【导语】以下是小编帮大家整理的大学代数知识在互联网络中的应用(共9篇),仅供参考,欢迎大家阅读。

篇1:大学代数知识在互联网络中的应用
大学代数知识在互联网络中的应用
周进鑫
(北京交通大学数学系,北京100044)
摘要:代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。
关键词:代数;对称;自同构
基金项目:本文得到国家自然科学基金的资助(编号:11271012)
作者简介:周进鑫(1979-),男(汉族),山西大同人,北京交通大学数学系副教授,硕士生导师,博士,研究方向:图的对称性、网络的容错性及可靠性。
一、引言与基本概念
《高等代数》(advanced algebra)和《近世代数》(abstractalgebra)是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。
互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。()而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。
下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的.合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。
设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:
e1=(1,0,…,0),e2=(0,1,0,…,0),…,en=(0,…,0,1)。
●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。
●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。
●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。
一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。
二、三类网络的对称性
先来看n维超立方体网络的对称性。
定理一:n维超立方体网络Qn是顶点和边对称的。
证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(f x),u(f x)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。
下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei (1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej (1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。
利用和定理一相似的办法,我们进一步可以得到如下定理。
定理二:n维折叠立方体网络FQn是顶点和边对称的。
最后,来决定n维交错群图网络的对称性。
定理三:n维交错群图网络AGn是顶点和边对称的。
证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。
下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x) (u-1) C(x)=(x-1vx)(x -1u-1x)=x-(1 vu-1)x=ai-1或ai。
因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i ≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。
至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:
1.这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?
2.完全决定这些网络的全自同构群。
实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。
三、小结
大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。
本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。
篇2:高等代数在抽象代数中的应用
高等代数在抽象代数中的应用
高等代数为抽象代数教学提供了很多模型和例子,本文从变换、等价关系、群、环、域、零因子和环上的运算规律等方面具体阐述如何在抽象代数教学中应用高等代数知识.
摘 要:高等代数是数学专业一门重要的基础课程,为学生学习抽象代数提供了必要的基础[1-4].抽象代数是数学专业的必修课程,是对高等代数中出现的数域、多项式等概念进一步抽象概括,是高等代数的继续和高度抽象化[5-8].因此,高等代数为抽象代数提供了很多具体的模型.
关键词:抽象代数;高等代数;数学专业
高等代数和抽象代数联系紧密,但鲜有学生能领悟到它们之间的关系.学生普遍认为,高等代数比较容易接受和理解,抽象代数难以理解[9-13].作为一名教师,要利用学生熟知的高等代数知识引入定义或设为例子,使学生接受“抽象代数知识来源于熟悉的模型”这一观念.本文将从以下知识点入手,探讨如何在抽象代数教学中应用高等代数知识.
1 “变换”概念的巩固
一个集合A到A的映射称为A上的一个变换.教材[8]首先给出变换的定义,随之给出3个简单例子,学生基本上能掌握这个概念.但是教材[8]中没有适合学生做的课后习题,为了巩固学生所学的知识,可布置这样一道课后习题:高等代数书[4]中也有“变换”和“线性变换”这两个概念,请同学们分析[4]中的变换和这里的变换有什么关系.到下次上课前,先帮助学生温习变换的概念,再检查其课后作业,最后总结:高等代数中所提到的变换是某个线性空间到自身的映射,线性变换是线性空间上的变换并保线性性,而抽象代数中的变换是指任何集合到自身的映射.
2 “等价关系”概念的引入
等价关系是集合A上的一个关系,并满足自反性,对称性和传递性.在教材[8]中,作者先给出关系的概念和一个关系(不是等价关系)的例子,再直接给出等价关系的概念.如果引入不当,学生比较难以接受等价关系这一概念.事实上,等价关系的例子在高等代数书中很多,可信手拈来.因此,可以提前布置学生去复习高等代数中的矩阵“合同”和“相似”等概念,看这些概念具有什么共性.在讲述“等价关系”之前,先给出实数集R上的n×n阶矩阵集合Mn(R),并分别给出该集合上的“合同”和“相似”等关系,引导学生发现它们不仅是Mn(R)上的关系,并且都具有自反性、对称性和传递性,然后自然地引出“等价关系”的.概念.学生恍然大悟:原来等价关系并不陌生,在高等代数中已经接触过.如果要进一步巩固该内容,还可以引导学生分析Mn(R)上的矩阵秩相同关系,整数集Z上的模4同余关系等,让学生自己发现来自于高等代数的某些例子也是等价关系.
