【导语】下面是小编给大家整理的整式的加减知识点总结(共13篇),欢迎大家借鉴与参考,希望对大家有所帮助。

篇1:整式的加减知识点总结
整式的加减知识点总结
1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;
单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;
5.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.
6.合并同类项法则:系数相加,字母与字母的指数不变.
7.去(添)括号法则:
去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.
8.整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并)
9.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).
分式
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
学习目标:
1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
篇2:整式的加减知识点
整式的加减知识点归纳
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。
2.系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1.
3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
5.常数项:不含字母的项叫做常数项。
6.多项式的排列
(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
7.多项式的排列时注意:
(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:
a.先确认按照哪个字母的指数来排列。
b.确定按这个字母向里排列,还是向外排列。
(3)整式:
单项式和多项式统称为整式。
8. 多项式的加法:
多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。
9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。
10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。
11.掌握同类项的概念时注意:
(1)判断几个单项式或项,是否是同类项,就要掌握两个条件:
①所含字母相同。
②相同字母的次数也相同。
(2)同类项与系数无关,与字母排列的顺序也无关。
(3)所有常数项都是同类项。
12.合并同类项步骤:
(1)准确的找出同类项;
(2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变;
(3)写出合并后的结果。
13.在掌握合并同类项时注意:
(1)如果两个同类项的系数互为相反数,合并同类项后,结果为0;
(2)不要漏掉不能合并的项;
(3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
14.整式的拓展
整式的乘除:重点是整式的乘除,尤其是其中的乘法公式。乘法公式的结构特征以及公式中的字母的广泛含义,学生不易掌握.因此,乘法公式的灵活运用是难点,添括号(或去括号)时,括号中符号的处理是另一个难点。添括号(或去括号)是对多项式的变形,要根据添括号(或去括号)的法则进行。在整式的乘除中,单项式的乘除是关键,这是因为,一般多项式的乘除都要“转化”为单项式的乘除。
整式四则运算的主要题型有:
(1)单项式的四则运算
此类题目多以选择题和应用题的形式出现,其特点是考查单项式的四则运算。
(2)单项式与多项式的运算
看完了知识点,一起来做一做整式的加减练习题吧。
一、填空题
1、单项式-3x^2减去单项式-4x^2y,-5x^2,2x^2y的和, 列算式为_______, 化简后的结果________。
2、当x=-2时,代数式-x^2+2x-1=______,x^2-2x+1=______
3、写出一个关于x的二次三项式,使得它的二次项系数为-5,则这个二次三项式为________。
4、已知:x+(1/x)=1,则代数式(x+1/x)^+x+(1/2)-5的值是______。
5、张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入_______元。
6、计算:
3x-3+5x-7=________;(5a-3b)+(9a-b)=______。
7、(m+3m+5m+...+m)-(2m+4m+6m+m)=_______。
