把同学们的理解力从常量推进到变量、从描述推进到证明、从具体情形推进到一般方程,开始领会到数学符号的威力。但《高等数学》的主要内容是微积分,它继承了中学的训练,它们之间有千丝万缕的联系。
三.尽快适应《高等数学》课程的教学特点
为了适应21世纪高等数学课程的教学改革,高等数学课程的教学也发生了很大的变化,在传统的教学手段的基础上,采用了更加具体化、形象化的现代教育技术,这也是一般中学所没有的,因此,同学们在进入大学以后,不仅要注意高等数学课程的内容与中学数学的区别与联系,还要尽快适应高等数学课程的新的教学特点。认真上好第一节高等数学课,严格按照任课老师的要求去做。若能坚持做到,课前预习,课上听讲,课后复习,认真完成作业,课后对所学的知识进行归纳总结,加深对所学内容的理解,从而也就掌握了所学的知识,就不难学好高等数学这门课。有些同学就是没有把握好自己,一看高等数学一开始的内容和中学所学内容极其相似,就掉以轻心,认为自己看看就会了,要么不听课,要么不完成作业,结果导致后面的章节听不懂,跟不上,甚至有的同学就一直跟不上,学期末成绩不理想,甚至不及格。
四.掌握正确的学习方法
由于《高等数学》自身的特点,不可能老师一教,学生就全部领会掌握。一些内容如函数的连续与间断,积分的换元法、分步积分法等一时很难掌握,这需要每个同学反复琢磨,反复思考,反复训练,锲而不舍。通过正反例子比较,从中悟出一些道理,才能从不懂到一知半解到基本掌握。这里仅结合一般学习方法,谈一点学习《高等数学》的方法,供参考。
第一,要勤学、善思、多练。所谓学,包括学和问两方面,即向教师,向同学,向自己学和问。惟有在“学中问”和“问中学”,才能消化数学的概念、理论、方法;所谓思,就是将所学内容,经过思考加工去粗取精,抓本质和精华。华罗庚“抓住要点”使“书本变薄”的这种勤于思考、善于思考、从厚到薄的学习数学的方法,值得我们借鉴;所谓习,就《高等数学》而言,就是做练习,这是数学自身的特点。练习一般分为两类,一是基础训练练习,经常附在每章每节之后,这类问题相对来说比较简单,无大难度,但很重要,是打基础部分。二是提高训练练习,知识面广些,不局限于本章本节,在解决的方法上要用到多种数学工具。数学的练习是消化巩固知识极重要的一个环节,舍此达不到目的。
第二,狠抓基础,循序渐进。任何学科,基础内容常常是最重要的部分,它关系到学习的成败与否。《高等数学》本身就是数学和其他学科的基础,而《高等数学》又有一些重要的基础内容,它关系到整个知识结构的全局。以微积分部分为例,极限贯穿着整个微积分,函数的连续性及性质贯穿着后面一系列定理结论,初等函数求导法及积分法关系到今后各个学科。因此,一开始就要下狠功夫,牢牢掌握这些基础内容。在学习《高等数学》时要一步一个脚印,扎扎实实地学和练。
第三,归类小结,从厚到薄。记忆总的原则是抓纲,在用中记。归类小结是一个重要方法。《高等数学》归类方法可按内容和方法两部分小结,以代表性问题为例辅以说明。在归类小节时,要特别注意有基础内容派生出来的一些结论,即所谓一些中间结果,这些结果常常在一些典型例题和习题上出现,如果你能多掌握一些中间结果,则解决一般问题和综合训练题就会感到轻松。
第四,精读一本参考书。实践证明,在教师指导下,抓准一本参考书,精读到底,如果你能熟读了一本有代表性的参考书,再看其它参考书就会迎刃而解了。
第五,注意学习效率。数学的方法和理论的掌握,常常需要做到熟能生巧、触类旁通。人不可能通过一次学习就掌握所学的知识,需要有几个反复。所谓“学而时习之”、“温故而知新”都是指学习要经过反复多次。《高等数学》的记忆,必须建立在理解和熟练做题的基础上,死记硬背无济于事。
第六,掌握学习规律
1.书:课本+习题集(必备),因为学好数学绝对离不开多做题,建议习题集最好有本跟考研有关的,这样也有利于你做好将来的考研准备。
2.笔记:尽量有,我说的笔记不是指原封不动的抄板书,那样没意思,而且不必非单独用个小本,可记在书上。关键是在笔记上一定要有自己对每一章知识的总结,类似于一个提纲,(有时老师或参考书上有,可以参考),最好还有各种题型+方法+易错点。
3.上课:建议最好预习后听,听不懂不要紧,很多大学的课程都是靠课下结合老师的笔记自己重新看。但是记住:高数千万别搞考前突击,绝对行不通,所以平时你就要跟上,步步尽量别断层。
4.学好高数=基本概念透+基本定理牢+基本网络有+基本常识记+基本题型熟。数学就是一个概念+定理体系(还有推理),对概念的理解至关重要,比如说极限、导数等,你既要有形象的对它们的理解,也要熟记它们的数学描述,不用硬背,可以自己对着书举例子,画个图看看(形象理解其实很重要),然后多做题,做题中体会。建议你用一只彩笔专门把所有的概念标出来,这样看书时一目了然(定理用方框框起来)。基本网络就是上面说的笔记上的总结的知识提纲,也要重视。基本常识就是高中时老师常说的“准定理”,就是书上没有,在习题中我们总结的可以当定理或推论用的东西,还有一些自己小小的经验。这些东西不正式但很有用的,比如各种极限的求法。
这些都做到了,高等数学应该学得不会差了,至少应付考试没问题。如果你想提高些,可以做些考研的数学题,体会一下,其实也不过如此,并不象你想象的那么难。还可以看些关于高数应用的书,其实数学本来就是从应用中来的,你会知道高等数学真的很有用。
篇4:大学高等数学课件
42句有关高数知识点的口诀:
口诀1:函数概念五要素,定义关系最核心。
口诀2:分段函数分段点,左右运算要先行。
口诀3:变限积分是函数,遇到之后先求导。
口诀4:奇偶函数常遇到,对称性质不可忘。
口诀5:单调增加与减少,先算导数正与负。
口诀6:正反函数连续用,最后只留原变量。
口诀7:一步不行接力棒,最终处理见分晓。
口诀8:极限为零无穷小,乘有限仍无穷小。
口诀9:幂指函数最复杂,指数对数一起上。
口诀10:待定极限七类型,分层处理洛必达。
口诀11:数列极限洛必达,必须转化连续型。
口诀12:数列极限逢绝境,转化积分见光明。
口诀13:无穷大比无穷大,最高阶项除上下。
口诀14:n项相加先合并,不行估计上下界。
口诀15:变量替换第一宝,由繁化简常找它。
口诀16:递推数列求极限,单调有界要先证,两边极限一起上,方程之中把值找。
口诀17:函数为零要论证,介值定理定乾坤。
口诀18:切线斜率是导数,法线斜率负倒数。
口诀19:可导可微互等价,它们都比连续强。
口诀20:有理函数要运算,最简分式要先行。
口诀21:高次三角要运算,降次处理先开路。
口诀22;导数为零欲论证,罗尔定理负重任。
口诀23:函数之差化导数,拉氏定理显神通。
口诀24:导数函数合(组合)为零,辅助函数用罗尔。
口诀25:寻找ξη无约束,柯西拉氏先后上。
口诀26:寻找ξη有约束,两个区间用拉氏。
口诀27:端点、驻点、非导点,函数值中定最值。
口诀28:凸凹切线在上下,凸凹转化在拐点。
口诀29:数字不等式难证,函数不等式先行。
口诀30:第一换元经常用,微分公式要背透。
口诀31:第二换元去根号,规范模式可依靠。
口诀32:分部积分难变易,弄清u、v是关键。
口诀33:变限积分双变量,先求偏导后求导。
口诀34:定积分化重积分,广阔天地有作为。
口诀35:微分方程要规范,变换,求导,函数反。
口诀36:多元复合求偏导,锁链公式不可忘。
口诀37:多元隐函求偏导,交叉偏导加负号。
口诀38:多重积分的计算,累次积分是关键。
口诀39:交换积分的顺序,先要化为重积分。
口诀40:无穷级数不神秘,部分和后求极限。
口诀41:正项级数判别法,比较、比值和根值。
口诀42:幂级数求和有招,公式、等比、列方程。
篇5:高等数学优秀课件
教材分析:
圆是小学数学平面图形教学中唯一的曲线图形。本课是在学生了解和掌握了圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。教材将理解“化曲为直”的转化思想贯穿在活动之中。通过一系列的活动将新的数学思想纳入到学生原有的认知结构之中,从而完成新知的建构过程。学好这节课的知识,对今后进一步探究“圆柱圆锥”的体积起着举足轻重的作用。
【教学目标】
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学重点】
探索并掌握圆的面积公式。
【教学难点】
探索推导圆的面积公式,体会“化曲为直”思想。
【教具准备】
投影仪,多煤体课件,圆形纸片。
【学具准备】
圆形纸片。
【教学设计】
一、创设情境。提出问题
(投影出示P16中草坪喷水插图)这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)
二、探究思考。解决问题
1、估计圆面积大小
师:请大家估计半径为5米的圆面积大约是多大?(让同学们充分发挥自己感官,估计草坪面积大小)------
2、用数方格的方法求圆面积大小
① 投影出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。
② 指明反馈估算结果,并说明估算方法及依据。
1、根据圆里面的正方形来估计
2、用数方格的方法来估计。
三、探索规律
1、由旧知引入新知
师:大家还记得我们以前学习的平行四边形、三角形、梯形面积分别是由哪些图形的面积来的吗?(学生回答,教师订正。那么圆形的面积可由什么图形面积得来呢。
2、探索圆面积公式
师:拿出我们剪好的图形拼一拼,看看能成为一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)
指名汇报(学生在说的同时教师注意板书)
请大家来观察一下刚才拼成的哪个图形更接近长方形呢?[等分为32份的更接近长方形。]
想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形呢?[等分的份数越多,就越接近长方形。]
观察黑板上的板书,你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。(生说,教师板书)
因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底×高,那么圆形面积公式=圆周长的1/2×半径即可。
因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。
用字母怎么表示圆面积公式呢?
S=∏RR还可以写作S=∏R2
师:这说明求圆的面积只需要知道半径即可,那我只告诉你们圆的直径又如何求出圆的面积呢,请大家自己把这个公式写出来。教师板书。
3、应用圆面积公式
根据下面的条件,求圆的面积。
r=6厘米 d =0.8厘米 r=1.5分米
师:现在请大家用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田。(学生独立解答,指名回答)
四:拓展应用
习题设计:
1.填空:
(1)圆的周长计算公式为( ),圆的周长计算公式为( )。
(2)一个圆的半径是3厘米,求它的周长,列式( ),求它的面积,列式( )。
(3)一个圆的周长是18.84分米,这个圆的直径是( )分米,面积是( )平方分米。
2.判断:
(1)半径是2厘米的圆,周长和面积相等( )[让孩子知道得数虽然相同,但计量单位不同,不能进行比较。]
(2)一个圆形纽扣的半径是1.5厘米,它的面积是多少?列式:3.14X1.52=3.14X3=9.42平方厘米。( )。[此题在计算1.52的时候把1.52看作1.5X2,而1.52=1.5X1.5]
(3)直径相等的两个圆,面积不一定相等。( )
(4)一个圆的半径扩大3倍,面积也扩大3倍。( )
(5)两个不一样大的圆,大圆的圆周率比小圆的圆周率大。( )
3.实际应用:一块圆形铁板的半径是3分米,它的面积是多少平方分米?
4.要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?
(1)可测圆的半径,根据S=πr2求出面积。
(2)可测圆的直径,根据S=π(d/2)2求出面积。
(3)可测圆的周长,根据S=π·(c/2π)2求出面积。
实践练习:
圆形的物体生活中随处可见,公园的露天广场是个圆形,怎样才能计算广场的面积呢?[让学生讨论,你有哪些方案?并留给学生课后去实践。这样,使学生意犹未尽,感到课虽尽,但疑未了,为下一课已知周长求面积埋下伏笔。]
修改稿:
一、创设情境。提出问题
(投影出示P16中草坪喷水插图)
师:同学们,这是现代化农田里的一个自动喷水头,喷射的距离为5米,你们谁知道喷水头喷射一周,我们得到了一个什么样的图形?
学生回答:圆形]
[课件演示喷射过程,理解什么是圆的面积]
你们想知道这样一个自动喷水头它喷射一周浇灌的农田面积是多少吗?这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)
第二环节估计圆面积大小的两种设计哪个好呢?
方案一:出示课件::
用边长等于半径的小正方形透明塑料片,直接度量圆面积,(如图)观察后得出圆面积比4个小正方形小,好象又比3 个小正方形大一些。初步猜想:圆的面积相当于r2的3倍多。
由此看出,要求圆的精确面积通过度量是无法得出的。
三、探索规律
1、由旧知引入新知
我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形, 大家还记得我们以前学习的平行四边形、三角形、梯形面积分别是由哪些图形的面积推导来的吗?(学生回答后教师课件演示平行四边形,三角形,梯形面积推导过程。)
今天我们能不能也用这样的方法推导出圆面积的计算公式呢?
