【导语】以下是小编为大家准备的切圆柱教学反思(共19篇),欢迎大家前来参阅。

篇1:切圆柱教学反思
切圆柱教学反思
备课的初衷:
有关圆柱切的问题,在平时的练习中经常遇到,主要有把圆柱横切、沿直径竖切、沿半径切成若干份后拼成长方体,圆柱中切最大的圆锥,把一个正方体切成一个最大的圆柱,把一个长方体切成一个最大的圆柱等情况,但这些问题平时都是零散出现的,没有系统的呈现,所以便思索能不能把这些问题系统的在一节课中呈现,同时起到复习的效果。
备课的思考:
1.这些问题以什么方式呈现,第一想法就是不能教师呈现,学生练习,必须放手让学生整理,所以借鉴了贲友林老师常用的方式,课前布置学生整理相关切圆柱的情况。为了让学生对这样的整理带有积极性,所以采用了加星的激励措施,第一次是在自己整理本上整理了一条,作为实验,因为学生第一次尝试这样的整理,整理的质量良莠不齐,差距较大,所以把整理的较好的作业进行了,让其他学生进行学习,突出了画图在解答过程中的作用,第二次便在作业纸上整理,规定至少2题,如果防止你整理的.问题别人也整理了,你没机会补充,所以可以在2题的基础上再整理更多的问题。有了激励措施,没想到第二天的作业让我很意外,质量超过了我的预计,学生整理的很认真,图文并茂,思路清晰,包括提醒的注意点,我感慨,其实,给学生这样的机会,他们觉大多数都是要求进步,有能力完成的。全班50人, 40人整理的符合要求,其中12人整理了2题以上,只有10人因基础原因和态度原因,完成质量不高。
2.这样的课堂怎么掌控,课前我也很担心,发现教案中,我竟然要说的很少,心里没底,学生能否进行交流,如果课堂变成了学生把解答过程读一读,那课堂效果肯定不理想。所以我就在思考,课堂上我该干嘛?经过思考我要做的是:首先,我要做主持人,这些题目有难易,我要调控把握,不能开始就把最难的问题交流,所以什么时候谁该上台汇报,我要进行整体调控,但不能至始至终全由教师喊学生,在一些问题的补充,拓展时,就把主动权交给学生,让学生请学生,互相交流补充。其次,没一种切法,不是单纯的讲题目,每一种切法,我们要复习哪个知识点,教师心理要有数,在学生补充不到位的地方,教师要及时提醒引导,如横切,要清楚,切的刀数和段数、增加面的个数之间的关系,竖切,要清楚圆柱的侧面展开是一个长方形,也可能是一个正方形。沿半径切成若干份拼成长方体,要复习圆柱和长方体之间的联系。圆柱切最大的圆锥i,要清楚圆柱、圆锥、切去的体积之间的关系,正方体和长方体切最大的圆柱要清楚思考的方法,三种情况个要先确定直径和高,就能算出体积。最后,要对学生的汇报方式进行引导,不能让汇报的同学一讲到底,要让汇报的同学和大家进行互动交流,让其他学生进行补充,并对汇报的同学进行评价,不仅从题目的正确与否上评价,更要从学生汇报的方式和质量上评价。
课后的感悟:
本节课,学生的状态很好,虽然是下午上课,学生思维很集中,很有精神,所以也感染了我,整体感觉师生配合很默契。课前觉得难易掌控的教学设计,反而感觉上起来得心应手。反思整节课,第一、课前的整理对学生来说是一个提高的过程,感觉学生因为有了充分的思考和整理,学生上课才能有话说,有东西补充。课前整理2题。其实大多数学生思考的不仅仅是2题,他要选择有质量的,他要思考,及时就整理了2题,最起码这2题他做了充分的准备。第二、课堂的交流汇报补充对学生来说也是一个提高的过程,因为之前这个班,我就注重学生汇报方式的训练,所以一批学生能很自信的走上讲台,并且会和其他学生互动交流,课堂氛围很浓。
篇2:圆柱教学反思
成功之处:
1. 经历立体图形的抽象过程,认识圆柱。在教学中,首先呈现了现实生活中具有圆柱特征的建筑物和生活用品的图片,引导学生观察并认真思考:“这些物体的形状有什么共同特点?”然后从具体实物中抽象出圆柱的立体图形,给出图形的名称,让学生对圆柱的认识经历由形象---表象---抽象的过程。最后让学生说一说生活中还见过哪些圆柱形的物体,丰富学生的头脑中圆柱形象的储备,加深对圆柱的认识。
2. 通过观察和操作发现和总结圆柱的特征。在教学中,首先要从整体上把握“圆柱是由哪几部分组成的?”通过学生的观察交流指出:圆柱的两个圆面叫做圆柱的底面,周围的面叫做侧面;其次要深入各个部分的研究。通过动手操作发现圆柱的底面、侧面和高各有什么特征,让学生依据不同的方法进行探索验证,如证明上下底面是两个大小一样的圆可以剪下来比较,也可以把圆柱的一个底面画下来,再把另一个底面放在画好的圆上,看是否重合,还可以量出直径和半径来比较。