3 群、环和域概念的处理
在教材[8]中,作者给出群的第一定义和第二定义,并证明了这两个定义的等价性.课堂上先给出第一定义,并引导学生理解Ζ关于普通加法,非零整数集合关于普通乘法按照第一定义都是群,接着由第一定义推导出第二定义,由第二定义又推导出第三定义:一个非空集合G,对于其上的一个运算满足封闭性,满足结合律,存在一个单位元,每个元素都有逆元,则G关于该运算是群,由第三定义推导出第一定义,这样即证明了三个定义的等价性,并将重点放在第三定义.有了第三定义后,提问:Mn(R)关于矩阵加法是群吗?Mn(R)中的可逆矩阵集合关于矩阵乘法是群吗?同时,让学生翻阅教材[4]中关于矩阵加法和矩阵乘法的定义及性质,学生会发现:Mn(R)关于矩阵加法满足封闭性与结合律,零矩阵是单位元,每个矩阵的逆元是其负矩阵,因此Mn(R)关于矩阵加法是群;Mn(R)中的可逆矩阵集合关于矩阵乘法也构成群.进一步,引导学生发现:矩阵加法满足交换律,因此Mn(R)关于矩阵加法是交换群;而矩阵乘法不满足交换律,因此Mn(R)中的可逆矩阵集合关于矩阵乘法不是交换群.接着,再告诉学生:高等代数中还有很多群的例子,请同学们把这些例子全部找出来.学生通过总结,找出了一元实系数多项式集合R[x]关于多项式加法是群、实数集R上的n维行(列)向量的全体关于向量加法构成群等.
可类似地处理环和域概念的讲解与巩固,这样不仅促使学生去复习高等代数知识,让学生深刻领悟到:群、环和域等概念是对高等代数中出现的数域、多项式、矩阵和线性空间等概念的进一步抽象概括,也让学生逐渐意识到抽象代数并不是那么抽象,抽象代数的模型是现实中有例可循的,更增强了学生的学习兴趣和学习积极性.
4 零因子
零因子对学生来说是个全新的概念,教材[8]中先给出了整数模n的剩余类环Zn的例子:当n是合数时,存在两个不是零元的元素相乘却是零元,接着给出了零因子的概念:在一个环里,a≠0, b≠0,但ab=0,则称a是这个环的一个左零因子,b是一个右零因子,若一个元素既是左零因子又是右零因子,则称其为零因子,最后还举了一个比较抽象的例子和一个比较泛的矩阵环的例子.虽然Zn在抽象代数中经常出现,但是毕竟该环是通过模n取余运算构成的环,该运算跟学生以前学过的运算有很大的区别,对学生来说仍具有一定的抽象性,而书上列举的矩阵环的例子只说该环有零因子,并没有列举具体的零因子.如果完全按教材的编排按部就班地讲解,学生很容易忘记.这时,不妨引导学生回想:Mn(R)中两个非零的矩阵相乘会是零矩阵吗?大部分学生知道这是可能发生的,但是还有少数学生可能忘记相应的高等代数知识了,这时给出如下例子.
通过该例告诉学生A是环S的左零因子而B是环S的右零因子,这样学生基本上知道零因子这个概念了.接着,再提问:“一个环上的左(右)零因子是零元吗?一个环内的左零因子一定是右零因子吗?一个环内的右零因子一定是左零因子吗?”可继续利用例1,让学生在环S里面找个矩阵C使得BC=02×2,学生通过简单的计算发现C必须为零矩阵,所以B是环S的右零因子但不是环S的左零因子,也就是说一个环内的右零因子并不一定是左零因子,反之,一个环内的左零因子并不一定是右零因子,再进一步强调一个环上的左(右)零因子一定不是零元. 通过例1的讲解,学生对零因子已经不陌生了,这时采用启发式教学,引导学生去解答:一个环里面哪些元可能是零因子,哪些元一定不是零因子.先给出如下例子.