[这一探索性地设问,使学生产生悬念,引入深思。它与得出圆面积计算公式后的验证,前后呼应,融为一体。使学生对圆面积与r2的倍数关系,获得十分鲜明的表象,而且有助于避免与圆周长的计算公式(C=2πr)产生混淆。]
2、探索圆面积公式
(1) 学生操作
师:请大家拿出准备好的16等分的圆,和小组同学一起剪一剪,拼一拼,看看能拼成一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)
(2)指名汇报
初步汇报:你们把圆转换成了什么图形?(在学生说的同时教师课件演示)
学生可能出现的4种情况:
(3)操作反思
小组内拿出32等分的圆形,剪一剪,拼成一个长方形,和用16等分的圆拼成的长方形比较你发现了什么? [32等份后拼成的图形更接近于长方形]
如果把一个圆等分成64份、128份……拼成的长方形会怎样呢?(微机显示)(圆等分的份数越多,拼成的图形越接近于长方形。)
(4)转化思考:近似长方形的长相当于圆的哪一部分?怎样用字母表示?
(圆周长的一半,C/2=πr),它的宽是圆的哪一部分?(半径r)[课件演示]
(5)观察汇报: 你能否由长方形的面积公式得到圆形面积公式呢?并说出你的理由。 [ 因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。]
(生说,教师板书)用字母怎么表示圆面积公式呢?
[指导学生自己动手,并通过微机演示,把一个圆剪拼成近似的长方形,从长方形面积公式,推出圆面积计算公式。这样,可以培养学生初步的空间想象力,也可以渗透以直代曲的辩证唯物主义观点。] (6)拓展探究:根据上面的由长方形的面积计算公式推导出来圆的面积计算公式,你是否受到了启发?刚才还有的同学把圆转化成了平行四边形,等腰三角形或者是梯形,你能试着用你转化成的那个图形的面积公式推出圆的面积公式吗?[小组探究尝试,然后汇报,]
[师根据汇报演示:1把圆16等份分割后拼插成近似的平行四边形,平行四边形的底相当于圆周长的四分之一(C/4=πr/2),高等于圆半径的2倍(2r),所以S=πr/2·2r=πr2 。2圆16等份分割后可拼插成近似的等腰三角形。三角形的底
相当于圆周长的1/4,高相当于圆半径的4倍,所以S=1/2·2πr/4r=πr2
。3把圆分割后,可拼成近似的等腰梯形。梯形上底与下底的和就是圆周长的一半,高等于圆半径的2倍,所以S=1/2·πr·2r=πr2]
(7)总结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的正确。说明在求圆的面积时,都要知道半径。
[引导学生通过多次不同的实验,采用转化的方法,利用等积变形把圆面积转化成近似的长方形、等腰三角形和等腰梯形,从而推导出圆面积计算公式。同时,利用计算机的演示,化静为动,化虚为实,帮助学生把抽象的内容具体化,进一步加深对圆面积公式推导过程的理解。]
(8)升华:今天我们探究出了圆的面积计算公式,真了不起,在人们没有总结出这个公式的时候, 如何计算圆的面积,是各国数学家共同关心的问题。老师这里有一段小故事,大家一起来读一读。
内容:刘徽在校注《九章算术》时,创立了一种新的数学方法—— “割圆术”来进行有关圆的计算。《九章算术》中已有圆面积的计算公式,但没有说明是怎么来的,刘徽为此苦苦思索,有一次他看见石匠在加工石料,石匠把一块方石砍去四角,就变成八角形的石头,再去掉八个角又变成了十六角形,这样一凿一斧地干下去,一块方形石料就被加工成一根光滑的圆柱了。刘徽因此得到启发:原来圆与直线是可以相互转化的。他认为一个圆的内接正多边形的边数越多,其周长就会越接近于圆的周长。同时,通过求圆内接正多边形的边长和圆的直径之比,可以越来越精确地求得圆周率(即圆周与直径之比),这就是所谓“割圆术”。“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”这句话简明扼要地概括了刘徽割圆术的实质。同时,刘徽在这里还用了“极限”这个数学概念,今天我们知道“极限”是高等数学的基础。后来,祖冲之和他的儿子祖恒,利用割圆术,得出了3.1415926<π<3.1415927 。没有前人这样艰苦的努力,我们现在就不可能精确地计算出圆的面积和周长,一切与圆有关的计算无疑也要大打折扣了。
读了这个故事,你想说点什么?生说感受。看来生活中处处有数学,我们要培养自己热爱数学,善于观察的良好习惯哦。下面我们就一起来动脑筋解决以下下面的问题。
四:拓展应用
1.填空:
(1)圆的周长计算公式为( ),圆的周长计算公式为( )。
(2)一个圆的半径是3厘米,求它的周长,列式( ),求它的面积,列式( )。
(3)一个圆的周长是18.84分米,这个圆的直径是( )分米,面积是( )平方分米。
2.判断:
(1)半径是2厘米的圆,周长和面积相等( )[让孩子知道得数虽然相同,但计量单位不同,不能进行比较。]
(2)一个圆形纽扣的半径是1.5厘米,它的面积是多少?列式:3.14X1.52=3.14X3=9.42平方厘米。( )。[此题在计算1.52的时候把1.52看作1.5X2,而1.52=1.5X1.5]
(3)直径相等的两个圆,面积不一定相等。( )
(4)一个圆的半径扩大3倍,面积也扩大3倍。( )
(5)两个不一样大的圆,大圆的圆周率比小圆的圆周率大。( )
3、根据下面的条件,求圆的面积。
r=6厘米 d =0.8厘米
4、实际应用:一块圆形铁板的半径是3分米,它的面积是多少平方分米?
5、要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?
(1)可测圆的半径,根据S=πr2求出面积。
(2)可测圆的直径,根据S=π(d/2)2求出面积。
(3)可测圆的周长,根据S=π·(c/2π)2求出面积。
师:经过一节课的学习,你们能计算出喷水头转动一周可以浇灌多大面积的农田了吗? (学生独立解答,指名回答)
实践练习:
圆形的物体生活中随处可见,公园的露天广场是个圆形,怎样才能计算广场的面积呢?[让学生讨论,你有哪些方案?并留给学生课后去实践。这样,使学生意犹未尽,感到课虽尽,但疑未了,为下一课已知周长求面积埋下伏笔。]
3稿教案设计
一、回顾旧知,引出新知
师:我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形, 大家还记得我们以前学习的平行四边形、三角形、梯形面积分别是由哪些图形的面积推导来的吗?
(学生回答后教师课件演示平行四边形,三角形,梯形面积推导过程。)
师:大家说的真好,我们运用这些数学知识解决了许多实际生活中的`问题,通过今天这堂数学课的学习,你一定会增加新的用数学解决问题的本领,有信心吗?
二、创设情境。提出问题
(投影出示P16中喷水动画):
师:请你用数学的眼光来观察画面,这是现代化农田里的一个自动喷水头,喷射的距离为5米,从画面中得到了哪些数学信息?[课件演示喷射过程,理解什么是圆的面积]
学生可能回答:圆形,知道半径是5M
师:你能提出哪些数学问题呢?
学生可能回答:这个自动喷水头喷射一周的周长是多少? 自动喷水头它喷射一周浇灌的农田面积是多少?
师:求喷水头转动一周浇灌的面积有多大就是求谁的面积?课件演示由生活中的圆抽象的过程。(板书:圆的面积)
三、探究思考。解决问题
1、估计圆面积大小
你能估一估这个圆的面积是多大平方米吗?
(1)与同桌说一说你是怎么估的
(2)汇报
师:求圆的面积,我们用数格子的方法方便吗?如何又快又好的求出圆的面积呢?[引出用公式计算。]
2、探索圆面积公式
(1) 学生操作
师:请大家拿出准备好的的圆,和小组同学一起剪一剪,拼一拼,看看能拼成一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)
(2)指名汇报实物展台展示
初步汇报:如何分的,把圆转换成了什么图形?拼成的图形与原来的圆形有什么关系?(在学生说的同时教师课件演示)
学生可能出现的4种情况:
(3)操作反思
根据同学汇报,观察反思 (圆等分的份数越多,拼成的图形越接近于长方形。
(4)转化思考:近似长方形的长相当于圆的哪一部分?怎样用字母表示?
(圆周长的一半,C/2=πr),它的宽是圆的哪一部分?(半径r)[课件演示]
(5)观察汇报: 你能否由长方形的面积公式得到圆形面积公式呢?并说出你的理由。 [ 因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。
(生说,教师板书)用字母怎么表示圆面积公式呢?
[指导学生自己动手,并通过微机演示,把一个圆剪拼成近似的长方形,从长方形面积公式,推出圆面积计算公式。这样,可以培养学生初步的空间想象力,也可以渗透以直代曲的辩证唯物主义观点。
(6)拓展探究:根据上面的由长方形的面积计算公式推导出来圆的面积计算公式,你是否受到了启发?刚才还有的同学把圆转化成了平行四边形,等腰三角形或者是梯形,你能试着用你转化成的那个图形的面积公式推出圆的面积公式吗?[小组探究尝试,然后汇报,
[师根据汇报演示:1把圆16等份分割后拼插成近似的平行四边形,平行四边形的底相当于圆周长的四分之一(C/4=πr/2),高等于圆半径的2倍(2r),所以S=πr/22r=πr22圆16等份分割后可拼插成近似的等腰三角形。三角形的底
相当于圆周长的1/4,高相当于圆半径的4倍,所以S=1/22πr/4r=πr23把圆分割后,可拼成近似的等腰梯形。梯形上底与下底的和就是圆周长的一半,高等于圆半径的2倍,所以S=1/2πr2r=πr2]
(7)总结:今天我们已经实践证明了,无论把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,说明在求圆的面积时,都要知道半径。
[引导学生通过多次不同的实验,采用转化的方法,利用等积变形把圆面积转化成近似的长方形、等腰三角形和等腰梯形,从而推导出圆面积计算公式。同时,利用计算机的演示,化静为动,化虚为实,帮助学生把抽象的内容具体化,进一步加深对圆面积公式推导过程的理解。]
师:生活中处处有数学,我们要培养自己热爱数学,善于观察的良好习惯。下面我们就一起来动脑筋解决以下下面的问题。
四:实践应用
你能计算出人民大会堂前的这样一个石柱的占地面积吗?怎样才能计算广场的面积呢师总结:大家真是太聪明了,通过一节课的学习,你们的用数学知识解决问题的本领更强了,希望大家用数学的眼光到生活中找一找我们用今天学习的圆的面积公式,还能能解决那些实际问题。好吗?
3稿教案教学反思
教学反思:
通过试讲觉得学生对活动的设计比较喜欢,思维活跃,教案设计基本满意。结合自己课堂教学体验反思和网友和学校领导的悉心帮助,总结出以下不足:
1、教学语言“迟钝”。
我平时讲课领导总说我语速快,可这次今天试讲后领导首先说的一句就是:今天的语速有点慢了。分析原因是:修改完完成3稿教案,做完课件已经凌晨了3点,6点起床,9点30分试讲,思路虽然清晰,但教案熟悉内化的时间太短, 语言组织不够自然,加上有领导和摄象,所以不自觉的紧张。
2、复习占用时间不当。
复习设计方式不够合理,教师的演示过程加上学生的叙述占用了宝贵的时间,现在反思,这一环节如此“精细”是在浪费课堂的宝贵时间。
3、探究没有充分放手。
在探究圆的面积公式推导过程中,孩子的兴趣是很高的,但在学生汇报的环节,我总是担心孩子,在孩子操作演示的时候给予帮助。造成了放手不够,造成了引导过度的现象。出现了探究一直是在我的控制下进行。
4、没给问题爆发的机会。
教学中很关注“R2” 在运算中容易出现的问题,所以在教学时直接提醒学生这一运算顺序,本以为做的很好,但现在反思,我的“先预防错误出现”的做法,失去了让学生经历在错误中反思的珍贵体验,也就是说由于我的“认真”,在计算应用环节孩子们失去了精彩的错误分析与错误反思。这也是我们学生为什么学过知识遗忘快的根结所在,没有充分理解,怎么能记得好呢?