不足之处:
在揭示圆柱的高含义时的过渡比较牵强,应该出示两个高矮不同的圆柱体,让学生思考圆柱的高矮与圆柱的两个地面之间的距离有关,从而得出圆柱的高,若这样设计就比较好一些。
再教设计:
在原有课件的基础上添加上两个高矮不同的圆柱,教学起来就比较流畅了。
篇3:圆柱教学反思
圆柱是人们在生产、生活中经常遇到的几何形体,学习这部分内容,有利于发展学生的空间观念。《圆柱的认识》这节内容包括认识圆柱、圆柱的组成及特征、圆柱侧面和底面以及圆柱侧面展开图等知识。学生对圆柱侧面展开图的理解与掌握,既是对圆柱特征的深入认识,也是对后面学习求圆柱表面积起到铺垫作用,学生对掌握圆柱侧面展开图的知识,是起着承上启下的作用。
一、 了解学生的认知起点和生活经验,确定好教学起点
圆柱形的建筑物(如客家围屋、岗亭)和一些生活用品(如圆柱形鱼罐头盒、蜡烛),对学生来说并不陌生,并且学生在学习《圆柱的认识》,是在对周长、面积概念的理解,对长方形的面积和圆的周长会计算的基础上进行教学的。通过教学前测和课前与学生交流,从数学学科的知识体系的角度进行分析,找准知识的生长点;了解学生的实际生活经验,找到本节课的起点和着力点。
二、在活动过程中找到线与体之间的关系,渗透数学思想方法
1、体与面的转化,感受到几何直观的魅力
(1)学生在剪这一操作过程中,思考侧面展开图会是什么形状呢?
学生在操作(沿高剪)过程中,侧面展开图会是长方形,学生容易理解。
(2)体与面的转化,感受到几何直观的魅力
圆柱体侧面 展开 长方形
(3)侧面展开图还可能出现什么图形呢?
①沿高剪侧面展开图还可能出现正方形;
②斜着剪侧面展开图可能出现平行四边形;
③侧面展开图可能是梯形吗?
面对这些问题,只能在课前进行预设,并不一定要在本节课上面面俱到,后面的教学中根据实际,逐步渗透与讲解。
2、探索侧面展开图线与体的关系,渗透数形结合思想
(1)探索侧面展开图线与体的关系
a=c b=h
实物表征
图像表征
符号表征
(眼看到的) (脑想到的信息) (抽象出关系式)
(2)借助于数的精确性来阐明形的某些属性,即“以数解形”。
形缺数时难入微,以数解形,可以使数直观化。圆柱侧面展开图的长和宽的(数据大小)反映出侧面(形)的大小。
(3)借助形的几何直观性来阐明数之间某种关系。即“以形助数”。
数缺形时少直觉,以数辅形,可以将数形象化,学生容易发现圆柱底面周长和侧面展开图的长相等的关系。
数学基础知识是一条明线,直接用文字写在教材里,反映着知识间的纵向联系。数学思想方法是一条暗线,反映着知识间的横向联系,常常隐含在基础知识的背后,需要人们加以分析、提炼才能显露出来。
篇4:圆柱教学反思
圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓住新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。在圆的体积公式推导过程中,给予学生足够的时间和空间,激发学生的探究的欲望,培养学生的空间想象力。我把圆柱体拼成一个长方体,就是把一个新图形转换成一个我们学习过的图形,通过讨论,争鸣从而得出比较深层的数学知识,这种思维的火花,我们老师应及时捕捉,让它开得绚丽多彩,从而让学生的个性能得到充分的培养。让学生老师这样才能寓教于乐,从而达到了事半功倍的效果。在教此内容时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:
一、展示知识的发生过程,让学生在参与中学习。
现代教育认为课堂教学首先不是知识的传递过程,而是学生的发展过程;首先不是教师的教授过程,而是学生的学习过程;首先不是教师教会的过程,而是学生学会的过程。展开部分,首先让学生大胆猜想,圆柱体的体积可能等于什么?大部分学生猜测圆柱体的体积可能等于底面积×高。在验证圆柱的体积是否与圆柱的底面积和高有关的过程中,我让两名学生到台上演示,学生兴致很高,都想到台上进行操作,被选出进行演示的学生非常认真地进行操作,而其他学生也是非常认真的进行观察。因此推导得出圆柱体积公式时,学生感到非常好懂,也学得很轻松。
二、在讨论交流中学习。
通过实验验证之后,让学生看课件后,小小组进行了如下讨论:
(1)拼成的近似长方体体积与原来的圆柱体积有什么关系?
(2)拼成的近似长方体的底面积与原来的圆柱底面积有什么关系?