篇3:平面向量在代数中的应用的说课稿
平面向量在代数中的应用的说课稿
1 教材与学情分析
“平面向量的应用”这节教材在二期课改课本第 10 章最后一节 10.6,属于拓展内容。教材选取 5 个例题说明向量作为工具在数学、物理中的广泛应用性,其中例 1 和例 2 说明向量在平面几何中的应用,例 3(柯西不等式的证明)说明向量在代数中的应用,例 4 和例 5 说明向量在力学中的应用。已学完“力学”的高二学生对向量在力学中的应用并不陌生,联想向量相等、平行向量的关系、垂直向量的关系等解决平面几何问题让学生感到也较自然,因为这是形——形的转化、很直观,而且涉及的向量知识也较容易,学生掌握得也好。而联想向量模的意义、“两向量和与差的模与向量模的和与差的不等关系”、“数量积的平方小于或等于模的平方的积”、将“向量加法的多边形法则”转化为 “有关坐标的等式”等解决函数最值、不等式和等式证明、三角求值等问题让学生感到比较困难,其原因之一是以上的知识掌握和理解有一定的难度,二是联想构造“数——形——数”转化的要求高、综合性强、较抽象,三是教学中能力培养不到位,因此在“平面向量在代数中的应用”的教学中能力培养是关键。
本课是在学生已经学习“向量在平面几何中的应用”基础上,学习“向量在代数中的应用”。围绕以上向量的概念和运算性质的应用精心问题,引导学生观察、分析表达式的特征,联想向量知识,通过构造向量将已知条件或结论转化为向量表达、进行向量运算或向量性质的应用将所得的结果转化为所求结论的过程,学生会对数学思想方法中的“数形结合”、“转化”等有更深刻的理解;通过变式教学、特殊与一般的研究,感受数学发现的乐趣;通过错误辨析、一题多解、一题多变的探究,夯实学生基础,达到深刻理解向量的概念,熟练掌握向量的运
算和性质的目的,因而本节课的教学有助于学生能力的提高。
本课的教学对象为松江二中高二学生,他们已较好地理解了向量的概念,比较熟练地掌握向量的运算和性质,并能进行简单应用,有“数形结合”的应用意识,善于思考和发现,有较高的认知水平。因此,有可能也有必要引导他们进行问题探究。关于“数形结合”的思想应用,来源于两个方面,一是已体会到向量本身就是一个数形结合的产物,它兼具代数的抽象、严谨和几何的直观特点,二是通过基本函数的图象与性质的学习,体会到应用“数形结合”研究函数性质、解决函数的零点、方程和不等式的解等问题。正如美国数学家斯蒂恩说:“如果一个特定的问题可以转化为一个图形,那么思想就整体地把握了问题,并能创造性思索问题的解法”。所以本节课以“向量在代数中的应用”为载体,进一步让学生体验“数形结合”、“转化”的思想应用为目标,培养学生的探究精神为归宿,促进学生思维能力的提高。
2.教学目标
2.1 学生通过问题探究,深刻理解向量的概念,熟练掌握向量的运算和性质,并能着意联想恰当应用,解决有关代数问题;
2.2 学生通过一题多解、一题多变的研究,揭示向量在代数问题中的应用本质,体验数形结合思想及特殊与一般关系的.应用,感受数学发现的乐趣,培养学生的创新意识。
3.教学重点、难点、注意点
本课重点是加深向量概念、向量的运算和性质的理解,并应用数形结合与转化思想解决有关代数问题;难点是如何数形转化和有关向量模的不等式等号成立的本质理解;注意点要求学生规范表达数形结合解题的步骤。
重点突破:以问题为出发点,观察、分析、展开联想,实践探索,展示学生在讨论、回答过程中的思维活动,体会问题本质。难点突破:复习回顾有关“向量实数化”的特征,如模、数量积、坐标的表示等,通过问题衔接设计,铺垫暗示,一题多解、一题多变、错题辨析、几何画板的应用等达到突破难点目的。
4. 教学方法与教学手段
4.1 充分体现“以学生为主体,教师为主导”的原则
注重问题设计,体现教师的导向功能,展示学生是展开联想的主体;
重视实践探索,体现教师的导律功能,展示学生是揭示规律的主体