参赛的过程,是雪燕子学飞的过程。我在一次次反思中发现自己的不足,看到自己的幼稚,发现并改正自己教学不足的过程是痛并快乐的。
有以上的反思要谢谢网友们的帮助,区教研员和学校领导的引导。由于自己数学教学的水平有限,也许我的反思还有不当的地方。请大家继续热心指导。
篇6:高职高等数学课件
高职高等数学课件
一、高职高等数学教育教学的现状
(一)高职教育前景广阔,机遇与挑战并存,并逐渐趋向多元化。
高职院校已成为我国高等教育发展、改革的重要力量。高职院校通过不断的自身摸索、改革与国内外借鉴,为国家输送了大量的专业型人才,一定程度上促进了社会的进步。马卓昊在《高职教育现状及发展趋向研究》一文中,通过对我国高职教育的发展现状进行重点分析,对相关的教学理念和高职教育的发展趋向进行了简单的研究和探讨。他从专业设置、办学理念、提高就业率、师资建设等方面进行了逐一分析,认为高职教育在国家的引导与支持下,逐步走向正轨,并呈现多元化。故而,机遇与挑战并存。
(二)高职高等数学教育虽重要,但没引起足够重视。
高职教育是高等教育的重要组成部分,《高等数学课程对高职生素质培养的重要性》中阐述了高等职业教育的目标、人才规格决定了高等数学教育不容忽视的重要地位,并针对高职教育现状与高职生特点,结合高等数学特质与素质教育的功能,说明了高等数学课程的重要性,但由于客观与某些人的主观臆断,以高等数学课程为代表的公共课并没有得到足够重视。鉴于此,在此呼吁高等数学日后教育教学的改革方向是增强师资力量、提高教师素养、改革教学方法提高学生学习兴趣等。
(三)高职高等数学的教学有待改革。
虽然高职教育在整体趋势上是积极进取的,是逐渐适应这个社会发展的,但面临社会的发展与生源的紧缺、就业率有待提高的紧迫局势,高职院校仍然在教学上面临着诸多困难。郭倩茹在《浅谈高职院校中高等数学教学的现状及问题解决策略》一文中,认为高职院校中高等数学教育的教材编制不合理,与高职教育不适应;高等数学教学没高职特色,与专业脱轨;评价机制落后,考核体系陈旧。与此同时,在描述高等数学教育现状的同时,提出了诸如规范教材与专业接轨、活跃课堂气氛、构建评价、考核新体系等。最后,强调高职院校一定要以学生的特点作为教育的先决条件,因材施教。这正是教育工作者所要考虑的,也是我国高职院校培养人才的目标与宗旨,一切为了学生,为了学生的一切。
二、高职高等数学教学中存在问题的成因
(一)高等数学不被重视。
大多数高职院校偏重于职业技能的培养和实践活动的开展,作为专业基础课的高等数学学时时多时少,只是专业教学计划里专业课的替补而已。这在综合性的职业院校不常见,但在专业系别少的管理不严格的小职业院校是家常便饭,这无形中也造成了高等数学可有可无的尴尬境地。
(二)高职教师知识更新跟不上,教学方法与教学手段单一,教学态度不积极、忽略学生的德育教育与职业生涯规划导向等。
有些高职院校是中专合并等形式转轨而成或新成立的,万事在摸索前进。大部分教师还停留在原来的教学步伐上,高职教育的先进理论知识不够,年纪大一点的教师甚至根本不关心高职教育的改革与发展,混退休的大有人在。一些教师虽然胜任课程知识的讲解,但不求创新,教学方法单一,教学手段传统,而且对学生的德育与职业生涯规划引导、管理漠不关心,认为只是班主任与学生管理人员的责任,这在某种程度上疏忽了学生课上的教育与管理,这也是教学质量不高的原因之一。
(三)学生入学的数学基础整体较差,学习动力不足,缺乏学好数学的信心。
随着高职院校的扩大招生,高职学生数学基础整体较差。中学的数学知识点繁多、灵活多变且有很大的连续性,这让中学基础差的学生很头疼,担心高等数学会衔接不上,学习还没开始就产生了畏难情绪,担心的压力超过学习的动力。况且,高等数学的抽象性与逻辑性让学生不能立刻享用成果。这与专业即学即用立竿见影的效果反差较大。故而,学生学习专业课的动力更大,从而忽视高等数学课的学习与钻研。
(四)学生与教师缺少沟通,源自教师缺少发自内心对学生尤其是对差生的关爱。
进入高职院校的学生大都学习成绩不是很好,这使得他们稚嫩的心灵蒙一层倔强的外衣。他们看着坚强,却内心脆弱,他们渴望关爱。对于高等数学这样比较难的课程,他们担心被骂,索性不学,给别人造成不是学不会而是不学的假象,他们渴望沟通与被理解却又害怕不被理解而被耻笑,干脆装出事事漠不关心的样子掩盖内心跃跃欲试的蠢动。
三、提高高职高等数学教学质量的对策
(一)重现高等数学教学的重要性。
一是高职院校要响应国家高职教育政策号召,重视学生综合能力的提升,把学生培养目标从单一的技术要求提升为德、智、能等综合型人才。二是院教学领导从长远的发展考虑,不能忽视高等数学课对高职生综合素养提高的重要作用。三是为教师提供学习、进修的机会,努力提高数学教师的整体素质能力。
(二)高等数学教师要为人师表。
高等数学教师为适应高职教育的改革和发展要求,在追求业务能力提高的同时,不放松道德素养的提升,给学生树立榜样。高等数学教师不能只了解目前高等数学书本的知识,还要了解社会发展动态,熟知国家高职教育政策以及未来发展趋势。不断地加强政治、思想学习,提升自身道德素质,注意自己的一言一行,给学生呈现积极、向上的生活面貌,引导学生在正轨上前行。
(三)高等数学教师要积极参与学生课上的管理,将德育、纪律规范融入高等数学教学。
学生的管理不只是某个部门的责任,不只是某些管理人员的责任,而是高职院校全体教职工的责任,关心每一个学生的身心健康发展,也是每一位任课教师无可推卸的`责任。加强德育教育,增强学生的责任心,对于知识的学习动力具有促进作用。高等数学教师除了帮助学生克服学习数学的困难,更要注意在解决数学难题的过程中培养学生克服困难、勇往直前的坚毅品格,这是他们一生都受益的事情。
(四)高等数学教师要经常与专业课教师沟通,保障高等数学的学习与专业学习接轨。
高等数学抽象性扩大了它的难度,所以,高等数学教师要深入展业教师队伍,与他们讨论高等数学在专业上的应用,寻找高等数学解决专业难题的实践案例,提高学生的学习兴趣。
(五)探索高等数学课程的教学方法和手段,优化教学环节,合理利用多媒体教学,提高教学质量。
教学方法与教学手段的选择和应用都要有利于学生掌握知识、培养能力出发,以提高教学质量为目的。高等数学课程不能从一而终地使用一支笔、一本书、学生听的模式,也不能几张PPT一放学生一看的模式。每门课程都有各自的特点,高等数学的计算准确性、逻辑严密性、高度抽象性决定了它离不开一支笔、一黑板讲练模式,更离不开数形结合完美体现的PPT和实物演示。两者要结合,才能使枯燥的高等数学课增添趣味。
(六)创新教学模式,因材施教,创新评价体系,注重过程考核。
教育教学的基本原则就是因材施教,高等数学也是如此。高职数学改革的切入点要具有科学性、针对性和可行性的分层教学、分层考核。在考核过程中,要注重过程考核,提高学生的学习主动性和能动性。期末考试的结果只是学生成绩的一部分,期末考试的形式各系部应听取任课教师的建议。任课教师要根据班级整体的学习水平及层次确定考核的层次数与不同层次上的考核标准。
四、结语
在高等数学的高职教育教学中,在德育教育、纪律教育不放松的前提下,把握好以应用为目的、以必需、够用为度的原则,不断地探讨、总结高等数学教育教学的经验教训,始终以改革、创新为手段,提高教学质量,为学生专业课学习打好基础。
篇7:完整版的高等数学课件
完整版的高等数学课件
教学目的:了解新数学认识观,掌握基本初等函数的图像及性质;熟练复合函数的分解。
重 难 点:数学新认识,基本初等函数,复合函数
教学程序:数学的新认识—>函数概念、性质(分段函数)—>基本初等函数—>复合函数—>初等函数—>例子(定义域、函数的分解与复合、分段函数的图像)
授课提要:
前 言:本讲首先是《高等数学》的学习介绍,其次是对中学学过的函数进行复习总结(函数本质上是指变量间相依关系的数学模型,是事物普遍联系的定量反映。高等数学主要以函数作为研究对象,因此必须对函数的概念、图像及性质有深刻的理解)。 一、新教程序言
1、为什么要重视数学学习
(1)文化基础——数学是一种文化,它的准确性、严格性、应用广泛性,是现代社会文明的重要思维特征,是促进社会物质文明和精神文明的.重要力量; (2)开发大脑——数学是思维训练的体操,对于训练和开发我们的大脑(左脑)有全面的作用;
(3)知识技术——数学知识是学习自然科学和社会科学的基础,是我们生活和工作的一种能力和技术;
(4)智慧开发——数学学习的目的是培养人的思维能力,这种能力为人的一生提供持续发展的动力。
2、对数学的新认识
(1)新数学观——数学是一门特殊的科学,它为自然科学和社会科学提供思想和方法,是推动人类进步的重要力量;
(2)新数学教育观——数学教育(学习)的目的:数学精神和数学思想方法,培养人的科学文化素质,包括发展人的思维能力和创新能力。
(3)新数学素质教育观——数学教育(学习)的意义:通过“数学素质”而培养人的“一般素质”。[见教材“序言”]
二、函数概念
总学时64学时(XRG)
1、函数定义:变量间的一种对应关系(单值对应)。
(用变化的观点定义函数),记:)(xfy(说明表达式的含义) (1)定义域:自变量的取值集合(D)。
(2)值 域:函数值的集合,即}),({Dxxfyy。
例1、求函数)1ln(2xy的定义域?
2、函数的图像:设函数)(xfy的定义域为D,则点集}),,{(Dxxfyyx 就构成函数的图像。
例如:熟悉基本初等函数的图像。
3、分段函数:对自变量的不同取值范围,函数用不同的表达式。 例如:符号函数、狄立克莱函数、取整函数等。 分段函数的定义域:不同自变量取值范围的并集。
例2、作函数0,20
,)(2xxxxxf的图像?
例3、求函数?)1(),0(),1(0
10
)(2fffxxxxf的定义域及函数值,,
三、基本初等函数
熟记:五种基本初等函数的定义域、值域、图像、性质。
四、复合函数:设y=f(u),u=g(x),且与x对应的u使y=f(u)有意义,则y=f[g(x)]是x的复合函数,u称为中间变量。
说 明:
(1)并非任意几个函数都能构成复合函数。 如:2,lnxuuy就不能构成复合函数。
(2)复合函数的定义域:各个复合体定义域的交集。
(3)复合函数的分解从外到内进行;复合时,则直接代入消去中间变量即可。 例5、设?))(()),((,2)(,)(2xfgxgfxgxxfx求
例6、指出下列函数由哪些基本初等函数(或简单函数)构成?
(1))ln(sin2xy
(2) xey2
(3) xy2arctan1
五、初等函数:由基本初等函数经有限次复合、四则运算而成的函数,且用一个表达式所表示。
说 明:(1)一般分段函数都不是初等函数,但xy是初等函数;
(2)初等函数的一般形成方式:复合运算、四则运算。 思考题:
1、确定一个函数需要有哪几个基本要素? [定义域、对应法则]
总学时64学时(XRG)
2、思考函数的几种特性的几何意义? [奇偶性、单调性、周期性、有界性] 3、任意两个函数是否都可以复合成一个复合函数?你是否可以用例子说明?[不能]
探究题:
一位旅客住在旅馆里,图1—5描述了他的一次行动,请你根据图形给纵坐标赋予某一
个物理量后,再叙述他的这次行动.你能给图1—5标上具体的数值,精确描述这位旅客的这次行动并用一个函数解析式表达出来吗?