(3)拼成的近似长方体的高与原来的圆柱高有什么关系?这样不仅为学生提供动手操作、观察以及交流讨论的平台,而且有利于学生克服胆怯的心理障碍,大胆参与,发挥学生的主动性,同时还能增强
团队协作意识。在这一环节中,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。
本节课采用新的教学方法,取得了较好的教学效果,不足之处是:学生亲身体验的感受不够,因为圆柱体积演示器只有一套,所以,只能是个别学生进行操作,大部分学生只能远距离观察。有些学生因看得不清楚而观察、思考得不正确。如果条件允许,演示器多一些,能让学生人人都进行操作,我想学生的参与率、学生动手能力、学生的观察与思考、教学效果都会更好。
篇5:圆柱教学反思
今天上了圆柱的体积这一课,通过实践操作、小组合作、分析、讨论、汇报,学生对公式的推导过程掌握的还不错。但在教学这节课以前我就认为,人教版教材对这节知识的教学内容限制了学生思维的发展。
教材上采用“V=SH”,圆柱、长方体都直立摆放。也就是把圆柱转化成长方体,长方体的底面积等于圆柱的底面积S,高就是圆柱的高H,因为长方体的体积等于底面积乘高,所以圆柱的体积V=SH。
而实际操作过程中,并不一定是直立摆放的,如果把侧面的那一面当成底面摆放,这时长方体的长等于圆柱的高H,宽等于圆柱底面周长的一半∏R,高等于圆柱的半径R,因为长方体的体积等于长乘宽乘高。所以圆柱的体积V=∏R×R×H,也就是V=∏R2H。(把切面当成底面来摆放也同样可以推出公式)。
事实学生在学习过程中也会有这样的思考,只是教材把学生的求异思维拉了回来。
不知这是不是我个人的片面考虑?
篇6:圆柱教学反思
本节课的教学重点要引导学生掌握本单元的知识结构,在充分利用教材的知识形成学生知识网络的基础上,提高学生分析、解决实际问题的能力。针对本课的教学设计,有以下几点思考:
1、加强数学知识与实际生活的联系,提高运用所学知识解决实际问题的意识与能力。这部分内容的设计加强了与生活的联系,为教师组织教学提供了思路。在教学认识圆柱体和圆锥之前,可以让学生收集、整理生活中应用圆柱、圆锥的实例和信息资料,以便在课堂中交流。在实际教学中,学生认识圆柱、圆锥后,还可以让学生根据需要创设和制作一个圆柱或圆锥形的物品的活动情境,既可激发学生的学习兴趣,又可提高学生运用数学的意识和能力。
2、重视探究归纳。教学中让学生自己去收集、整理、交流,通过这样的学习方式,充分发挥学生学习的自主性,把课堂还给学生,提高学生自主获取知识的能力。
篇7:圆柱教学反思
前几天我配合学校教研活动讲了一节公开课。这节课是在整理和复习圆柱圆锥基本概念公式以及基础的习题后,针对学生容易出错的圆柱圆锥体积关系的变式习题进行的一节练习课。
让我始料未及的是这节课毁了我从教十二年来所积累的所有自信心。一节课就让我看清了很多人的嘴脸。教研活动对课不对人,针对这节课优点在哪,存在的不足之处又在哪?这样的课型下回再上该怎么去上?这样每一位讲课教师才有信心上好下一节课。而不是因为一节课而否定一个人。哪一位教师也不能保证自己节节课都讲的很精彩,更何况是一节练习课。我们现在的教学又走进了另一个误区,以为一节课学生没有与老师进行互动,没有进行合作学习,就没有体现学生自主学习,进行点对点的课就是一节很不成功的课。我不这样认为。不是常说要在课前了解学生的情况吗
?我作为教师我很清楚我们班学生对这些知识点的掌握情况,讨论也好,合作也好,起不到应有的教学效果。很多学生跟着走了一个过场而已。看似热闹,实际效果不一定好。还不如老师和一部分学生讲,其他人听效果好。他们并不是陪衬。因为我觉得听会也是一种学习。我们不是一直都在讲教学的实效性吗?难道老师们节节课都有讨论有合作吗?讲授讲授有讲有授。有些课是没有必要合作的。
这只是我个人的一点看法,希望我们的教研活动越搞越成功,能有更多的老师参与。但不要一棍子把人打死。必竟给别人评课和自己讲课是不一样的。给教师一个上进的机会。
篇8:圆柱教学反思
《圆柱与圆锥》单元终于落下帷幕……
我想教过这一单元的老师对它的感觉肯定是“想说爱你不容易”,学生也一定是“恨你在心口难开”。呵呵~~这一切的源头都得归功于本单元的“计算”。
对于本单元的计算,我曾采取了以下策略,以期学生能少“恨”一些:
1、熟记3.14与一些常用数相乘的结果。
2、启动学生的简算意识,教给学生一些计算的技巧。
①对于一些有特殊数据的计算,如计算圆柱体积:2.5×2.5×3.14×8,引导学生利用乘法结合律使计算简便,(2.5×2.5×
8)×3.14=50×3.14=157 ;
② 计算圆锥的体积时,可让学生把乘数中能和1/3约分的先约分,然后再乘:如4×4×3.14×6×1/3,可引导学生把6和1/3先约分,然后再乘,(4×4×2)×3.14=100.48 ;
③对于一般数据的题目,如:3×3×3.14×8,也尽量把3.14以外的数先相乘,最后再和3.14相乘,即(3×3×8)×3.14=72×3.14=226.08,以提高计算正确率。
3、计算量很大的题目,采取“只列式,不计算”。
对于计算繁杂程度高的题目,我通常是采取“只列式不计算”的策略,既可保持学生的兴趣又可节省时间。“银行的工作人员通
常将50枚硬币摞在一起,用纸卷成圆柱形状。(底面直径2.5cm,高9.25cm)你能算出每枚1元硬币的体积大约是多少立方厘米吗?”这题的列式是1.25×1.25×3.14×9.25÷9,如果真让学生计算出结果的话,恐怕既费时又费力。所以我们教师也不要拘泥于算。
4、启动学生的估算意识。
估算可以使学生把正确结果的范围框定,对于一些有明显错误的计算,容易发现问题。如:1.2×1.2×3.14×6=271.296,估算:1×1×3×6=18,正确的结果应该是在18左右,而现在271.296偏离正确的结果太远了,一定是错误的。正确的结果应该是27.1296。当然,如果真的为学生的兴趣考虑的话,可以使用计算器。但是由于考试的“紧箍咒”,又有几个老师能够如此洒脱与超然呢?