应用媒体实验,体现教师的导标功能,展示学生是体验演示的主体
4.2 采取教师指导下的学生实践、探索的模式,把问题作为教学的出发点,指导尝试,总结反思。
4.3 powerpoint、几何画板、多媒体系统
5.课堂设计
5.1 新课引入
(1)用 PPT 在屏幕上显示华罗庚的相片和华罗庚关于“数形结合”的至理名言“数缺形时少直观 形离数时难入微”的话,让学生体验数形结合是数学中非常重要的思想和解决问题的常用策略,以数学家的语言激发同学进一步学好数学的愿望;
(2)向量本身就是一个数形结合的产物,它兼具代数的抽象、严谨和几何的直观特点,引导学生回顾有关“向量实数化”的特征,如模、数量积、坐标的表示等,期望能进一步说出有关的不等式和等式,如模的意义、“两向量和与差的模与向量模的和与差的不等关系”、“数量积的平方小于或等于模的平方的积”、将“向量加法的多边形法则”转化为 “有关坐标的等式”……
(3)提出课题,在学习“向量在平面几何中的应用”基础上,学习“向量在代数中的应用”。
5.2 问题探究
出示问题 1. 设 a、b 为不相等的实数, 要求学生自主探索、相互讨论。
预计:学生思路分下列三种类型:(1)有根号想到两次平方分析;(2)由根号内的现性特征,联想向量的模概念,构造向量,将结论转化为向量表达式,从而揭示“两向量和与差的模与向量模的和与差的不等关系”本质;(3)由根号内的现性特征,联想两点间距离公式,构造点坐标,将结论转化为平面上三点间距离的不等关系,从而揭示“两线段长度之和(差)大于或等于(小于或等于)第三线段的长”本质。
分析:学生讨论三种方法的异同点,期望说出(1)是处理绝对值和根号的一般代数方法;而(2)(3)都是应用数形转化解决,体现本问题的特殊性,且强调(2)(3)两种方法解题原理相同……
总结用向量解决代数问题的步骤:
(1)构造向量,将已知条件或结论转化为向量表达式 (数----形);
(2)进行向量运算或向量性质的应用;
(3)将所得的结果转化为所求的结论(形----数).
老师板书示范后,引导学生讨论,条件不变的前提下,由于构造向量或向量性质应用的差异,会得到不同的结论,期望同学一题多变 ……
注意:“两向量和与差的模与向量模的和与差的不等关系”等号成立的条件,为下面突破难点作好铺垫。
练一练
求函数的 最小值.
由学生的错误答案 13 ,引导学生寻找错误原因,并通过几何画板演示最小值取得的条件。强调最值的验证,揭示数学问题的实质,突破难点。
引导:当看到
出示问题 2,即课本 P50 例 3,让学生讨论总结“数量积的平方小于或等于模的平方的积”的应用,就证明了柯西不等式,此时预计学生比较活跃,课堂进入高潮……
变式
并指出等号成立的充要条件.
预计:许多学生已观察出仍然是“数量积的平方小于或等于模的平方的积”的应用,揭示数学本质本质,体会柯西不等式所反映实数关系的奇妙性,感受一般与特殊关系。
注意:“数量积的平方小于或等于模的平方的积”中等号成立的条件,为下面练习铺垫,。
练一练
预计:学生使用计算器,很快发现值为 0……
教师因势利导:你能不用计数器解决吗?观察角构成的等差数列的代数特征,公差为 72 ,项数为 5,如果构造五个单位向量且顺次连接,那么将会得到什么图形?学生动手实验画图、几何画板演示,学生观察、体验。
预计:学生回答正五边形,并很快解释值为 0 的理由,将五个单位向量的起点放在原点处,终点连接,也构成正五边形,原点为其中心,由力学知识所知,五个单位向量的和为零向量。
教师给予表扬,强调同学有很好的直觉思维,因为一个真理的发现很重要,而证明只是一个时间问题。正如大数学家、物理学家牛顿有句名言:“没有大胆的猜想,就做不出伟大的发现。” 并鼓励他完成逻辑证明。
教师点拨:既然构造五个单位向量能组成正五边形,那么对于多边形有怎样的向量运算性质呢?