小 结:函数本质上是指变量间相依关系的数学模型,是事物普遍联系的定量反映;复合函数反映了事物联系的复杂性;分段函数反映事物联系的多样性。
作 业:P4(A:2-3);P7(A:2-3)
篇8:高等数学教学浅谈论文
高等数学教学浅谈论文
摘要:
在高等数学教学中,教师要将数学家的故事引入数学教学,要根据不同专业介绍相关的数学应用,运用通俗易懂的类比介绍相关的数学结论,使学生在愉悦的氛围中学习高等数学,从而达到良好的教学效果。
关键词:高等数学;数学应用;教学
数学是人们一致公认的一切科学中最具权威力的一门学科。当前,我国的高等教育已从“精英教育”过渡到了“大众教育”阶段,现在的大学教育也已从原来的“职业性教育”变成了“素质性教育”。同时,随着社会的进步、文明的演进、学科之间的互相交叉渗透,数学与数学应用在当代社会中的作用日益突出,培养学生掌握数学知识与应用数学技能已成为当代大学素质教育的重要部分。《高等数学》无论在理工科专业还是社会人文专业都是非常重要的必修科目,高等数学教学开始实现由服务于专业向关注学生基本素质的培养转变。
然而,在现实的高等数学教学过程中仍然存在一些问题。例如,许多教师仍然完全根据现行的教材进行教学,脱离了实际应用,忽略了高等数学理论知识发展的过程,学生看不到数学知识与现实生活,特别是与自己的专业知识之间的潜在联系,也不了解数学发展过程中的学术争论、趣闻轶事,导致学生无法理解现行数学理论的严密性,更难以欣赏到数学之美,更不用谈提高学生学习高等数学的兴趣和积极性。
针对这些问题,本文试图探讨高等数学课堂教学趣味化、提高高等数学教学质量的一些粗浅看法。
一、将数学家的故事引入数学教学。
著名数学家M·克莱因(Morris Kline)指出,在教科书和学校的课程中,都将“数学”看作是一系列毫无意义的、充满技巧性的程序。如同一个单词,如果脱离了上下文,不是失去了原来的意义,就是有了新的含义。在人类文明中,数学如果脱离了其丰富的文化基础,就会被简化成一系列的技巧,她的形象也就被完全歪曲了〔1〕。
因此,笔者认为,在高等数学教学中,教师不仅要向学生传递数学文化知识,而且也应介绍一些数学思想的背景知识。如数学史料、一些数学概念产生的背景材料、数学家的介绍、数学在现代社会中的广泛应用等,以使学生对数学的繁盛与发展过程有所了解,在激发学生学习兴趣的同时也能让学生体会到数学在人类发展历史中的作用和价值。例如,在讲微积分基本公式时,教师可以利用刚开始上课的5到10分钟时间介绍牛顿(Newton)、莱布尼茨(Leibniz)等科学家的故事。牛顿于1643年1月4日诞生在英格兰林肯郡小镇沃尔索浦的一个自耕农家庭里。接生婆和家人都担心这个出生时只有三磅重的早产儿能否存活。
但是,他竟成为了旷古烁今的科学伟人,并活到了84岁的高龄。可能源于成长环境的影响,牛顿自幼沉默寡言,但性格倔强,他大约五岁时,被送到公立学校读书。少年时代的牛顿并不是神童,在老师眼里他资质平常,成绩一般。但是,牛顿非常喜欢阅读,特别是一些介绍各种机械模型制作方法的读物。受到启发的牛顿会自己动手制作一些奇怪的小玩意,比如木钟、折叠式提灯、风车等。牛顿刚结束了他的大学课程,学校(剑桥大学)就因为伦敦地区鼠疫流行而关闭,他离开了剑桥,在安静的伍尔斯素普度过了1665年和1666年,在那里开始了他在机械、数学和光学上的伟大工作。恩格斯在《英国状况》中评价牛顿:由于发现了力的本质而创立了科学的力学;由于发现了万有引力而创立了科学的天文学;由于发现了流数(微积分)和二项式定理而创立了科学的数学;由于发现了光的分析而创立了科学的光学。
二、根据专业的不同介绍相关的数学应用。
教师要根据不同专业学生的实际情况,尽可能地将高等数学知识和理论运用于其专业的实践问题中,以帮助学生完成从抽象理论到实践运用的知识迁移。例如,在给力学系的学生讲高等数学时,可以用数学知识解释为什么油罐车的罐体不是圆形的,而是椭圆的;对于社会学的.学生则可以利用微分方程去模拟人口或者种群的数量变化以及预测;对于经济专业的学生,可以举例说明拉格朗日乘数法在经济学中的应用。
在现实生活中,经常会遇到用量最省的问题,即在特定的条件下怎样才能使效用最大化?这个问题用拉格朗日乘数法解决起来就十分简单。假设,购买物品数量和物品价格的特定关系是(fx,y)=0,效用函数为u(x,y),我们只要求效用函数达到最大或者最小,就可以构造函数h(x,y,λ)=u(x,y)+λ(fx,y),对h(x,y,λ)分别关于x,y,λ求导数,而后令导函数为零,即得到最优化的必要条件ux(x,y)+λfx(x,y)=0uy(x,y)+λfy(x,y)=0(fx,y)=!0,解得临界值x0,y0,λ0,带入就得到在特定条件(fx,y)=0下,效用函数u(x,y)取到的最值。
三、运用通俗易懂的类比介绍相关的数学结论。
在语言表达上,教师要适当地变专业术语为通俗直观的语言。马卡连柯说:“教育技巧也表现在教师运用音调和控制自己的面部表情上。”美国著名心理学家艾帕尔·梅拉别恩在做了许多实验之后得出这样一个公式:信息的总效果=7%的文字+38%的语言+55%的面部、肢体表达〔2〕。这个公式告诉我们,语言和面部、肢体表达在教学中的作用是不可低估的。例如,在讲复合函数求导法则的时候,首先说明,求导就是一个对应法则,不妨把求一次导数类比为剥一层皮、脱一件外套。如求函数y=ex2的导数dydx,课前就准备一个带绿皮的核桃,把y看作是绿皮核桃,x2看作是硬壳核桃,x看作是核桃仁,根据连锁法则,可以分两步进行,首先求dydx2,可以比作把绿皮核桃剥去绿皮得到硬壳核桃,而后求dx2dx,比作把硬壳核桃剥去硬壳得到核桃仁。
完成这个任务是分步进行的,根据概率论中的乘法法则,要想从一个绿皮核桃得到核桃仁,就需要有dydx=dydx2dx2dx=ex22x。再如多元函数的复合函数求导函数,也可以联想成完成一项任务的分步和分类问题,即加法法则和乘法法则的结合。这样解释就比较生动、浅显、易懂,避免了教科书中晦涩难懂的公式,进而拉近了学生生活与教科书内容的距离,达到了较好的教学效果。
数学家张奠宙先生曾经说过:“教科书里的数学知识,是形式地摆在那儿的,准确的定义、逻辑的演绎、严密的推理,一个字一个字地印在纸上。这是知识的学术形态,学生比较难懂,有的学生看懂了字面上的意思,甚至题目也会做了,却不知道这些知识是做什么的?这是学生还没有接触数学的教育形态。”〔3〕因此,好的数学教师就要针对学生的具体认知情况,采取积极有效的方式、方法,将教科书中公式化的、深涩的学术语言转化为学生更容易理解和接受的教学形态,从而把学习的欢乐、愉悦带给学生,让学生在成功的喜悦中形成乐学的情绪,与学生一起分享数学之乐趣,与此同时,高等数学的教学也必将达到一个良好的效果。
篇9:高等数学教学的探讨
高等数学教学的探讨
根据高等数学课程的特点,就如何提高理工科高等数学课程的教学效果,提出了一些建议及方法:从培养学生的'学习兴趣入手,扩大知识面; 借助实际应用背景引进知识点,加大知识的深度; 采用类比方法,注重方法思想; 传统教学手段和现代教学手段相结合.
作 者:郭会 作者单位:中国石油大学(华东)数学与计算科学学院,山东东营,257061 刊 名:中国科教创新导刊 英文刊名:CHINA EDUCATION INNOVATION HERALD 年,卷(期): “”(23) 分类号:G642 关键词:高等数学 特点 教学篇10:浅谈高等数学的教学
浅谈高等数学的教学
高等数学是工科学生最基础最重要的.课程,随着高新科枝的不断发展,数学在各领域得到广范应用,教学的地位与作用日益提高,因此,数学教学已经不是普通的教学,教学模式也有待提高,做为数学工作者,让学生使用数学思想看待问题和教学工具解决问题成为主要目标.
作 者:张红梅 李媛 作者单位:伊春职业学院,黑龙江伊春,153000 刊 名:黑龙江科技信息 英文刊名:HEILONGJIANG SCIENCE AND TECHNOLOGY INFORMATION 年,卷(期):2009 “”(5) 分类号:G64 关键词:高等教学 教学 概念篇11:高等数学教学工作计划
一、指导思想及工作目标
数学教研室紧紧围绕以提高教学质量,抓好内涵建设为中心,以优化教师业务素质,不断提高教师的教学、教研水平和提高学生运用数学解决实际问题的能力为基本点;始终以应用为目的,以为专业服务为教学重点,充分发挥数学课程在高职教育特色中的基础作用。
二 、本学期开展的工作
1.组织好数学补考以及试卷的批改和成绩上报工作;
2. 配合基础部作好正常的教学及管理工作;
3.按学院和教务处教学要求完成正常的教学,如听课、公开课听课评课任务,集体备课等活动.
4.继续做好《高等数学》课程教学改革工作:
(1)深入开展各专业对高等数学知识点需求的研讨会,真正做到数学为专业课服务;
(2)本学期继续实行《高等数学》课程教学改革,教学内容一定要与各系专业课程相结合;
(3)为充分调动学生学习《高等数学》课程的积极性,组织一次全院数学调研。
5.定期召开教研室会议,坚持高职高专教育理论的'学习与研究,吸收先进的教学理念与教学经验,改进自己的教学方法、教学思想。要求撰写一篇教学或教研论文。
6.搞好院级研究课题;
7.进一步完善《高等数学》校本教材、教学课件等工作;
8.做好教研室本学期的总结、下学期计划等工作;
9.配合基础部做好一些临时性工作。
三、工作具体时间安排见下表:
第一学期数学教研室具体工作安排
周次
时 间
教 学 活 动 内 容
1-5
8月28至9月30日
做好教学前准备工作(如教学计划、教案的撰写),要求教师上好每一堂课,确保教育教学质量,并要求没课的教师随机听取有课老师的课。做好学生的补考工作。
6
10月1日至10月7日
国庆放假,假期间认真备课,撰写论文
7
10月8日至10月14日
确定教师举行公开课、组织安排数学教研室教师参加听课、评课活动。检查教案、教学计划的撰写情况。
8
10月17日至10月21日
组织数学教师召开专题会议:针对学生数学基础差,如何上好高等数学课,如何体现为专业课服务。
9
10月24 日至10月28日
高等数学院级精品课程以及校本教材的进一步完善,公开课按计划开展。教师集体备课
10
10月31日至11月4日
要求每位教师撰写一篇教学或教研论文。作业抽查、公开课、观摩课等活动的监督与实施。
11
11月7日至11月11日
期中教学检查,教案检查、作业批改情况抽查,做好数学教研室期中工作小结。
12
11月14 日至11月18日
组织安排数学调研。
13
11月 21日至
11月25日
组织教师集体备课。
14
11月28日
至12月2日
继续开展公开课、观摩课等活动,并召开专题会议:如何提高学生学习高等数学的兴趣;如何提高教学教研质量。
15
12月5日至
12月9日
教案、作业随机抽查,教学进度、教学效果的反馈,做好总结工作.