我不能做到绝对的超然,但我也努力了!呵呵
篇9:圆柱教学反思
一、导入时,要突破教材,要有所创新
在进行圆柱的体积的导入时,课本上是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,那么再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜,《圆柱体积》教学反思。
猜想计算方法固然有好处,但要让学生马上做实验,理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,我认为,不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。
二、 新课时,要实现人人参与,主动学习
根据课标要求:学生进行数学探究时,教师应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,示范演示推导过程:把圆柱的底面分成若干份(例如,分成16等份,还可以再多一些),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生如果没有亲身参与操作,就缺乏情感空间感觉的体验,而且这部分又是小学阶段立体图形的教学难点,学生得不到充分的思考空间,也不利于教师营造思考的环境,不便于学生思考如何利用已知图形体积和教学思想去解决这一问题。学生缺乏行为、认知的投入和积极的情感投入,所以,课堂效果差就可想而知了。
三、 练习时,要形式多样,层层递进
例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,教师在设计练习时要多动脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。在巩固练习中,只要从这五种类型去考虑,做到面面俱到,逐层深入,由易到难,学生才能真正掌握好计算圆柱体积的方法。练习方式可以是填空、选择、判断、看图计算、应用题等。达到掌握。
篇10:圆柱的切拼教学设计
圆柱的切拼教学设计
一、教学过程
切法一:
刚才我告诉大家,我也很爱吃。看着这个圆柱我就会想起切蛋糕。如果像切蛋糕一样把这个圆柱切开,你会怎么切?(学生答) 我们沿着圆柱的直径与高把它平均分成偶数等份。(出示课件)
现在,圆柱被切成这样以后,它可以再拼成什么图形呢?(学生答 板书圆柱——近似长方体)
我们看,这样它就拼成了一个近似的长方体。(出示课件)
看到不如做到,待会儿我们小组活动,现在听要求:
1、 拿出圆柱体积演示器。演示圆柱切拼成为近似的长方体的过程。
2、 边演示边思考:拼成的近似长方体与原来的圆柱体有哪些是相等的?有哪些是不相等的?
3、 把小组的`讨论结果,填在表格中,开始活动。(老师巡视指导,约3分钟,)
小组汇报。
我问了一下,大家的发现还真不少!首先哪个小组来读一下你们总结的相等关系。(课件边出示)然后要求学生把这些相等的关系告诉你的同桌。
我们再来看有哪些是不相等的。哪个小组来汇报?
老师总结:因为长方体与圆柱体的底面周长不相等,但是高相等,所以,它们还有(侧面积)不相等。因为它们的侧面积相等,但是上下两底面积相等,所以它们的(表面积)不相等。
总之,圆柱切拼成近似长方体后,什么不变?什么变了?
切法二:
又看到这个圆柱,我还是想到了吃。切香肠,切萝卜,切黄瓜。按照这种切法。你觉得这个圆柱该怎样切?
(学生回答) 首先我们把圆柱体放倒。
用刀垂直于圆柱的高切,或者说平行于它的底面切开。
说到不如做到。下面我们就来试试第二种切法。小组活动先听要求:
1、 拿出盘子里较长的一段黄瓜,把它当做圆柱。
2、 垂直于圆柱的高,先切一刀。
3、 观察圆柱有什么变化。
好开始活动。(老师巡视,指导,约一分钟,)
切一刀,你发现了什么?(学生回答,师演示课件)
那切两刀呢!你再试一试。多了几个面?(学生回答)
切三刀呢!又多了几个面?(学生回答)
那切四刀,切五刀,切100刀呢!你能发现什么吗?