8、-a+2ac的相反数是,|3-π|=______,最大的负整是______。
9、若多项式2x^2+3x+7的值为10, 则多项式6x^2+9x-7的值为______。
10、若(m+2)^2x^3y^(n-2)是关于x,y的六次单项式,则m≠___,n=_____。
11、已知a^2+2ab=-8,b^2+2ab=14,则a^2+4ab+b^2=______, a^2-b^2=_______。
12、多项式3x^2-2x-7x^3+1是_____次______项式,最高次项是______,常数项是______。
二、选择题
13、下列等式中正确的是( )
A、2x-5=-(5-2x)
B、7a+3=7(a+3)
C、-a-b=(a-b)
D、2x-5=-(2x-5)
14、下面的叙述错误的是( )
A、(a+2b)^2的意义是a与b的2倍的和的平方。
B、a+2b^2的意义是a与b^2的2倍的和。
C、(a/2b)^3的意义a的立方除以2b的商。
D、2(a+b)^2的意义是a与b的和的平方的2倍
15、下列代数式书写正确的是( )
A、a 48 B、x÷y C、a(x+y) D、1(1/2)abc
16、-(a-b+c)变形后的结果是( )
A、-a+b+c B、-a+b-c C、-a-b+c D、-a-b-c
17、下列说法正确的是( )
A、0不是单项式
B、x没有系数
C、(7/x)+x^3是多项式
D、-xy^5是单项式
18、下列各式中,去括号或添括号正确的是( )
A、a^2-(2a-b+c)=a^2-2a-b+c
B、a-3x+2y-1=a+(-3x+2y-1)
C、3x-[5x-(2x-1)]=3x-5x-2x+1
D、-2x-y-a+1=-(2x-y)+(a-1)
19、代数式,a+(1/2a),4xy,(a+b)/3,a,2009,(1/2)a^2bc,-(3mn)/4中单项式的个数是( )
A、3 B、4 C、5 D、6
20、若A和B都是4次多项式,则A+B一定是( )
A、8次多项式
B、4次多项式
C、次数不高于4次的整式
D、次数不低于4次的整式
21、已知-2m^6n与5^xm^(2x)n^y-是同类项,则( )
A、x=2,y=1 B、x=3,y=1 C、x=3/2 D、x=3,y=0
22、下列计算中正确的是( )
A、6a-5a=1
B、5x-6x=11x
C、m^2-m=m
D、x^3+6x^3=7x^3
三、化简下列各题(每题3分,共18分)
23、5-6[2a+(a+1)/3]
24、2a-(5b-a)+b
25、-3(2x-y)-2[4x+(1/2)y]+2009
26、-[2m-3(m-n+1)-2]-1
27、3(x^2-y^2)+(y^2-z^2)-4(z^2-y^2)
28、x^2-{x^2-[x^2-(x^2-1)-1]-1}-1
四、化简求值
29、2x^2-[x^2-2(x^2-3x-1)-3(x^2-1-2x)]其中:x=1/2
30、2(ab^2-2a^2b)-3(ab^2-a^2b)+(2ab^2-2a^2b)其中:a=2,b=1
五、解答题
31、已知:m,x,y满足
(1)(2/3)(x-5)^2+5|m|=0
(2)-2a^2b^(y+1)与7b^3a^2是同类项,
求代数式:2x^2-by^2+m(xy-9y^2)-(3x^2-3xy+7y^2)的值。
32、已知:A=4x^2-4xy+y^2,B=x^2+xy-5y^2,求(3A-2B)-(2A+B)的值。
33、试说明:不论x取何值代数式
(x^3+5x^2+4x-3)-(-x^2+2x^3-3x-1)+(4-7x-6x^2+x^3)的值是不会改变的。
篇3:整式的加减
教学设计示例
一、素质教育目标
(一)知识教学点
1.理解:实质就是去括号,合并同类项.
2.掌握:学生在掌握合并同类项、去括号与添括号的基础上,掌握整式加减的一般步骤.
3.运用:能够正确地进行运算.
(二)能力训练点
1.培养用代数的方法解决实际生活中的问题的能力和口头表达能力.
2.培养学生用代数方法解几何问题的思路.
(三)德育渗透点
渗透教学知识来源于生活,又要为生活而服务的辩证观点.
(四)美育渗透点
实质上就是去括号,合并同类项,结果总是比原来简洁,体现了数学的简洁美.
二、学法引导
1.教学方法:以旧引新,通过自己操作发现解题规律.
2.学生学法:练习→总结步骤→练习
三、重点、难点、疑点及解决办法
整式加减运算.
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
教师出示探索性练习,学生解答归纳整式加减运算的一般步骤,教师出示巩固性练习,学生以多种形式完成.
七、教学步骤
(一)创设情境,复习引入
(出示投影1)
化简下列各式
(1) ;
(2) ;
(3) .
学生活动:同桌两位同学出一个学生在胶片上化简,另一个学生在练习本上完成,然后把几个学生的演算胶片用投影打出,其他学生一起来给打分.不对的,由学生找出错在哪里,错误的原因是什么.