16
12月 12日至
12月16日
根据高数为专业课服务的原则,进一步做好高等数学课程教学改革,上好数学实验课。
17
12月19日
至12月23日
讨论、交流教学心得,总结成功与不足。
18
12月 26日至
12月30日
开展教学、教研交流活动;检查实践教学的落实。
19
元月2日至
元月6日
公开课、观摩课等教研活动总结。院级课题落实情况的检查与反馈。有关实验、实践教学落实情况的总结。安排期末考试试卷的编制、保密、阅卷注意事项等事宜;本学期教学工作总结。
20
元月 9日至元月13日
做好数学考试试卷分析与总结;做好本学期教研室工作总结以及下学期教研室工作计划。试卷装订情况检查,并做好有关资料的收集与整理并归档。
篇12:高等数学教学的几点思考
重庆理工大学数学与统计学院高等数学教研室 陈 忠 金世刚 田 坚
【摘 要】在高等数学教学中,数学问题情境要根据具体的教学内容和学生的身心发展需要来设置,教师在以原有的知识为基础之上,以新知识为目标,充分利用数学问题情境活跃课堂气氛,激发学生的学习兴趣,调动学生的学习主动性和创造性,进而促进学生智力和非智力因素的发展。本文探讨了数学的美学意义,在教学中如何创设合适的数学问题情境,培养学生提出问的能力。
篇13:高等数学教学的几点思考
笔者从事数学教学工作已20余载,在教学过程中,深刻体会到学生和教学目标的差距。细思之下,总觉得应该把它们说出来,以达到能让学生更好掌握,让同行能间相互借鉴,对教学能有效促进的目的。
一、数学的美学意义是教学中必不可少的优质内容
数学之美古已有之。早在古希腊时代,毕达哥拉斯学派已经论及数学与美学的关系,毕达哥拉斯本人既是哲学家、数学家,又是音乐理论的始祖,他第一次提出“美是和谐与比例”的观点。我国当代着名数学家徐利治指出:“数学美的含义十分丰富,如数学概念的简单性、统性、结构系统的协调性、对称性,数学命题与数学模型的概括性、典型性与普适性,还有数学中的奇异性等等都是数学美的具体内容”。在教学中,通过创设情境,将抽象的概念具体化、形象化,这样易于学生理解。
让学生感受数学是思维的体操。数学思想是我们认识世界的基础和有效工具。例如,在讲数列极限与函数极限的分析定义是用“ε-N”、“ε-δ”语言给出的,定义中具有任意性与确定性,ε的任意性通过无限多个相对确定性来实现,ε的确定性决定了N 和ε的存在性。这种定义精细地刻划了极限过程中变量之间的动态关系,表达了极限概念的本质,并且为极限运算奠定了基础,学过微积分的人无不赞赏它的.完美,评价它是最严密、最精炼、最优美的语言。这些,可以在课堂上很激情地讲出来,直接撞击学生的内心,坚定学生对数学的认识,摒弃对数学的误解。又比如,数学中许多理论与人们的直觉相背离,有时让人觉得不可思议,给人以无尽的遐想,有时又带给人一种“山穷水复疑无路,柳岸花明又一春”的绝妙境界,它印证了我国数学家徐利治所说的:“奇异是一种美,奇异到了极限更是一种绝佳的美”。例如,有无限个连续点(无理点)和无限个间断点(有理点)的黎曼函数f(x)=x(为既约真分数)0x=0,1及(0,1)内的无理数;在任一点都不连续狄利克雷函数f(x)=0,x∈Q,x=1,x∈Q;处处连续但处处不可微的魏尔斯特拉斯函数f(x)=bcos(απx)(其中α为奇数,0<b<1,ab>1+π),这些函数我们都无法准确地描绘出它的图像。但是黎曼函数、狄利克雷函数和魏尔斯特拉斯函数的美就恰似一幅幅神奇的抽象画,虽奇异古怪,却是数学家们依靠想象而产生的艺术精品。这些内容对于大一新生来说,无疑是很新鲜很有吸引力的,能起到激发强烈的求知欲的效果的。
二、创设合适的数学问题情境,培养学生提出问题的能力
在高等数学教学活动中,只有使学生意识到问题的存在,才能激发他们学习中思维的火花。学生的问题意识越强烈,他们的思维就越活跃、越深刻、越富有创造性。而能让学生提出问题,则需要一定的情景创设。比如,在讲授过程中,举例时可以卖点关子,甚至故意做错,将问题摆在学生面前,促使学生思考。这样,往往有事半功倍的效果。比如,讲中值定理中证明柯西中值定理时,故意用拉格朗日中值定理的结论作比来证明。然后,指出其错误,再进行证明,使学生既加深了对辅助函数引入的重要,又对定理本身有着深刻的理解和记忆。在高等数学的教学中,我们知道很多同学反映数学单调、枯燥、不好学。实际上,情境创设能吸引学生积极参与和主动学习,让他们从数学中找到无穷的乐趣。所以,教师只要能为学生创设一个良好的数学问题情境,激发起学生对数学问题探究的热情,调动起参与学习的兴趣,我们的教学也能更显轻松,学生也会变被动为主动。
在高等数学教学过程中,教师要善于创设具有启发诱导性的数学问题情境,激发学生的学习兴趣和好奇心,使学生在教师所创设的数学问题情境中自主的学习,积极主动的探索数学知识的形成过程,进而把书本知识转化为自己的知识,真正做到寓学于乐。设悬念不失为一种有效办法。悬念作为一种学习心理机制,是由学生对所接触的对象感到疑惑不解,而又想急于解决它从而产生的一种积极心理状态。它对大脑皮质有强烈而持续的刺激作用,使你一时对问题既猜不透、想不通,又甩不开、放不下。因此,悬念的设置,能激发学生的学习动机和兴趣,使思维活跃,丰富想象,追溯记忆,有利于培养学生克服困难的毅力。教师在课堂教学中,善于捕捉时机,恰当利用问题,创设悬念,可以触动学生探索新知识的心理,提高课堂教学效率。例如,在学习变上限函数的定积分时,可以提出这样的问题让同学思考:①中自变量是什么?②对其导数如何求?对于前一个问题比较好回答,后一个题在讲授中,我们可以先回忆一元复合函数的求导。同学们自然得出了结论。从而,我们可以看出在课堂教学中设置学生已经了解的原理作为提问的情境,可以启发大多数学生进行积极思维,调动同学们学习的积极性。创设类比情境,数学概念在很大程度上可以说都是通过类比来引出的。所以,类比推理是非常重要的。即根据两个研究对象具有某些相同或相似的属性,推出当一个对象尚有另外一种属性时,另一个对象也可能具有这一属性或类似的思想方法,也就是从对某事物的认识推到对相类似事物的认识。高等数学中有许多概念具有相似的属性,对于这些概念的教学,教师可以先让学生研究已学过的概念的属性,然后创设类比发现的情境,引导学生去发现,尝试给新概念下定义。这时,教师可以举身边常见的例子加以讲解。比如,我们知道冬天气温常常零摄氏度以下,到了春天气温渐渐升到零摄氏度以上,那么气温由零摄氏度下升到零摄氏度上,中间肯定要经过一点零摄氏度,这个零摄氏度就是我们所说的零点。再辅以教材习题中第4题,结合实际问题,更显零点定理的功能强大。这样,学生的感受肯定是很深的。实际上,还可以在授课过程中通过变式达到目的。所谓变式情境就是利用变换命题,变换图形等方式激起学生学习的兴趣和欲望,以触动学生探索新知识的心理,提高课堂教学效率。如在讲授中值定理时,在学习完罗尔定理后,教师可以进一步指出罗尔定理的三个条件是比较苛刻的,它使罗尔定理的应用受到了限制,如果取消“区间端点函数值相等”这个条件,那么在曲线上是否依然存在一点,使得经过这点曲线的切线仍然平行与两个端点的连线。变化一下图形,可以很容易得到结论,那么这个结论就是拉格朗日中值定理。这样经过问题的变换一步步地引出要讲授的内容,学生就可以很容易地接受新知识。当然,创设教学情境的方法不是孤立的,而是相互交融的。教师应根据具体情况和条件,紧紧围绕住教学中心创设适合于学生思想实际内容健康有益的问题,而又富有感染力的教学情境。同时,要使学生在心灵与情境交融之中愉快地探索,深刻地理解,牢固地掌握所学的数学知识。当然,在高等数学教学中创设情境的方法还有很多,但无论设计什么样的情境,都应从学生的生活经验和已有的知识背景出发,以激发学生好奇心,引起学生学习兴趣为目标,要自然、合情合理。这样,才能使学生学习数学的兴趣和自信心大增,学生的数学思维能力和分析问题、解决问题的能力得到提高。
总之,高等数学中包含的数学美的内容是非常丰富的,只要我们善于去观察,善于去总结,我们还会有所发现,有所创新。
【参考文献】
[1]马忠林。数学教育史[M].南宁:广西教育出版社。
[2]张奠宙,李士琦。数学教育导论[M].北京:高等教育出版社。
[3](美国)莫里斯。克莱茵着,张里京,张锦炎,江泽涵译。上海:科技教育出版社。
篇14:专科学校《高等数学》教学工作总结
专科学校《高等数学》教学工作总结
专科学校《高等数学》教学工作总结送走13,走进14,迎来学期尾声,暮然回首,暑假里、开学初的景象历历在目。忙忙碌碌一学期,我做了些什么?想了些什么?
一、工作内容与任务
本学期我担任专科层次药制13-1、药分13-1、药营13-1、生制13-1、中药13-1五个班的《高等数学》教学工作,周课时20,按15个教学周,计300课时,另外还开设《太极拳》选修课30课时,共计330课时。
二、工作态度与方法
工作态度方面,我每每中午去食堂是最后,甚至教工食堂收工,我得去学生食堂,只因我从不提前下课。我按时下课,但有时同学问问题,会弄迟些。在备课的时候,我会为一个问题的表述反复思考,看怎么能让同学们更容易接受,总之,为了提高同学们的学习效率,自己是不计成本的。
鉴于高校老师不坐班,上完课就走人,师生交流仅限于课堂,我感觉这不利于学生发展。为此,我在课堂教学之余,采取多种方式--或当面引导,高屋建瓴,一语中的;或充分利用现代网络媒体,与同学们在线交流。有时是解答他们在学习上的某一具体问题,有时是就人生成长过程中的困惑进行分析探讨,为其答疑解惑,做其良师益友。
当然,更多的交流还是课堂教学,这里我稍微总结一下《高等数学》课程教学中的三个细节:
一是极限部分,涉及函数概念的回顾与引申、数列的极限、函数的极限、无穷大与无穷小、两个重要极限、极限的四则运算、无穷小的比较、连续与间断等诸多知识点,我打破常规重新组合--第一讲函数,这是中学内容,一堂课讲解不可能深入,我就要求大家课下自学,并强调自主学习的重要性,而课堂上则采用习题课形式,让同学们从高考后松懈了的状态再度紧张起来;第二讲极限的描述性定义,主题突出且易于接受;第三讲极限的精确定义,告诉大家新版教材已经改革掉了,但我还是鼓励同学们理解,因为这是后面一系列理论的基础;第四讲求极限,我考虑到国庆长假,节前就将各种典型的极限求法教给学生,于是同学们在家就可以做题求极限了;第五讲证明,新版教材已不作要求,但我还是讲了,因为我不希望学生个个都是做题的“杀手”,我希望他(她)们了解知识的来龙去脉……
二是导数部分,我也重新组合--第一讲导入概念,第二讲我将所有公式全部推导,后面所有的知识点实际都变成了习题课……
三是积分部分,不定积分我强调练习,求积分(1)(2)(3)(4),练习得比较充分,定积分我强调理论,微积分基本公式的详细推导虽不是考点,但我还是耐心引导、仔细讲解……我这样做一方面对想继续深造的同学有利,另一方面,我是想让自己严谨求实的工作作风给学生一些正面影响。
在评价考核方面,我十分注重过程性、形成性。我发现,某个阶段,如果学生草稿本“销量”大增,其数学功力就有所提升,草稿本打得多与少,很大程度反映出一个人的数学学习状态。因此第一堂课我就强调,草稿本不要扔弃,写完了送给我,我“记工分”(画正字)。为防止有人为了工分而工分,12月底我就将这项活动截止。从效果上看,一方面督促大家你追我赶,多做多练;另一方面,也较真实地反映出大家平时的数学学习状况,为学期末平时成绩的评定提供了重要参考依据。一学期下来,草稿纸作为废品卖掉,收入颇丰,相当于同学们请我吃了早茶,谢谢谢谢!