(学生回答)圆柱体被切开的刀数×2=增加的面数。
无论圆柱体被横切多少刀,它的(表面积)变了,但是什么没有变呢?(学生回答)
我们把这种切法叫做横切,增加的面叫做横截面。(板书)
出示定义,齐读。
切法三:
再看到这个圆柱,你还什么有什么切法?(学生回答)
我们沿着圆柱的直径和高,竖着切一下。
光说不练非好汉!下面让我们再次动起来小组活动。听要求:
1、 首先拿出较短的黄瓜,把它当做圆柱体。
2、 沿着圆柱的直径和高,竖着切一下。
3、 观察并讨论,圆柱有什么变化。
开始活动。
预设:(学生汇报)老师演示。
多了两个面,(什么形状的?)
(它的一条边等于什么另一条边等于什么?)
我们把这种切法叫做纵切,增加的面叫做纵切面。(板书)
出示定义。学生齐读。
二、总结
总结收获,学生回答。(出示)请你把这些收获告诉你的同桌。
老师总结:圆柱体无论怎么切拼,它的体积不变,表面积改变了。
三、课堂练习
最后请大家完成你手中的随堂测试题。
篇11:圆柱表面积教学反思
这节课虽留有许多缺憾,与传统的教学相比,做题少了些,在计算方面,没达到较多的训练,能影响到作业及今后考试的正确率,但我感到十分成功,我为学生课堂上的生命涌动而兴奋不已,主要有以下几点体会。
一、教学目标提升了。过去我仅满足于把学生“教会”,学生始终是被动的接受。课堂上学生厌烦,老师急燥,都苦不堪言。在新课程理念指引下,我把促进学生的“发展”,做为我贯穿课堂始终的目标。充分调动学生的主动性,激发学生的探索欲望,学生由被动变为主动。不断体验到自己的智力成果带来的乐趣。
二、学生在体验中,更好的理解了数学,不断闪现出创新的火花。课前,布置学生做圆柱体,我考虑到学生已有这方面的生活经验,并不难。但要做成一个标准的圆柱体,确实要动一定的脑筋。通过动手操作,学生其实已经初步感受到圆柱体,由 2 个相同的圆和一个长方形围成。更难能可贵的是一些学生在做中,发现圆柱底圆周长与长方形长相等。个别没做成功的孩子,在交流活动中,也能体验到失败的原因。促进空间观念的发展。
三、我也体验到了怎么教数学。
( 1 )只有深入理解课程标准,认真领会新课程理念,才能在实践过程中指导教学。
( 2 )立足发展学生的能力,设计课堂教学的策略。
( 3 )树立正确的教学观,不因考试而教学,教学应以开发学生智能为使命。
四、不足改进。在进行计算圆柱表面积练习时,应大胆让学生运用计算器,提高课堂教学效率。过去总担心一旦用计算器会降低学生的计算能力,会影响今后的考试,计算器只教不用。这节课由于圆柱的表面积计算繁杂,占用较多时间且正确率不高,不能及时有效的反馈学生掌握的情况。所以应根据教学情况,让学生运用计算器来解决计算问题。
篇12:圆柱表面积教学反思
圆柱的表面积教学,重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。在本节课的教学中,我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”,首先我给学生一张长方形美术纸,用这张纸做成一个圆柱体,让学生以小组为单位做出它的底面,看谁的最好,学生的思维很好,给出了多种想法,
方法一:用一张纸盖住圆柱,沿着边缘剪(不会很圆)
方法二:把圆柱立起来用笔描绘出来地面再剪(不好描,自然不会很圆)
方法三:用尺子量出直径,算出半径,用圆规画出圆再剪(有点接近了,但是直径不会很精确)
方法四:把圆柱压扁,量出直径,接着同上做法(误解,这里的直径其实是半个圆的周长)
方法五:量出美术纸的长,就是底面的周长,由此求出半径,再画圆贴上(很好,能理解侧面积求解的难点)通过这些活动后,再让学生自学表面积的公式,自然水到渠成了。课堂交给学生,会有你意想不到的事情。
篇13:圆柱表面积教学反思
本节课在教学上采用了引导、放手、引导的方法,通过教师的“ 导” ,鼓励学生积极、主动地探究新知。
首先让学生看一看、摸一摸,自己观察、发现,形成圆柱表面积的`表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。然后,在突破侧面积的计算方法这个难点时,让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式,然后我又启发学生:圆柱的侧面展开图除了长方形,还可能是什么图形?发现、创新是每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。这时有的学生会说,沿高展开后还可能得到正方形或平行四边形,这是两种特殊现象。借此我又让学生自己进行操作、尝试,得出了与书上不一样的结果。这样做,不仅启发了他们的思维,又培养了他们的创新意识。
在练习表面积的实际应用时由易到难,层层提高,又很自然进行了“ 进一法” 的教学。使讲练真正做到了有机结合,学生学得轻松,练得有趣。