师提出问题:上述三个数学式子,同学们讨论一下,怎样用数学语言进行叙述呢?(把每个括号看作一个整体)
学生活动:同桌同学互相讨论、研究,若讨论的结果、语句认为比较通顺者可以举手回答,同学们再互相更正.(学生回答时,教师用彩笔把运算符号写在胶片上显示出来,以引起注意.)
【教法说明】前两节去括号、合并同类项的内容,其实就是整式加减内容的一部分,复习上述知识,学生可以很轻松地就过渡到整式加减这一节内容上来,使新旧知识很自然地衔接起来.
师提出问题:上述式子中,每个括号内的式子是什么式子?(整式)从而引出课题,并板书.
[板书]
【教法说明】以合并同类项、去括号为铺垫,从而引出本节知识,可以说是自然顺畅,学生不会感到整式加减法陌生.
(二)探求新知,讲授新课
(出示投影2)
例1 求单项式 , , , 的和.
学生活动:在练习本(或投影胶片)上用数学式子表示出来,然后用投影仪显示出部分胶片来,正确的师生给予掌声,不对的则由自己或他人找出错在何处,并及时改正.
师做相应的板书:
[板书]
学生活动:学生在练习本上接着计算(或在投影胶片上计算),一个学生接着老师板书继续完成以下过程.把不同层次学生的胶片显示在投影上,师生给予肯定或纠正.
师提问题:在这几个单项式相加时,为什么 , 要加上括号(学生讨论后回答,师做必要的强调)
练习:(出示投影3)
l.说出下列单项式的和(口答)
(1) , , , ;(2) , , .
2.写出下列第一个式子减去第二个式子的差
(1) , ;(2) , ;(3) , .
学生活动:1题学生在练习本上完成后口答.2题直接观察回答(先答所列式子,再回答结果).
【教法说明】上述两个题目学生完成应该没有什么困难,教师给学生创造机会实践,然后叫不同层次的学生回答,特别是要调动差生的参与积极性.
师:如果求几个多项式的和与差又该怎么办呢?
(出示投影4)
例2 求 与 的和.
学生活动:教师不做任何提示,让学生在练习本(或胶片)上完成.
说明:在学生完成过程中,教师巡回检查,然后把出现问题的胶片显示在投影上,学生一起改,这样可使学生印象更深一些,在列代数式时可能每个多项式有的学生不加括号,教师要引导学生分析为什么把每个多项式加括号,利用复合投影胶片把例2中的“和”变为“差”.
学生活动:学生都在练习本上完成,然后同桌互相交换打分,并让一名学生把完整的解题格式板演到黑板上.
【教法说明】变式训练也是课堂上的一个重要环节,上题求“和”时,每个多项式加与不加括号不影响其结果,学生对括号的重要性就没有足够的认识,而变为“差”,括号的重要性就显而易见了.
师提出问题:通过例l、例2的学习,你发现进行运算一般分几步?
学生活动:小组讨论,互相叙述,教师深入某一小组,同学共同讨论,待讨论结果认为合理后,让学生举手回答.教师做简要归纳后,板书以下内容.
[板书]
【教法说明】通过例题的解答,让学生自己发现多项式加减法的一般解题步骤,有利于培养学生规范的解题格式.
(三)尝试反馈,巩固练习
(出示投影5)
1.单项式: , , 的和为____________.
2.计算:(1) ;
(2) ;
(3) .
学生活动:1题学生回答,2题部分学生板演,其余在练习本上独立完成,看谁做的又准又快,鼓励差生的进步与参与.
【教法说明】注意不同层次学生的积极性的调动,使每个学生都参与到训练中来,积极动脑、动手,同时教师对差生进行指导和鼓励.
(四)变式训练,培养能力
(出示投影6)
1.已知 ; ;计算
(1) ; (2) ; (3) ; (4) ;
2.一个多项式加上 得 ,求这个多项式.