学生:此时五个单位向量的和为零向量的结论有了依据,学生兴奋不已,而且得到了一个“副产品”,这五个角的正弦和也为 0。
由此引导学生自我编题,体验一类三角求值的本质特点,从而进行一般研究。
推广:
5.3 课堂总结,
(1) 深化理解向量概念,熟练掌握向量的运算和性质。掌握平面向量在代数中应用的解题步骤。
(2)善于抽象概括 ,从而做到触类旁通; 研究问题的数学特征(代数意义、几何意义),善于联想,使数量关系与几何形式有机结合。
(3)通过问题探究,应注重逻辑思维和直觉思维的有机渗透,因为直觉思维是创造性思维活动的一种表现。
5.4 注意
向量是解决数学问题的一个工具,当然如果不用向量,也可以解决有关问题。
但是如果由代数特征,联想向量的概念和运算,巧设向量解题,那么可以简化问题解决,也可以加强数形结合思想的应用。
5.5 作业(为进一步巩固本课所学知识和方法,完成下列作业,因课上时间)
5.6 板书
投影和黑板(在代数中应用向量的运算性质解题的工具和问题 1 的解题过程及问题 2、3 的简要过程一直留在黑板上,其它都通过投影显示。)
篇4:知识管理在图书馆管理中的应用
在当前的知识经济时代下,图书馆管理所面对的环境也发生了显著变化,图书馆管理要想更好地满足社会公众需求,创新知识资源,将知识管理应用在图书馆管理中显得尤为重要。笔者就对知识管理在图书馆管理中的应用进行了简单的分析和探讨。
一、 图书馆知识管理的内涵及特征
1.图书馆知识管理的内涵
知识管理是指在组织中搭建一个量化和质化的知识系统,通过对组织中的知识和资讯进行分享、创造、存取、更新以及创新等活动,逐步反馈到知识系统中,从而形成不间断的累积,个人与组织的知识成为组织智慧的循环,属于组织管理的智慧资本,以便更好地顺应当前知识经济发展的需求。而图书馆知识管理则是指既包括了对图书馆显性知识的运营管理,又包括了对图书馆隐性知识传播管理。
2.图书馆知识管理的特征
图书馆知识管理的特征主要表现在以下两个方面:(1)共享性与公益性。这是图书馆知识管理的显著特征。一直以来,促使公民自由平等地获取知识,实现全人类的知识共享是图书馆根本的精神追求。也就是说,图书馆知识管理环节中,凭借对社会公众知识的整理、分类及编排,实现对知识的集合;(2)重视对知识的管理。通常数据及文献等编码形式存在的客观知识是图书馆知识管理的基础,而图书馆的用户、图书馆的员工以及供应者所具备的知识以及在实践活动中所积累的宝贵经验为实施管理提供了重要的前提。
篇5:知识管理在图书馆管理中的应用
1.图书馆知识管理是满足自身发展的必定需求
21世纪属于知识经济时代,传统的图书馆管理模式已经无法适应当前形势的发展需求。然而,将知识管理应用在图书馆管理活动中,就能够很好地解决传统图书馆管理活动中存在的理由,而且图书馆知识管理不断革新管理方式,创新管理理念,顺应知识经济发展,在满足服务社会公众需求的同时,还促使各项知识资源得到创新。
2.图书馆知识管理是顺应知识经济时代发展的必定要求
在当前的新形势下,知识已发展成为一项重要战略资源,属于衡量社会进步的一项重要参考指标。信息已经发展成为人们生活中的一项重要资源,而整个社会对信息的需求也与日俱增。高校图书馆作为获取知识不可缺少的一部分,需要以全新的视角及先进的应用策略正确认识当前形势,以便更好地发挥其服务、教育及传播功能,同时要凭借知识来促使图书馆员工应变能力的提高,而且还可以激发员工的创新精神,促使知识资源和人力资源得到优化,从而更好地顺应知识经济的发展需求。
篇6:知识管理在图书馆管理中的应用
通常情况下,将知识管理应用在图书馆的主要目的就是通过强化图书馆员工间的沟通和交流,来推动员工学习能力的提高,激发员工创新意识,这样就可以促使员工以更饱满的热情投入到图书馆管理活动中,培养员工的学习兴趣,以便真正达到获取知识的良性循环。
1.革新图书馆组织结构,打造学习型组织
一般而言,在传统的图书馆组织结构中,往往存在严格的等级制度,这样不但降低了信息的传递速度,而且不利于加强员工间的交流,久而久之,就会致使图书馆组织缺乏创造力,不能更好地顺应当前信息时代发展潮流。但是,将知识管理应用在图书馆管理活动中,就能够促使图书馆组织结构逐步得到优化,促使以往的'组织结构向扁平化方向发展,这样在简化传送机制的同时,也达到了知识的共享。
2.更新传统管理理念,融入知识管理的深思方式
知识管理应用在图书馆管理活动中的一个重要特色就是最大限度将知识管理的思想和理念应用其中。与此同时,我们应明确,服务是图书馆知识管理的核心理念,并通过服务来促使知识价值得以实现。因此,将知识管理应用在图书馆管理活动中具有重要的作用和作用,从而就可以摒弃传统图书馆管理误区,逐步建立知识管理的深思方式是很有必要的,这样才能切实提高文献资源的利用效率,通过提供以人为本的知识服务,更好地满足社会对知识信息的需求。
3.构建知识管理系统,促使知识的共享
新形势要求图书馆要立足于知识管理共享原则之上,构建知识管理系统,有意识地积累并保存相关的知识资产,以便推动内部信息的沟通,从而真正实现内部知识的共享。与此同时,要充分认识到知识管理系统是集知识收集、组织以及传播管理技术于一体,呈现出综合性、专家性和系统性特点,是实现知识管理的一项重要工具。
参考文献:
[1]刘秀琴.浅论知识管理在图书馆管理中的应用[J].兰台世界,(23)
篇7:知识管理在图书馆管理中的应用
[3]赵玉梅.知识管理在图书馆管理创新中的应用研究[J].华章,(9)
[4]王健.知识管理在图书馆管理中的应用[J].黑龙江科技信息,(35)
篇8:知识工程在CAD中的应用
知识工程在CAD中的应用
以UG/KF为工具开发了航空发动机敷管系统,并给出实例验证了该方法的实用性和操纵性.