篇14:圆柱圆锥教学反思
圆柱圆锥教学反思
最近教学了《圆柱与圆锥》,内容包括圆柱的表面积、圆柱的体积、圆锥的体积等,并参与实践活动。从教材编写的层面上讲力图体现以下特点:
1.结合具体情境和操作活动,引导学生经历“点动成线”“线动成面”“面动成体”的过程,体会“点、线、面、体”之间的联系教材的第一个活动体现的内容是“由平面图形经过旋转形成几何体”,这不仅是对几何体形成过程的学习,同时体会面和体的关系也是发展空间观念的重要途径,这也是教材将此课题目定为“面的旋转”的原因。教材呈现了几个生活中的具体情境,鼓励学生进行观察,激活学生的生活经验,使学生经历“点动成线”“线动成面”“面动成体”的过程。在结合具体情境感受的基础上,教材又设计了一个操作活动,通过快速旋转小旗,引导学生结合空间想象体会立体图形的形成过程,发展空间观念。教材还提供了若干由面旋转成体的练习。
2.重视操作与思考、想象相结合,发展学生的空间观念操作与思考、想象相结合是学生认识图形、探索图形特征、发展空间观念的重要途径。在本单元中,教材重视学生操作活动的安排,在每个主题活动中都安排了操作活动,促进学生理解数学知识、发展空间观念。如“圆柱的表面积”的教学中,教材引导学生通过操作来说明圆柱的侧面展开后是一个怎样的图形,并呈现了两种操作的方法:一种是把圆柱形纸盒剪开,侧面展开后是一个长方形;另一种是用一张长方形纸卷成圆柱形。再如本单元的最后专门安排了一个“用长方形纸卷圆柱形”的实践活动,先让学生用两张完全一样的长方形纸,一张横着卷成一个圆柱形,另一张竖着卷成一个圆柱形,研究两个圆柱体积的大小;然后组织学生将两张完全一样的长方形纸裁开,把变化形状后的纸再卷成圆柱形,研究圆柱体积的变化,引导学生发现规律,深化对圆柱表面积、体积的认识,并体会变量之间的关系。
3.引导学生经历圆柱和圆锥体积计算方法的探索过程,体会类比等数学思想方法类比是一种重要的数学思想方法,是合情推理时常用的方法。教材重视类比、转化等数学思想方法的渗透。在“圆柱的体积”教学时,教材引导学生经历“类比猜想―验证说明”的探索过程。由于圆柱和长方体、正方体都是直柱体,而且长方体与正方体的体积都等于“底面积×高”,由此可以产生猜想:圆柱的体积计算方法也可能是“底面积×高”。在形成猜想后,教材再引导学生“验证说明”自己的猜想。在“圆锥的体积”教学时,教材继续渗透类比的思想,再次引导学生经历“类比猜想―验证说明”的探索过程。另外,教材还注意转化、化#from 本文来自高考资源网www.gkstk.comend#曲为直等思想方法的渗透,如在验证说明“圆柱的体积=底面积×高”时,引导学生把圆柱切割拼成近似的长方体进行研究,体现了化曲为直的思想方法。
4.在解决实际问题中巩固所学知识,感受数学与生活的联系圆柱和圆锥的知识在生活中有着较为广泛的应用,教材在编排练习时,选择了来自于现实生活的问题,引导学生灵活运用所学知识解决问题。如学习“圆柱的表面积”时,鼓励学生计算薯片盒的包装纸的大小、通风管需要的铁皮的面积、压路机压路的面积等,由于实际情形变化比较多,需要学生根据实际情况灵活地选择有关数据进行计算。在学习“圆柱和圆锥的体积”后,教材鼓励学生计算水桶的容积、圆木的体积、圆锥形小麦堆的体积、铅锤的质量等。这些实际问题的解决,将使学生巩固对所学知识的理解,体会数学知识在生活中的广泛应用,丰富对现实空间的认识,逐步形成学好数学的情感和态度。
从教学层面上讲,我觉得要注意这么几点:
1、让学生经历知识的生成,理解公式的由来。
2、熟记相关公式和一些常见数据,提高计算的正确率和速度。
3、注意知识的拓展应用,体现数学的应用价值,发展学生的思维能力。
圆柱和圆锥教学反思5篇
教学反思四
本单元内容是在学生已经探索并掌握长方形、正方形和圆等一些常见的平面图形的特征以及长方体、正方体的特征等基础上进行教学的。此前对圆的面积公式有过探索,对长方体、正方体特征和表面积、体积计算方法也有过探索,这些探索学习为这单元的`学习打下坚实基础。
本单元包含以下主要内容:圆柱和圆锥的认识,圆柱的表面积,圆柱的体积和圆锥的体积。其中,圆柱和圆锥体积之间的关系学生比较难理解,要通过实验探究,发现圆锥和圆柱体积之间的关系,理解和掌握圆锥体积的计算方法。
在具体教学时我注意抓住以下方面:
1、重视直观教学,在充分的体验活动中建立新知。
课堂上注重给充足的时间让学生观察和比较,在交流活动中发现特征。引导学生通过看、摸,比较与交流,探索圆柱的特征,介绍圆柱的底面、侧面和高以及圆柱侧面展开图。让学生通过操作验证比较,发现长方形的长是圆柱底面的周长,长方形的宽是圆柱的高。让学生经历“观察――比较――抽象――概括”的过程,对圆柱和圆锥有深刻的认识,为后面表面积和体积的教学作铺垫。