3.三角形的第一边是 ,第二过比第一边大 ,第三边比第二边小5,求三角形的周长.
学生活动:1题同桌同学分别做,左边位置的完成(2)(4),右边位置的完成(1)(3).再让四个学生分别在黑板上完成,座位上的学生完成后互相交换检查;2、3题也让中国学习联盟胆尝试,然后教师规范解题格式.
【教法说明】1题四个小题方法一样,所以可以每人做两个,可节省时间,l题完成后再引导学生观察:(1)(2)小题计算结果是不是相同?并让学生说出为什么;(3)(4)小题如何.2题是在前面求多项式和、差的基础上的简单变式,学生会计算,但可能解题格式不会写,教师应重点规范学生的解题格式,3题是用代数方法解决几何问题,然后教师可根据学生实际情况把3题再做一些变式.
如:已知长方形一边长为 ,另一边长比它小 ,则长方形的周长为多少?
(五)归纳小结
师:本节课我们主要学习了,为把本节课内容有一个完整的了解,请看以下问题:
(出示投影7)
1.实际上就是______________________.
2.的步骤,一般分为_____________________.
3.整式加减的结果是__________或__________(单项式或多项式).
学生活动:学生观察后回答.
教师做适当强调:在整式加减中实际就是去括号,合并同类项,在去括号时一定注意括号前是“+”还是“-”.
【教法说明】归纳小结有时也不用教师包办代替,教师引导学生回顾本节内容,以完成填空题的形式出现,可能比教师简单归纳效果要好.
八、随堂练习
1.化简
(1) ;
(2) .
2.一个多项式加上 得 ,求这个多项式.
3.已知一个长方形一边长为 ,另一边比它小 ,求长方形周长.
4.已知 ,求 的值.
5.已知 , 在数铀上的位置如图,化简 .
九、布置作业
(一)必做题:课本第169页A组7、8、11.
(二)选做题:有这样一道题:“已知 , , ,当 , , 时,求 的值”.有一个学生指出,题目中给出的 , 是多余的.他的说法有没有道理?为什么?
十、板书设计
篇4:整式的加减
教学设计示例
一、素质教育目标
(一)知识教学点
1.理解:整式的加减实质就是去括号,合并同类项.
2.掌握:学生在掌握合并同类项、去括号与添括号的基础上,掌握整式加减的一般步骤.
3.运用:能够正确地进行整式的加减运算.
(二)能力训练点
1.培养用代数的方法解决实际生活中的问题的能力和口头表达能力.
2.培养学生用代数方法解几何问题的思路.
(三)德育渗透点
渗透教学知识来源于生活,又要为生活而服务的辩证观点.
(四)美育渗透点
整式的加减实质上就是去括号,合并同类项,结果总是比原来简洁,体现了数学的简洁美.
二、学法引导
1.教学方法:以旧引新,通过自己操作发现解题规律.
2.学生学法:练习→总结步骤→练习
三、重点、难点、疑点及解决办法
篇5:整式的加减
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
教师出示探索性练习,学生解答归纳整式加减运算的一般步骤,教师出示巩固性练习,学生以多种形式完成.
七、教学步骤
(一)创设情境,复习引入
(出示投影1)
化简下列各式
(1) ;
(2) ;
(3) .
学生活动:同桌两位同学出一个学生在胶片上化简,另一个学生在练习本上完成,然后把几个学生的演算胶片用投影打出,其他学生一起来给打分.不对的,由学生找出错在哪里,错误的原因是什么.
师提出问题:上述三个数学式子,同学们讨论一下,怎样用数学语言进行叙述呢?(把每个括号看作一个整体)
学生活动:同桌同学互相讨论、研究,若讨论的结果、语句认为比较通顺者可以举手回答,同学们再互相更正.(学生回答时,教师用彩笔把运算符号写在胶片上显示出来,以引起注意.)