最后阶段,我为了同学们更好地复习巩固,考前给出《考试说明》,提示哪些知识点务必掌握,并鼓励同学们根据考点提示成立“猜题委员会”,当然,您也可以美其名曰“高等数学互助学习志愿者协会”,说是猜题押题,实则是在引导更多的同学成为学霸,并请热心的超级学霸将自己精美的《好题本》与大家分享,驱散学困生备考阴霾。
三、工作体会与感悟
对于工作量,我想教师任课班级过多、班级人数过多、周课时过密,对教师、对学生都是不利的。说实在的,尽管同学们看见我都很有礼貌地叫:“老师好!”,但大部分同学的名字我是叫不出的。教书育人,两者不可偏颇,很大程度上后者可能更重要些。
对于多媒体教学,我是积极参与并可谓“先行者”之一,但我愈来愈发现对于数学等课程,教师的板演是不可替代的,你可以制作多媒体动画模拟板演,但还是不能替代教师站在黑板前一步步分析展开。当然,如果投影屏幕挂在黑板两侧再靠边一点,提纲性的要领或大信息量的展示用一下,而黑板的粉尘能杜绝,弹指间就能局部擦除或全部清空,那就更方便了。总之,时尚科技与经典传统要有机融合、扬长补短。
对于教学内容,我本着能多讲就尽量多讲些的原则,但在有限的课时内你只能解析有限的内容,所以我十分注重对学生进行学习习惯的养成、学习方法的指导和学习能力的训练,让学生树立终身学习的理念。而课堂教学,我殚精竭力让同学们感到数
学包括高等数学是可以听懂的,无论原来基础好坏,只要认真听,而要让学生认真听,得有趣、得活泼、得幽默。
对于教育事业,我认为老师除了教书,更重要的是育人。因此,自己首先得是位真正的道德高尚之君,以自身灼热的人格正气让每位接触过的学生于无形中获得一种人格的滋养与人性的清明。崇高的人格是一股强大的教育力量,崇高的人格是一座珍贵的教育宝藏。
我时常反思,自己有无教育教学误区?比如师生关系,把握住“尊重”,这是教师工作的出发点,在学生之间不能主观地圈定优等生,去偏爱这些优等生,教师偏爱少数“好学生”就是不尊重大多数学生。教师应该一视同仁,善待每一个学生,及时发现他们身上的优点,帮助他们克服缺点,努力挖掘学生的潜在能力,给所有的学生创造表现才能的机会,尊重每一个学生。这里,对于我这门课平时成绩较低的同学,我真诚地说声:“对不起!”。我相信,您的`成绩(自我评价, 他人评价)会在后续的课程、未来的人生中节节攀升、渐入佳境。
高等职业教育的职业性、技术性、就业导向性以及巨大的就业压力,迫使高职院校公共基础课教学必须把高职学生普遍关注的就业能力问题作为基础课教学改革的立足点与出发点,在提高学生就业创业能力,引导学生更快更好地提升职业能力、职业素养方面发挥重要作用。这对公共基础课教师的教学观念与教学能力是一大挑战。我有一个想法,就是系统地学习临床、药学、护理等所任专业的所有课程,看看学生到底需要哪些数学知识?需要什么数学技能?思维品质培养的关键在何处?做到心中有数,以便打破公共基础课和专业课之间的壁垒,将原先的公共基础课融合穿插到各个学习领域的学习情境中去教学。
当然,公共基础课不仅仅具有为专业课程服务的工具性功能,更具有“润物细无声”的人文教化功能。在今后的教学上,我争取突破教学常规,更高效更机智地处理问题,彰显出更多的的课堂教学机智,妥帖恰当地处理教学突发事件,顺势而为地引导学生积极探索与思考,巧妙有效地帮助学生对重点、难点进行深入理解,自然流畅地启发学生展开思维的翅膀,生动愉悦地引导学生步入人生智慧的魅力境界,同时,形成自己较高水平的教学智慧。
夏 宜 凡
1月7日
篇15:高等数学教学计策浅析论文
高等数学教学计策浅析论文
一、现代教育技术应用
在《高等数学》教学中存在的问题
(1)许多高等数学教师,在课件制作方面缺少自己的元素,甚至直接利用别人的课件,重复而缺乏创新,不能因材施教。在高等院校,尤其是财经类院校,各个专业的学生,数学基础差别很大,因此必须针对学生,设计出适合自己学生的课件。
(2)许多教师的课件多数用PPT,以展示为主,由原来的“书本灌输”转为“电子灌输”。对于《高等数学》的教学,在整个课堂上,都用PPT展示的话,讲课速度会很快,短时间内向学生传达较多的知识,对于基础薄弱的学生,在高容量、高效率的课堂上往往显得手忙脚乱,学习非常吃力。有些学生计算过程还不太清楚,课件已经转入下一页,想看上一页的内容,却无法看到,出现了衔接的问题。这样学生对下面的内容更是稀里糊涂,导致教学效果不好。这一点不像板书,整个黑板能展示很多内容,学生想看哪块知识点,都能看到。这样就要求板书与课件能很好地结合。
(3)现代化的教学手段也引起教师没有教案,有些教师离开课件,就无法授课的局面,往往对授课的难点和重点把握不好,条理不清楚,影响教学效果。而写教案是上好每节课的保障,这样可以让教师在上课的时候有总体思路,而且还能标注主题、重点、难点等。教师有了PPT,就忽视课前备课,讲课时经常出现页页间的'衔接问题。同时,现代教学手段也使得许多学生不记笔记,而记笔记是参与教学的一种方式,通过记笔记去记忆、思索、提取重点、汇聚注意力等。
二、如何提高现代教育技术
在《高等数学》教学中的应用针对上面存在的问题,结合笔者的教学经验,认为应该从以下几个方面进行改进:
(1)制作合理的课件高等数学教师应适当参考别人课件,吸取他们的优点,去掉缺点。重要的是要根据教学内容和学生的实际情况,对课件进行合理的调整和修改,制作出适合自己学生的课件。例如对金融专业的学生,针对教学内容,可以讲些关于金融方面的例题,这样既增加了实用性,也能激起学生的学习兴趣。同时,高等数学教师之间应该加强课件制作的交流与协作,讨论哪些内容应该写在课件里,争取把最优秀的课件展现在课堂上。
(2)多媒体和板书合理结合根据《高等数学》学科特点,不是所有内容都适合用计算机技术来表现的。在新概念的引入或一些比较抽象的缺乏直观性的内容上,例如:极限和导数的概念、定积分的概念、旋转体的体积、多元函数的图像等内容都适合用多媒体课件进行教学。这样可以使学生更能直观地理解抽象的概念。然而对于一些计算的内容,例如求极限、求导数、求不定积分等内容,用传统的板书更适合学生掌握解题思路,方便教师和学生的交流。如果解题步骤也通过多媒体展示,学生思考的时间比较少,会影响问题的理解。因此,这就要求教师在备课的过程中,一定要处理好哪些用课件展示,哪些用板书来教授,做到课件和板书的合理结合,从而达到最优的教学效果。
(3)充分利用网络平台可以通过学校的网站平台,上传整理的电子教案、典型习题解答、单元自测练习、知识难点解析,以及往年试卷、教学大纲,供教师和学生下载。建立教师辅导、答疑版块,使教师能和学生更好地交流,使得学生能及时解决问题。在我们系里,就建立了QQ群,每天安排一个教师在线答疑,这样学生当天的问题可以及时地解决,可以很好地进行下面的学习。
三、结语
总之,现代教育技术是教师专业发展的核心动力,是渗透教师专业发展各个层面的核心内容。因此在《高等数学》教学中,必须很好地结合现代教育技术,克服缺点,发扬优点,把《高等数学》和现代教育技术很好地结合在一起,从而促进《高等数学》的教学质量的提高。
篇16:大专高等数学教学论文
大专高等数学教学论文
大专高等数学教学论文【1】
【摘要】高等数学是学习现代科学文化知识及其他专业课必不可少的一门重要的基础课。
本文结合笔者自身,并针对问题提出相应的对策。
【关键词】高等数学问题对策 研究
高等数学是学习现代科学文化知识和其他专业课必不可少的基础知识。
但在大专高等数学的日常教学中还存在着诸多问题,本文将从以下五个方面分析大专高等数学的教学存在的问题,并结合实际提出一些解决的对策。
问题一: 学员对高等数学的学习兴趣不高
大专学员的文化课普遍掌握的不是很好。
因此,在日常教学中,尽可能地在教学过程中多加些实际生活中应用的例子,增强学习的兴趣。
其次,教员在讲授高等数学的某些知识点时,应尽量的与学员将来要学习的专业课的一些内容联系起来,学员必定会更加注意听讲。
最后,教员课前一定要认真备课,不能“照本宣科”,如果教员只顾自己讲,而不考虑学员的反应如何,经常这样的话,学员自然对学习高等数学失去兴趣。
问题二: 学员数学基础参差不齐
大专学员的数学基础参差不齐,如果将所有学员安排在同一个班级上课的话,教员往往顾此失彼,教学效果难以达到预期目的。
这就要求教员在日常高等数学教学过程中要体现“以人为本,以学员为中心” 、“因材施教”的教育原则,在日常高等数学教学中可把学员分成基础班、中级班、提高班三个层次,按照事先制订的不同层次的教学目标和要求,进行分班教学,也可尝试分层次的期末考试。
这样的分层次教学与考核,让基本处于同一层次的学员在一起学习,避免了传统教学中学员成绩悬殊太大而产生的自卑和厌学情绪。
问题三: 部分教员多媒体辅助教学运用不恰当
在高等数学日常教学中恰当地使用多媒体课件,不仅能提高课堂效率,有利于调动学员的学习兴趣,但也存在一些问题比如有些教员只顾播放PPT,与学员没有互动,导致教学效果大大不理想。
为了避免上述情况发生,在日常教学中还是应该以板书为主,对于一些题目可以将主要解题过程在黑板上演算出来,最后一些繁琐的计算可以借助多媒体展示。
问题四: 教学内容与教学时间方面存在问题
由于院校改革,大专高等数学课时被严重压缩。
如果还按照以往教学方式,教员往往为了完成教学任务而赶进度,一些重、难点内容难以展开,影响了教学效果。
所以在大专高数的教学中不必追求大而全而是以应用为目的,以必需、够用为度,将一些重点内容,其他专业课必须用到的相关知识点要详细、高质量的讲给学员,而那些可要可不要的知识点可以简单的给学员作一些介绍,让学员了解即可。
问题五: 部分教员教学能力不强,与学员的要求存在差距
目前大多数教员都具有研究生学历,但是有些教员对于具体的教学过程却知之甚少。
要改变这样的情况,一方面学校要多给教员创造一些学习的机会。
另一方面也需要学校多为教员组织一些相关能力方面的培训,进而提升教员的教学水平与经验。
学校可以定期通过教学比赛来选拔教学标兵树立榜样,进而促进教员自身提高自己教学能力的要求,同时也可以让教学能力强,教学效果好的老师上示范课,让全体教员进行现场观摩,这对提高教员的`教学能力也是大有帮助。
参考文献
[1]马丽霞.高职院校高等数学教学改革探析[J].北京城市学院学报,.6
[2]郭迎春,茅国华.高等数学教学现存问题分析与对策研究[J].河北大学成人教育学院学报,.9(4)
大专高等数学教学【2】
摘要:高等数学作为大专教育中的基础课程,需要我们给予重视和思考。
高等数学是大专院校一门重要的基础课程,它不但为学生学习后继课程和解决实际问题提供了必不可少的数学基础知识及常用的数学方法,而且在培养学生的创新思维能力方面也起着重要的作用。
关键词:大专;高等数学;教学探讨
高等数学是大专院校一门重要的基础课程,教师要勤于思考,善于总结,引导学生发现生活中很多有趣、生动、形象而又蕴含了数学理论基础和创新性思维的现象,唤起学生学习数学的热情,增强学生主动学习的动力,最终提高学生未来的适应社会、胜任工作的能力。
1.过程教学的理论依据
1.1 学生的学习是在自己原有认知结构的基础上的一个主动建构过程,能够使学生的思维始终处于积极状态的教学才是有效的教学,而过程教学正是在教学中通过展现数学家的思维过程(创造过程)、教师自己的思维过程,使学生在重新经历数学知识的发现、形成、改造、发展中和数学家同思考、共发现,从而使学生能真正体会到数学家是如何选择问题的突破口,如何合理选择发明创造的方法,如何调整研究问题的方向,面对错误是如何修正的等等。
这样的教学不但有利于发挥学生的主动性,而且更有利于培养学生的创造性,使学生学到活生生的创造整理方法,同时学生的心灵也可以受到潜移默化的影响。
1.2 过程教学中全体学生的不同思维展现,使不同的思考方法异彩纷呈,更易在同学之间产生影响。
好的方法更易被采纳,失败的教训更易接受,从而更有利于解决他们将来遇到的新问题,因此在教学中暴露思维活动的过程应是高数教学贯穿的生命主线。
2.过程教学的实施
2.1 概念、定理、公式的教学中,引导学生经历概念、定理、公式的发现、形成及证明思路的形成过程,让学生掌握不同定理、公式之间的联系和区别。
教材中一般只给出了数学概念的定义、定理的内容,省略了概念、定理提出、证明方法的形成过程,从而给学生的学习造成了一定的困难,笔者认为教师应向学生提供数学概念、定理形成的有效情景,引导学生利用自己已有的知识和经验,通过主动探索和积极思考,亲身经历概念是如何发现、形成的,最终由学生自己发现相应的概念与定理,这样,学生才能真正领悟概念的本质,弄清概念的外延,从而避免在后继的学习中出现概念性错误。
2.2 在解决问题时向学生展现问题的提出、思路的形成、发展,调控以及修正过程。
“问题是数学的心脏”,笔者认为教师应采用适当的方法来暴露、揭示教师和数学家真实的解决问题的思维过程,如当教师遇到问题时是如何寻找突破口,在问题的解决过程中如何调控自己的思维,如何发现和提出新的问题等等。
我们知道证明“∈(a,b),使f(ξ)=0或f′(ξ)=0”是微分中值定理应用中的两类重要问题,常常利用Rolle定理来解决,对于第一类问题往往通过找出f(x)的原函数F(x),对F(x)在[a,b]利用Rolle定理证明F′(x)在(a,b)内存在零点即可,对于第二类问题也可类似解决,可见两个问题都转化为求f(x)的原函数F(x)。
而学生面对此类问题往往却束手无策,不知如何下手,历来是教学的重点更是难点,可见如何使学生通过例题的学习掌握规律、找出通法,掌握解决问题的实质和关键应是提高解题教学质量的有效途径。
3.“过程教学”与“结果教学”的协调统一
3.1 选择恰当的教学内容。
篇17:高等数学教学反思论文
高等数学教学反思论文
摘要:高等数学作为一门基础性学科,在高校教学中具有举足轻重的地位。从基本概念讲解和知识的综合应用两个方面介绍了在本科生高等数学教学中的体会与思考。
关键词:高等数学;基本概念;综合应用能力