2、结合具体事物,利用学生已有的经验开展教学活动。
如在教学圆柱的表面积的计算方法时,用剪刀剪开包装纸,再将圆柱展开会是怎样的,从而进行操作演示验证猜测。圆锥的体积重点是让学生理解圆锥体积等于等底等高的圆柱体积的1/3,因此教学时让学生验证等底等高的圆锥与圆柱,最后通过实验来验证等底等高的圆锥与圆柱之间的关系
篇15: 《认识圆柱》教学反思
本节课我注重知识的形成过程,使学生能主动学习新知,突破难点、疑点,能解决实际问题。
1、在教学过程中,让学生自主合作、探究,经历猜想、操作、验证、讨论、归纳等数学活动。比如,我从圆柱模型拼成长方体入手,强调它们是等底等高长方体。由长方体体积公式V=Sh,猜想圆柱的体积公式。再通过学生的具体实际操作、小组合作探究,从而探索出圆柱体积公式,并掌握圆柱体积的计算方法,能解决与圆柱体积计算相关的一些简单的实际问题。
2、在活动中进一步使学生体会“转化”方法的价值,比如,回顾上学期所学的圆的面积推导公式,从而理解圆柱的底面积与长方体底面积相等。这样有利于培养学生应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
3、本节课中,我最大的遗憾就是没有采用多媒体课件。但我认为一节好课就非要使用多媒体课件吗?其实不然。当然,今天我在教学中,确实有许多的不足。比如,将圆柱体切割成若干等份,等份越多,分得越细,就越接近于长方体。倘若使用了多媒体课件演示,或许效果更明显
总之,今天教学中的不足,我会不断改进。既面向全体学生,又注重不同学生的不同发展,设计更精、更符合学生发展的梯度问题,让他们在有限的时空内愉快学习、成长! 《圆锥的体积》教学反思
一节课下来,我静心思考,有以下几点反思:
1、一节好的课,在教学时要层次清楚,步步深入,重点突出。
在教学“圆锥的体积”时,我首先从实物图形讲解到空间图形,采用对比的方法,不断加深学生对形体的认识。然后要学生用自己的学具动手做实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公式解决生活中的实际问题,加深学生印象。
2、一节好的课,应注意激发学生的求知欲。
新课一开始,我就让学生观察,先猜测圆柱和圆锥的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。
3、一节好的课,要有全体学生的积极参与,突出学生的主体作用。
由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。
篇16:圆柱和圆锥教学反思
经过三个星期的教学,第一单元(圆柱和圆锥)如期完成了教学任务。本单元的知识点包括面的旋转、圆柱的表面积、圆柱的体积、圆锥的体积等。
在教学过程中,通过学生的课堂反映、作业质量、小测的反馈信息,本单元掌握较好的知识点有:面的旋转、圆柱的体积、圆锥的体积。这些知识,大多数学生都掌握了长方形、三角形旋转一周后得得到一个圆柱、圆锥,会利用公式底面积乘以高得出圆柱的体积,以及利用底面积乘以高再乘以三分之一得出圆锥的体积。在体积的教学中,我主要是通过类比法,先复习长方体和正方体的体积公式:底面积乘以高,然后让学生通过猜测、尝试验证等手段,让学生推导出圆柱和圆锥的公式,所以学生记得特别牢固,这一点在日后的教学继续发扬。
同时,本单元出错较多的地方是:计算圆柱的表面积,因为学生在求表面积时,没有很好地理解这个圆柱是求两个底面积加上一个侧面积,或者求一个底面积加上一个侧面积,或者只求侧面积……,所以经常列式出错,以及计算准确率不高
但总的来说,第一单元(圆柱和圆锥)的教学目标已达到,部分知识点学生没有完全掌握的,在期末复习中查漏补缺。
篇17:《圆柱表面积》教学反思
圆柱的表面积是学生学习的难点。难点在于:理解难,圆柱的侧面是一个曲面,探索侧面积的计算过程,有一个化曲为直的过程;易混淆,在计算圆柱的表面积时涉及到圆柱的侧面积、底面积以及圆的周长与面积等概念,学生容易混淆;计算难,无论是圆的周长和面积计算中都涉及圆周率;经验少,类似烟囱、通风管、水桶之类,很多学生由于缺少生活经验,不能灵活运用知识去解决问题。如何有效组织教学,谈谈自己的粗浅的看法。
一、在操作中建立表现。
学生已经学习了长方体和正方体的表面积,对表面积的概念并不陌生。在教学圆柱的表面积时,我先让学生自己制作圆柱体、在动手做一做的过程中理解圆柱的表面积是由一个曲面和两个完全相同的圆围成的,从而真正建立圆柱侧面的表象。
二、化曲为直沟通联系。