【教法说明】前两节去括号、合并同类项的内容,其实就是整式加减内容的一部分,复习上述知识,学生可以很轻松地就过渡到整式加减这一节内容上来,使新旧知识很自然地衔接起来.
师提出问题:上述式子中,每个括号内的式子是什么式子?(整式)从而引出课题,并板书.
[板书]
【教法说明】以合并同类项、去括号为铺垫,从而引出本节知识,可以说是自然顺畅,学生不会感到整式加减法陌生.
(二)探求新知,讲授新课
(出示投影2)
例1 求单项式 , , , 的和.
学生活动:在练习本(或投影胶片)上用数学式子表示出来,然后用投影仪显示出部分胶片来,正确的师生给予掌声,不对的则由自己或他人找出错在何处,并及时改正.
师做相应的板书:
[板书]
学生活动:学生在练习本上接着计算(或在投影胶片上计算),一个学生接着老师板书继续完成以下过程.把不同层次学生的胶片显示在投影上,师生给予肯定或纠正.
师提问题:在这几个单项式相加时,为什么 , 要加上括号(学生讨论后回答,师做必要的强调)
练习:(出示投影3)
l.说出下列单项式的和(口答)
(1) , , , ;(2) , , .
2.写出下列第一个式子减去第二个式子的差
(1) , ;(2) , ;(3) , .
学生活动:1题学生在练习本上完成后口答.2题直接观察回答(先答所列式子,再回答结果).
【教法说明】上述两个题目学生完成应该没有什么困难,教师给学生创造机会实践,然后叫不同层次的学生回答,特别是要调动差生的参与积极性.
师:如果求几个多项式的.和与差又该怎么办呢?
(出示投影4)
例2 求 与 的和.
学生活动:教师不做任何提示,让学生在练习本(或胶片)上完成.
说明:在学生完成过程中,教师巡回检查,然后把出现问题的胶片显示在投影上,学生一起改,这样可使学生印象更深一些,在列代数式时可能每个多项式有的学生不加括号,教师要引导学生分析为什么把每个多项式加括号,利用复合投影胶片把例2中的“和”变为“差”.
学生活动:学生都在练习本上完成,然后同桌互相交换打分,并让一名学生把完整的解题格式板演到黑板上.
【教法说明】变式训练也是课堂上的一个重要环节,上题求“和”时,每个多项式加与不加括号不影响其结果,学生对括号的重要性就没有足够的认识,而变为“差”,括号的重要性就显而易见了.
师提出问题:通过例l、例2的学习,你发现进行整式的加减运算一般分几步?
学生活动:小组讨论,互相叙述,教师深入某一小组,同学共同讨论,待讨论结果认为合理后,让学生举手回答.教师做简要归纳后,板书以下内容.
[板书]
【教法说明】通过例题的解答,让学生自己发现多项式加减法的一般解题步骤,有利于培养学生规范的解题格式.
(三)尝试反馈,巩固练习
(出示投影5)
1.单项式: , , 的和为____________.
2.计算:(1) ;
(2) ;
(3) .
学生活动:1题学生回答,2题部分学生板演,其余在练习本上独立完成,看谁做的又准又快,鼓励差生的进步与参与.
【教法说明】注意不同层次学生的积极性的调动,使每个学生都参与到训练中来,积极动脑、动手,同时教师对差生进行指导和鼓励.
(四)变式训练,培养能力
(出示投影6)
1.已知 ; ;计算
(1) ; (2) ; (3) ; (4) ;
2.一个多项式加上 得 ,求这个多项式.
3.三角形的第一边是 ,第二过比第一边大 ,第三边比第二边小5,求三角形的周长.
学生活动:1题同桌同学分别做,左边位置的完成(2)(4),右边位置的完成(1)(3).再让四个学生分别在黑板上完成,座位上的学生完成后互相交换检查;2、3题也让中国学习联盟胆尝试,然后教师规范解题格式.