高等数学是高校教学中的一门重要课程,也是大多数刚踏入大学校园的本科生必修的一门课程。随着高校规模的进一步扩大,学生的素质和水平参差不齐,而高等数学又是一门理论性强、具有严密逻辑思维性的基础学科,因此要求每位高等数学教师要切实重视这门课的教学。要想学生真正喜欢上这门课,并且很好地掌握这门课,就需要不断提高教师的教学质量。
高等数学基础性强、理论性强、逻辑性强,它的推理、证明、数据演算等必须经得起推敲,容不得半点虚假。为了避免出现“一听就会,一做就错”、生搬硬套、遇到实际问题不会分析的状况,在高等数学的课堂教学中要从基本概念、基础知识出发,逐步培养学生的分析、推理能力和综合应用能力。
本文就谈一下笔者在高等数学教学中的体会与思考。
一、注重基本概念的讲解
数学概念是人类对现实世界的空间形式和数学关系的简明概括,它是推导定理、公式、法则的出发点,是建立理论体系的着眼点,是数学教学的核心内容。但是许多学生在学习高等数学的过程中不注重课堂教师概念的讲解,只偏重于解题。一看到题目,如果题目曾经见过,不管条件如何就开始生搬硬套;如果题目没有见过就发呆愣神,根本不会分析推理。因此,在课堂教学中,一定要注重概念的理解,而不是将一个个抽象的概念“冰冷冷”地放在那儿,教师应该将知识体系很好地连贯起来,同时将所学内容与实际生活结合起来,能够生动形象地组织教学。
基本概念的引入和数学史结合
在讲解基本概念的时候,穿插一些数学史的内容,一方面可以加深学生对数学的兴趣,另一方面也可以加深对概念的理解。例如,在讲解“导数”概念的时候,首先引入一些数学史的内容。
到了17世纪,有许多问题需要解决,这些问题也就是促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是求即时速度问题;第二类是求曲线的切线问题;第三类是求函数的最大值与最小值问题;第四类是求曲线长、曲线围成的面积、曲面围成的体积、物体重心的问题。这些问题在当时得到广泛的关注,许多著名的数学家、物理学家、天文学家都提出了许多很有建树的理论,为微积分的创立作出了贡献。
17世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作,他们最大的功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。
牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼兹却侧重于几何学来考虑。
这一段数学史的讲解,首先为紧接着引入“导数”概念时给出两个引例(直线运动的速度和曲线的切线)做好了铺垫,也引入导数概念的出发点——直观的无穷小量,与上一章的极限概念结合起来。其次,17世纪要解决的前三个问题,也就是导数这一部分重点要解决的问题,开篇就把该章的主要框架给出。第四个问题为后面积分学的引入埋下了伏笔。介绍牛顿和莱布尼兹的主要贡献,为定积分求解公式称为牛顿-莱布尼茨公式给出了合理的解释。
一段数学史的引入既让学生了解了微积分的发展,调动了学生学习兴趣,也可以更好地衔接课堂内容,何乐而不为呢?2.基本概念和实际相结合在讲解级数这一部分内容时,学生总觉得枯燥、抽象,感觉就是一些运算,并没有什么实际的应用。
讲解时,首先给出一个有名的悖论“Achilles(传说中的希腊英雄)追赶乌龟”:设乌龟在Achilles前面A米处向前爬行,Achilles在后面追赶,当Achilles花了a秒时间跑完A米时,乌龟已向前爬了B米;
当Achilles再花b秒时间跑完B米时,乌龟又向前爬了C米,……这样的过程可以一直继续下去,因此Achilles永远也追不上乌龟。
显然这一结论有悖于常理,是绝对荒谬的,可是如何用数学语言解释清楚呢?这样一个悖论可以调动学生积极思考。在思考的过程中,引入级数的概念。接着讲解级数的一些基本性质,从而再给出一些级数在实际中的应用,例如:一慢性病人需每天服用某种药物,按医嘱每天服用0.05mg,设体内的药物每天有20%通过各种渠道排泄,问长期服药后体内药量维持在怎么样的水平?通过对于级数的计算可以得到长期服药后体内药量近似为:0.05 10.25m g5454542 3#8 ++`j +`j+gB=而在实际病例中,医生往往根据病人的病情,考虑体内药量水平的需求,确定病人每天的服药量。如一慢性病人需长期服药,按照病情,体内药量需维持在0.2mg,设体内药物每天有15%通过各种渠道排泄掉,问该病人每天的服药剂量应该为多少?[2]这样声情并茂、理论联系实际的一节课就可以让学生既思考了问题,又可以掌握基本知识,同时还激发了学生对抽象数学的兴趣,收到事半功倍的效果。
二、注重知识的综合应用
高等数学现行教材中的很多例题,由于篇幅原因一般只有题目的解答过程却没有思考过程,因此爱问问题的学生往往会问,如果是自己解题的话,怎么会这样想呢?这个疑问就是授课教师在讲解题目时重点要解决的'。也就是说,授课教师不但要把解题的过程讲解清楚,还要从解题思路方面进行引导,指导学生怎样运用所学知识独立寻找解题思路,也就是逻辑思维能力的培养。
例如在讲中值定理这一节时,有例题:设在区间I上恒有:f( x )f( x )2x x ,x ,x I1 2 1 221 2-G-!证明此函数在I上为常数函数。
学生本来对证明题就有一种畏难情绪,一见到是抽象函数的证明题,更是无从下手,一头雾水了。这时教师不能直接讲解题过程,而是要逐步分析、理解,让学生给出解题过程。
首先帮助他们分析题意,引导学生逐步思考。要想证明一个函数为常数函数,由拉格朗日中值定理可知,“如果函数在区间I上的导数恒为零,那么函数在区间I上是一个常数”,因此只要证明“在区间I上,函数的导数均为零”。
讲到此处,给学生一个思考的余地,让他们试着去选择方法,看看如何证明函数的导数为零。于是学生在思路的引导下会进一步考虑。很多学生会选择拉格朗日中值定理,将左边函数值的差转化为和导数相关的量。此时教师就可以趁势鼓励他们想着要去转化左边的式子,非常正确。但是转化的过程要利用拉格朗日中值定理,那么条件满足吗?在拉格朗日中值定理中要求所考虑的函数在闭区间内连续,对应的开区间上可导,定理中的两个条件缺一不可,而这个题目中并没有给出函数的连续性和可导性。那要怎么处理呢?如果想出现导数形式,就可以从导数的基本定义出发进行分析。导数是差商的极限,反映的是变化率。
左端只给出了函数值的差,那么自然想着要和自变量的差结合,出现差商形式,将所给等式变形为:()x xf x f x2x x1 21 21 2G---而导数是一种极限形式,进而不等式两边取极限,利用夹逼准则结合极限的性质,所证结论成立。
通过逐步分析,问题就迎刃而解了。这个分析题的过程既有学生的参与,也有教师的讲解,利用条件和基本概念逐步分析就是对学生推理思维训练的过程。对学生来说收获更大。由这个题目的分析求解过程可以发现这是一道综合性较强的题目,需要学生对每个知识点——拉格朗日中值定理、导数定义、夹逼准则以及极限的性质必须要熟练掌握,然后才会融会贯通。
数学的题目千变万化,永远做不完。这就要求学生对基本概念掌握扎实,每个知识点要理解清楚。在题目的分析过程中,对基本概念和知识点融会贯通,逐步培养自己的逻辑分析、综合思维的能力。那么无论碰到什么样的题目类型都可以独立思考,逐步分析,寻找合适的解题方法。
总而言之,高等数学的教学是需要一个过程的,在这个过程中,教师只有不断提高自己的数学素养和教学能力,才能把高等数学这门课讲好,才能逐步激发学生学习的兴趣和乐趣,达到教与学的双赢。
参考文献:
[1]卡茨.数学史通论[M].李文琳,等,译.北京:高等教育出版社,.
[2]陈纪修,於崇华,金路.数学分析(下册)[M].北京:高等教育出版社,.
[3]同济大学数学教研室.高等数学(上册)[M].北京:高等教育出版社,2007.
篇18:浅谈高等数学教学计策论文
浅谈高等数学教学计策论文
一、高等数学现代教学模式回顾
现在比较提倡的教学模式有:数学归纳探究式教学模式;“自学———辅导”教学模式;“引导———发现”教学模式;“情境———问题”教学模式;“活动———参与”教学模式;“探究式教学模式”等。研究这些教学模式,使本人能够学习和借鉴它们的研究思想和方法,为本文基于数学文化观的高等数学模式的建构提供方法论支持。
(一)“自学———辅导”教学模式。是指学生在教师指导下自主学习的教学模式,这一模式的特点不仅体现在自学上,而且体现在辅导上,学生自学不是要取消教师的主导作用,而是需要教师根据学生的文化基础和学习能力,有针对性的启发、指导每个学生完成学习任务。“自学———辅导”教学模式能够使不同认知水平的学生得到不同的发展,充分发挥了学生各自的潜能。当然,这一教学模式也有其局限性,首先,学生应当具备一定的自学能力,并有良好的自学习惯;其次,受教学内容的限制;此外,还要求教师有较强的加工、处理教材的能力。
(二)“引导———发现”教学模式。主要是依靠学生自己去发现问题、解决问题,而不是依靠教师讲解的教学模式。这一教学模式下的教学特点是,学习成为学生在教学过程中的主动构建活动而不是被动接受;教师是学生在学习过程中的促进者而不是知识的授予者。这一教学模式要求学生具有良好的认知结构;要求教师要全面掌握学生的思维和认知水平;要求教材必须是结构性的,符合探究、发现的思维活动方式。运用这一教学模式就能使学生主动参与到高等数学的教学活动中,使教师的主导作用和学生的积极性与主动性都得到充分的发挥。
(三)“情境———问题”教学模式。该模式经过多年的研究,形成了设置数学情境;提出数学问题;解决数学问题;注重数学应用的较稳定的四个环节的教学模式,模式的四个环节中,设置数学情境是前提;提出数学问题是重点;解决数学问题是核心;应用数学知识是目的。运用这一模式进行数学教学,要求教师要采取启发式为核心的灵活多样的教学方法;学生应采取以探究式为中心的自主合作的学习方法,其宗旨是培养学生创新意识与实践能力。
(四)“活动———参与”教学模式。也称为数学实验教学模式,就是从问题出发,在教师的指导下,进行探索性实验,发现规律、提出猜想,进而进行论证的'教学模式。事实上,数学实验早已存在,只是过去主要局限于测量、制作模型、实物或教具的演示等,较少用于探究、发现问题、解决问题等。而现代数学实验是以数学软件的应用为平台,结合数学模型进行教学的新型教学模式。该模式更能充分的发挥学生的主体作用,有利于培养学生的创新精神。
(五)“探究式教学模式”。探究式教学模式可归纳为“问题引入———问题探究———问题解决———知识建构”四个环节的的教学模式。探究式教学模式是把教学活动中教师传递学生接受的过程变成以问题解决为中心、探究为基础、学生为主体的师生互动探索的学习过程。目的在于使学生成为数学的探究者,使数学思想、数学方法、数学思维在解决问题的过程中给予体现和彰现。
二、基于数学文化观的高等数学教学模式的思考
(一)基于数学文化观的高等数学教学目标。数学是推动人类进步最重要的学科之一,是人类智慧的集中表达,学习数学的基本知识、基本技能、基本思想自然是数学教育目的的必要组成部分;数学的发展不同程度地植根于实际的需要,且广泛应用于其他很多领域,所以,数学的应用价值也是教育目的的一个重要部分。数学教育的目的,还有锻炼和提高学生的抽象思维能力和逻辑思维能力,使学生表达清晰、思考条理。实现科学价值是数学教育一直不变的目标,但并不是唯一目标。数学的人文价值也是数学教育不可忽视的重要内容。在数学教育中,我们不仅要关心学生智力的发展,鼓励学生学会运用科学方法解决问题,还要关注培养有情感、有思想的人。同时,作为文化的数学,能够提升人的精神,增强人的本质力量。通过学习数学文化,能够培养学生正确的世界观和价值观,发展求知、求实、勇于探索的情感和态度。因此,笔者认为基于数学文化观的高等数学教育,就是将其科学价值与人文价值进行整合。在数学文化教育的理论指导下,“基于数学文化观的高等数学教学模式”的教学目标为:以学生为基点,以数学知识为基础,以育人为宗旨,在传授知识,培育和发展智力能力的基础上,使学生体验数学作为文化的本质,树立数学作为一种既普遍又独特的与人类其他文化形式同等价值地位的文化形象,最终使学生达到对数学学习的文化陶醉与心灵提升,最终实现数学素质的养成。
(二)基于数学文化观的高等数学教学模式的构建。分析上述高等数学教学模式发现,虽然现代教学模式已经打破了传统教学模式框架,但学生的情感态度、数学素质的培养不是其主要教学目标。学习和研究现代教学模式的研究思想和方法,使笔者认识到构建数学文化观下的高等数学教学模式,并不意味着对传统的教学模式的彻底否定,而是对传统的教学模式改造和发展。这是因为数学知识是数学文化的载体,数学知识和数学文化两者的教育没有也不应该有明确的分界线,因此数学知识的学习和探究是数学教学活动的重要环节。立足于对数学文化内涵的理解,围绕基于数学文化观的高等数学教学目的,通过对高等数学教学模式的的反思和借鉴,本人逐步从多年的教学实践中归纳形成了“经验触动———师生交流———知识探究———多领域渗透———总结反思”的教学程序的教学模式。这一教学模式就是在教与学的活动过程中充分渗透数学文化教学,教师活动突出表现为呈现———渗透———引导———评述;学生活动突出表现为体验———感悟———交流———探索。
篇19:左右教学课件
教学目标:
1、生活中有关左右的真实情境激发学习兴趣。
2、识“左右”的位置关系,理解其相对性。
3、用左、右描述物体位置关系。
教学重难点 :
认识“左右”的位置关系,理解其相对性。
教学过程:
一、创设情境,感受左右
1、由上下楼引入教学
师:为了安全,避免我们上下楼时冲撞在一起,学校要求我们都要“靠右行走”。出示书13页图,问:靠右行我们该走哪边呢?
2、出示课题
师:只要我们认识了左右,就能解决这个问题。今天我们就来学习“左右”(板书课题)
二、活动中感知,认识左与右
1、借助左右手认识左右。
师:小朋友们,今天谁有信心上好这节课?请举起你的小手。
师:谁能告诉老师你举的是哪只手吗?对了,在举手发言时,我们通常都是举右手,老师现在要看看你们举的手是不是都是右手呢?