课前布置预习作业,找一贴有商标纸的圆柱实物,沿高剪开你有什么发现。课上学生交流,沿着侧面上的一条高剪开,把侧面展开,成为一个长方形。我在圆柱的教具上包一张长方形纸,然后张开,在黑板上画上教具的直观图,长方形纸的图(1:1)。让学生观察后说出:长方形与圆柱底面的关系。两者面积相等,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,因为长方形的面积=长宽,所以圆柱的侧面积=底面周长高。通过展、围的几次操作,让学生切实建立这两者之间的联系。
三、抓住本质,理清思路。
本堂课中学生虽然很明确的知道求圆柱体的表面积是求两个底面积和一个侧面积的面积和。但在实施过程中有一定的困难,有的同学是因为对其中的公式或意义没有真正理解,不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,而且圆的周长和面积公式已有所遗忘,列式计算时漏洞百出,计算的难度又导致一部分学生前功尽弃。所以在解决问题时,我要求学生写出每一步求的是什么,用了哪一个公式,帮助学生理清思路。遇到计算比较繁琐的提供计算结果,我觉得不必在计算上花费大量的时间。
当然,学生接触到一些实际问题的时候,由于生活经验和社会经验都比较浅薄,对一些物体的认识不够,不能完全准确的来判断求的物体是几个面,分别是哪几个面,还有实际中求表面积时采用的近似法一定的不理解,需要通过反复练习才能达到一定的程度。另外我认为在教材的编排上也有一定的问题,五年级时学了圆的知识,过了差不多一年再来运用,根据学生遗忘曲线规律,大部分学生对圆的周长和面积公式比较生疏,虽然通过新授前的基础训练可以唤起学生的记忆,但毕竟要能熟练地用于侧面积和表面积的计算,无形中增加了学生解题的难度。原来教材的编排相对来说更有系统性,学习间隔的时间不长,可以在知识的运用过程中相互巩固内化。
篇18:《圆柱表面积》教学反思
圆柱的表面积由侧面积加上两个底面积组成,学生在做题过程中往往不能顺利地找出解决问题的关键,一道题,往往不会直接给出解决问题的所有必要条件,在给出一些条件的同时,往往隐藏了一些,老师在教学的过程中,就是要引导学去”刨“出隐藏着的一些信息,例如一个圆柱体知道底面周长和高,怎样求出表面积,要求表面积,关键是求出两个底面积,知道底面周长求底面积,两个量之间的类似点在于都要用到圆周率,知道底面周长,可求出直径或半径,学生的思维症结在于不会联系起来思考,为了突破这一难题,我作了多方面的努力,取得一些效果,但仍有一些人不明白,为此,我认为,应该把圆柱的各个部分再次拆开来,重点在干剖析圆的面积与周长之间的关 当我一个人的时候,手里拿着手机,浏览一些网页,看看电视上的新闻,打打篮球,看看自己喜欢的书籍… 当我一个人的时候,睡睡懒觉,洗洗衣服,洗洗澡,呆呆地看大山,看看天空… 当我一个人的时候,给远方的母亲打个电话,和朋友在电话上互相调侃,在网上看看朋友、同学的动态… 当我一个人的时候,我能够让自己的心灵插上翅膀,自由的飞翔,当我一个人的时候,我总能收获几许温馨与甜蜜,当我一个人的时候,也许,远方的你,也正在一个人享受着那难得的宁静与幸福。
面积与周长之间的相同点在于,都要用到圆周率和半径去计算,知道周长可求半径,知道半径可求面积,在这里,我对学生的引导不到位,这是我的不足之处。
篇19:《圆柱和圆锥》教学反思
一、这张试卷计算量很大,很多同学两节课做不完试卷,在考试过程中我发现他们都是按题的顺序去做题,比如第五大题计算量是最大的,但是平均到每空却不足1分,后面的应用题最少都是5分一题,计算量不大也不难算,可是因为没有时间,空着,让人非常可惜,所以我在讲评试卷的时候给他们一个建议,先把整张试卷看一遍,在决定怎样做题。
二、计算出错很高,因为要用到3.14,所以很多是小数,有些又是平方,很多同学算错,填空题基本都要计算,算错了就2分没有了,很考验计算的准确率及计算的速度,平时作业如果是笔算的,在这次考试过程中不容易出错,而且快,因为有些他们都背出来了,比如4*3.14=12.565*3.14=15.79*3.14=28.26,16*3.14=50.24,碰到这些根本不用列竖式,而平时不愿意笔算的同学,在这次考试中栽跟头了。
三、不能正确使用公式
求圆柱表面积时忘记用底面积乘2;求圆锥体积时忘记乘三分之一;求表面积或体积时丢掉3。14或忘记乘高
四、公式混淆
如圆柱的侧面积公式与体积公式混淆:一个圆柱的底面直径是10厘米,高20厘米,它的体积是多少立方厘米?有的.学生用3.14×10×20,错用了侧面积公式,有的时候计算体积却运用了侧面积的计算公式。
五、公式的变换不到位,比如一个圆锥的体积是9.6立方厘米,高6厘米,求它的底面积。
生:9.6/6=1.6(平方厘米)错用了圆柱的体积公式,应该是9.6*3/6=4.8(平方厘米)。
总之,多数错误是因为学生审题习惯不佳,题目理解不到位造成的,以后还得继续注意这方面的引导。同时在练习的过程当中,还要进一步的加强变式方面的练习,提高计算的准确度和技巧,使得单元知识的掌握更加的牢固。
文档为doc格式