作 者:赵利 陈志英 Zhao Li Chen Zhiying 作者单位:北京航空航天大学能源与动力工程学院航空推进系,北京,100083 刊 名:机械制造 ISTIC英文刊名:MACHINERY 年,卷(期): 45(6) 分类号:V233.2+4 关键词:知识工程 知识融合 管路敷设篇9:浅谈心理学知识在音乐教育中的应用
本世纪初,以桑代克、巴甫洛夫、斯金纳等人为代表的行为主义心理学兴起,对学校教育产生过不少积极的影响。而从本世纪60年代起,又兴起了以苛勒和沃特海默为代表的认知心理学,它以大脑中的认知过程为研究对象,这个认知过程,即信息加工过程,尤其适于音乐。在感觉――行为的周期中,人类有限的能力处理的就是信息,而音乐中所包含的信息量总是大于听者所能够接受的信息量。音乐心理学属心理学范畴,是以音乐与人的行为和心理过程之间的关系为研究对象。由于音乐是一种由人参与的活动,因此音乐心理学必将是一门与广泛的外延学科如社会、物理、历史、教育、心理等学科发生联系的交叉性学科体系。
站在音乐教育的立场,结合我国音乐教育的目标,我来谈一下音乐心理学知识的掌握与运用对我国中小学音乐教学的影响。我们往往把学习能力差归因于一般智力差,但近来对落后学生的研究证明,特定的知识和技能的缺陷是导致学习能力低下的原因。而这种特定知识和技能就包括对音乐的学习。以音乐与语言关系为例,二者均发展于人类文化系统中,音乐节奏教学及歌唱训练,可提高语言的表达能力,对学习外语起到了良好的辅助作用。另外音乐欣赏课上老师的启发、诱导,可使学生产生丰富的联想,可充分发挥其想像力;再如音乐知识课、创作课等教学对其他学科的作用等,所有这些,使我们不难认识到音乐教师责任之重。
为此,我们强调每位音乐教师都应充分发挥自己的技术,上好音乐课。上好音乐课,除要求教师具备一定的技术外,更重要的则是了解学生,为学生设想,这就需要教师具备一定的心理学知识。因为技术和知识可在工作中日日进步,而徒具精深技术,却无法施教于人是最不可取的。例如,就兴趣而言,我们知道,“兴趣”作为一种对周围事物或现象表现出来的喜爱情绪,对人的各种实践活动都具有非常重要的作用,因为它是人类从事活动的内在动力之一。而音乐教学本身便充满了趣味,因此要做到音乐课对学生来说是有兴趣的这一点并不难,只有最麻木的音乐教师才把音乐课弄得呆板无趣。最后,我们要强调的是,音乐教师本身要具备健康的品格,为人师表,对学生起到潜移默化的作用。
就如孔子所言:“自乐乐人,自正正人。”而塑造健康的品格,发挥教师的主导作用及音乐导人向善的作用的同时,则要求教师掌握学生的心理发展规律,把我们的学生培养成具有良好品格及较高审美情趣的德才兼备的学生。
[浅谈心理学知识在音乐教育中的应用]
文档为doc格式