(1)做动作记右手。
拍一拍:让学生用右手轻轻拍一下桌子。
握握手:让学生伸出右手,相邻的两个同学握握手。
(2)认识左手。
师:我们已经认识了右手,另外一只手就是左手。快把左手举起来,看一看,这就是我们的左手,用左手把铅笔盒摆好。
(3)借助儿歌强化认识左、右手。
教师和学生一起听音乐边说边做动作。
我伸出左手去
我伸出左手去,我收回左手来,我伸出左手摆一摆,左手收回来。
我伸出右手去,我收回右手来,我伸出右手摆一摆,右手收回来。
我伸出双手去,我收回双手来,我伸出双手摆一摆,双手收回来。
(4)借助左、右认识左、右面
提问:在我们每个人的身上,有着很多像左手和右手一样的好朋友,看一看自己的身体,你能找出像这样的一左一右的好朋友吗?请你一边找一边和你的同桌说一说。
学生活动,寻找身体上的左右。
提问:“谁愿意和大家说一说你身体上的一左一右的好朋友?老师建议,他说到哪儿,咱们也就指到哪儿行吗?”
生汇报寻找结果,边说边指,其余的同学也跟着指一指。
讲述:同学们观察的真仔细,找到了这么多一左一右的好朋友,连老师都佩服你们了。现在我要看看你们身体上的这些伙伴配合如何,咱们做个“听口令,做动作”的游戏。
游戏:听口令做动作
伸出你的左手,伸出你的右手
左手拍左肩,右手拍右肩
右手摸右耳,左手摸左耳
右手拍左腿,左手拍右腿。
左手叉腰,左手举起来,向左弯弯腰。
右手叉腰,右手举起来,向右弯弯腰。
2、各种方位介绍座位。
谈话:在你的位置上,谁能用前后左右来介绍介绍你周围的同学?(先请两个学生说一说,再同桌互相说。)
提问:在这些同学中有你的好朋友吗?你的朋友坐在第几组?第几位?左边还是右边,让我们猜一猜好吗?
提问:你能用左边右边来说一句话吗?可以说说这间教室的摆设。
三、操作中辨别,加深对左右的理解
1、介绍文具的位置。
新学期开学,蓝猫商店进了一些学习用品,小朋友,你们想去看看吗?有哪些学习用品呢?它们是怎样摆放的?
先自由说文具的位置,再集体交流。
2、提问:谁来说一说铅笔的摆放位置。引导:为什么铅笔一会儿在左边,一会儿又在右边?(对于尺子来说铅笔在它的左边,对于笔盒来说铅笔在它的右边)。
3、设疑:第二个是什么文具?是尺子还是笔盒?同学们可以讨论讨论。请双方代表上台辩论,明确物体的位置是从右数还是从左数。
过渡:同学们用左右为我们介绍了蓝猫商店的文具,大家说的很好。下面咱们来轻松轻松。
(1)学生齐唱《健康歌》。
(2)喜欢这首歌的同学请举右手(学生举手),老师也非常喜欢(师举起右手),我举的是右手吗?有不同意见吗?为什么?
明确:站立的方向不同,因此左右也就不同。
(3)同座位的同学握手,再次验证左右的相对性。
四、解决中运用,感受实用性
1、师:瞧,你们看见图上有什么?“上下楼梯请靠右行”是什么意思,你知道吗?
教师小结:判断时应把自己当成上下楼梯的人。平时我们上下楼梯和走路时,也要像这些小朋友一样靠右走。在校园里同样,马路中咱们也该遵守交通规则。
2、练习书13页6题,用学过的上下、前后、左右说一说。
五、全课小结
今天我们学习了什么?这节课你认为哪个小朋友表现得好?
篇20:左右教学课件
一、教学内容:
人教版《义务教育课程标准实验教科书数学》一年级下册P3左右。
二、教学准备:
1、课件、问题卡片。
2、在教室中间空出一条走廊。
3、要求学生准备好铅笔、尺子、小刀、橡皮、铅笔盒各一样。
三、教学目标与策略选择:
(一)教材分析:《左右》是义务教育课程标准实验教科书数学(人教版)一年级下册的教学内容。《数学课程标准》要求教师应充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在生活中的作用,体会学习数学的重要性。因此,运用所学知识解决生活中的数学问题,能够在具体情境中,正确理解左右的含义是本节课的重点。
(二)学生分析:这部分内容是学生在认识“上、下”“前、后”的基本含义,初步了解
它们的相对性及学会用“上、下”“前、后”描述物体的相对位置的基础上理解“左右”,
进一步通过对物体位置关系的探索,发展空间观念。
(三)教学目标:
1、创设情境,让学生体验左右的位置关系,理解其相对性。
2、通过活动培养学生用“左右”的数学知识解决实际问题的能力。
3、以生活中有关“左右”的真实情境激发学生的学习兴趣。
(四)策略选择:
本课以活动课的形式,以六大块活动情境串连生成,集知识性、趣味性、活动性为一体,使学生在多种形式的游戏、活动过程中体验到左右的含义与相对性。让学生在玩中学,乐中悟。
四、教学流程
活动一:引出“左右”
1、学生活动:
①让两个小组的学生在教室中间的走廊里随意来回走动 →说说感受(很乱)→假设在马路上大家都这么走会怎样?(交通混乱,容易出事)→你来想办法解决。(有秩序走,靠右走)
②靠自己的右边来回走动→说说感受。
2、引出课题:看来认识左右很重要,它可以帮助我们解决很多问题,这节课我们就来认识“左右”。
活动二:感知“左右”
1、用左右手引入,感知自身的左和右。
①我们每个人都有两只手——左手和右手,我们常常用左手和右手做什么?左右手是好朋友,团结起来力量大。
②找一找我们身上还有这样分左和右的好朋友吗?
③你怎样来记住左、右。
2、学生学做机器人,老师当遥控器,请机器人按遥控器的指令做动作。
伸出左手摆一摆,伸出右手摆一摆;
伸出左脚跺一跺,伸出右脚跺一跺;
拍拍左肩1、2、3,拍拍右肩1、2、3;
左手抓右耳,右手抓左耳;
左眼眨一眨,右眼眨一眨。
3、显示课件(一个背对学生的小女孩),找出这个小女孩的左
右辫子、左右手、左右腿、左右身。
活动三:体验左边和右边。
1、按要求摆学具。
通过生活实例,使学生获取大量感性材料,从矛盾冲突到解决问题,让学生切身感受到认识“左右”的必要性和重要性。
学生常常因左右手配合做事而较难分开体会,因此教师让学生充分体验自身的左和右,通过游戏的形式,让学生在玩中学,在乐中悟,从而感知左和右,体会到生活中处处有数学。
通过摆一摆,数一数,说一说,把操作、观
教学流程 设计意图
现在请同学们拿出学具摆一摆,从左往右依次为:铅笔、尺子、
小刀、橡皮、铅笔盒,并回答下列问题。
从左数尺子第( ),从右数尺子是第( );
尺子的左边有( ),右边有( );
尺子在( )的左边,在( )的右边。
2、请大家把学具打乱,再随便摆一次,然后再回答以上问题给同桌听。
3、观察你这排同学,回答以下问题。
从左数我是第( ),从右数我是第( );
我的左边有( ),右边有( );
紧靠我左边的是( ),右边是( );
我在( )的左边,在( )的右边。
活动四:理解“左、右”的相对性。
1、请你转个身,看看现在你的左右各是谁?
2、大家一齐来感受一下,我们来上回体育课,按老师的要求向左转或向右转,再看看这时你的左右各是谁?你有什么发现?(对回答最精彩的学生给予表扬,并与他握握手。)
3、与老师握手,你用哪一只手?老师用哪一只手?你有什么发现?(面对面,我们的右手不在同一边。)
4、出于礼貌我们都用右手与别人握手,请同桌握一握手,进一步体验。
5、我想请大家举右手,我也想举右手,你说我该举哪只手?你请老师做个什么动作,一眼就看出是左手还是右手。(转身)然后我们都举左手,你发现什么?(面对面,左手不在同一边。)
6、师生面对面,看着桌上的学具,请学生回答对方的左右边各
察与语言表达紧密结合起来。掌握以“谁”作标准来确定左边有什么,右边有什么,引导学生参与知识形成的全过程。“打乱后随便摆一摆”,打破了学生思维定势,发展了思维,培养了创新意识。
左右的相对性是本课的难点,教师巧妙地用转身、握手、找东西等活动,激起学生疑问,抓住学生注意,引起学生思考,让学生去体验、感受其中的奥秘。集知识性、趣味性、活动性为一体,有效地突破了教学的难点。
有什么?
教师把铅笔盒、小刀放在身体的左边,橡皮、尺子、铅笔盒放在身体的右边,问学生:现在我们面对面,请问我的左边有什么?我的右边有什么?
活动五:巩固左、右。
1、抢答:在老师的描述中抢答正确的答案。
同学们有没有看过幸运52?李咏叔叔说请在我的描述中抢答这是什么,现在我们就来玩这个游戏,每组派一人进行抢答。
① 出示
师:它不在最左边,也不在最右边,它在桃子的右边,在樱桃的左边,请问它是( )。
(哪一个学生抢答成功,说明理由后老师就把这张可爱的问题卡片送给他。下同)
②出示一幅图,一个男孩面对大家,他的左边是儿童公园右边是图书馆,后面是超市。
师:星期天,妈妈带小明去一个地方,这个地方就在小明的右边,请问他们要去哪?
③出示一幅图,三个动物三个家
师:小狗住小猫的右边,小兔紧挨着小猫的右边住,用线连一连,给动物们找到家。
2、辩论:老师和一个同学走楼梯,一人上,一个下,每人靠自己的右边走,请问我们会撞在一起吗?说明理由。
活动六:实践左和右。
P6生活中的数学。
组织有效的`抢答辨论活动,让每个学生都动起来,引导学生站在对方的角度去观察问题,多角度思考问题,让学生去认识、去感悟、去体会,提高学生的思维品质,进一步明确方向不同,左右不同,同时对学生进行了安全教育。
五、教学片段实录:
活动一:引出“左右”
师:我们教室的中间有一条走廊,现在请两个小组的小朋友在走廊里随意来回走动。
(两个小组的学生在走廊里来回随意走动。)
师:你们有什么感受?
生1(场内的):老师干吗要我们走来走去?
生2(场内的):老师这样走都会撞到。
生3(场外的):这样走很乱。
师:假如在马路上有许多车、许多人,也这样走的话,会有什么后果?
生1:会很危险。
生2:有可能会撞起来。
生3:会出车祸。
生4:这样走不好。
师:那你想个办法,怎样比较好?
生1:大家都靠一边走。
生2:大家都靠右边走。
生3:大家都靠左边走。
师:每个国家都有不同的交通规则,我国规定每个公民都靠自己的右边行走或行车。现在请同学们都靠自己的右边来回走一走,有什么发现?不知道右边在哪可以请同学或老师帮忙。
(场内学生靠自己的右边来回走动。)
师:现在有什么感受?
生1:好多了。
生2:不乱了。
生3:这样不会撞到。
师:看来认识左右很重要,可以帮我们解决许多问题。这节课我们就来认识“左右”。
……
活动五:巩固左和右。
1、抢答:
……
2、辩论:
师:老师和同学走楼梯,一人上,一个下,每人靠自己的右边走,请问我们会撞在一起吗?
生1:肯定会的,都走同一边肯定会撞起来。
生2:不对,一人上一人下,不会撞起来。
生3:对哪!面对面,两个人右边不在同一边,不会撞起来。
生4:都是右边怎么不会撞起来?
生5:不会的哪。
(教室里一大片声音说不会,一小片声音说会,很热闹)
师:谁能拿出有力的证据,说服对方。
生6:老师我们来表演一下,就是最好的证明。
师:好主意。
(师生面对面,各自靠右走,用事实证明不会相撞,全班一片欢呼声。)
……
六、教学反思
(一)创造性的使用教材。
教材是知识的载体,是师生教与学的中介,但只是提供了学生学习活动的基本材料,它需要每一位教师去实践、丰富及完善。本着这一认识,我对教材进行大胆处理。用六大块活动情境串连生成,集知识性、趣味性、活动性为一体,使学生在多种形式的活动过程中体验到左右的含义与相对性,使学生乐学、爱学。
(二)尊重学生,让学生在活动中学数学。
在教学“左右”一课前,我通过与学生交流,发现学生对左右有了初步感受,但对其相对性、可变性缺乏清晰的认识。基于这一情况,整个教学中教师只是作为活动的组织者、引导者,让学生进行有序的活动。通过大量的生活实例,使学生获得大量感性材料,使学生在玩中学,乐中悟,为正确理解左右奠定了基础。另外,这节课也抓住教材的难点让学生进行思考。
(三)在活动中培养能力,发展思维。
《标准》在基本理念中特别强调数学教学是数学活动的教学。为此在本节课中我安排了许多活动,创设了许多学生身边的情境,引导学生积极参与。通过这些活动发展学生猜想、观察、比较、操作、交流、推理的能力,让他们学会解决生活中实际问题。例如活动五中的抢答题,学生完全可以在老师没有念完题就知道答案,因为桃子的右边有菠萝和樱桃,它不是最右边,那肯定不是樱桃,只能是菠萝。在这老师没有禁锢学生的思维,让他们通过推理解决问题,小小的一道练习题,可以用多种方法解决成为学生思维放飞的舞台,不同层次的学生得到不同的发展。
让学生在活动中进行自主探索,是发展学生创新意识的重要条件,从更高要求看,本课在这一方面略显不足,教师可以在这方面作进一步研究。
★教学课件
文档为doc格式