【教法说明】1题四个小题方法一样,所以可以每人做两个,可节省时间,l题完成后再引导学生观察:(1)(2)小题计算结果是不是相同?并让学生说出为什么;(3)(4)小题如何.2题是在前面求多项式和、差的基础上的简单变式,学生会计算,但可能解题格式不会写,教师应重点规范学生的解题格式,3题是用代数方法解决几何问题,然后教师可根据学生实际情况把3题再做一些变式.
如:已知长方形一边长为 ,另一边长比它小 ,则长方形的周长为多少?
(五)归纳小结
师:本节课我们主要学习了整式的加减,为把本节课内容有一个完整的了解,请看以下问题:
(出示投影7)
1.整式的加减实际上就是______________________.
2.整式的加减的步骤,一般分为_____________________.
3.整式加减的结果是__________或__________(单项式或多项式).
学生活动:学生观察后回答.
教师做适当强调:在整式加减中实际就是去括号,合并同类项,在去括号时一定注意括号前是“+”还是“-”.
【教法说明】归纳小结有时也不用教师包办代替,教师引导学生回顾本节内容,以完成填空题的形式出现,可能比教师简单归纳效果要好.
八、随堂练习
1.化简
(1) ;
(2) .
2.一个多项式加上 得 ,求这个多项式.
3.已知一个长方形一边长为 ,另一边比它小 ,求长方形周长.
4.已知 ,求 的值.
5.已知 , 在数铀上的位置如图,化简 .
九、布置作业
(一)必做题:课本第169页A组7、8、11.
(二)选做题:有这样一道题:“已知 , , ,当 , , 时,求 的值”.有一个学生指出,题目中给出的 , 是多余的.他的说法有没有道理?为什么?
十、板书设计
篇6:整式乘除知识点总结
整式乘除知识点总结
1.单项式除法单项式
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;
2.多项式除以单项式
多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。
整式乘除习题
一、判断题
1.x3n÷xn=x3 ( )
2. ( )
3.26÷42×162=512 ( )
4.(3ab2)3÷3ab3=9a3b3 ( )
二、填空题
5.直接写出结果:
(1)(28b3-14b2+21b)÷7b=______;
(2)(6x4y3-8x3y2+9x2y)÷(-2xy)=______;
(3)______.
6.已知A是关于x的四次多项式,且A÷x=B,那么B是关于x的______次多项式.
三、选择题
7.25a3b2÷5(ab)2的结果是( )
A.a B.5a C.5a2b D.5a2
8.已知7x5y3与一个多项式之积是28x7y3+98x6y5-21x5y5,则这个多项式是( )
A.4x2-3y2 B.4x2y-3xy2
C.4x2-3y2+14xy2 D.4x2-3y2+7xy3
四、计算题
9. 10.
11. 12.
13.
14.[2m(7n3m3)2+28m7n3-21m5n3]÷(-7m5n3)
五、解答题
15.先化简,再求值:[5a4·a2-(3a6)2÷(a2)3]÷(-2a2)2,其中a=-5.
16.已知长方形的长是a+5,面积是(a+3)(a+5),求它的周长.
17.月球质量约5.351×1022千克,地球质量约5.977×1024千克,问地球质量约是月球质量的多少倍?(结果保留整数).
综合、运用、诊断
一、填空题
18.直接写出结果:
(1)[(-a2)3-a2(-a2)]÷(-a2)=______.
(2)______.
19.若m(a-b)3=(a2-b2)3,那么整式m=______.
二、选择题
20.的结果是( )
A.8xyz B.-8xyz C.2xyz D.8xy2z2
21.下列计算中错误的是( )
A.4a5b3c2÷(-2a2bc)2=ab B.(-24a2b3)÷(-3a2b)·2a=16ab2
C. D.
22.当时,代数式(28a3-28a2+7a)÷7a的值是( )
A. B. C. D.-4
三、计算题
23.7m2·(4m3p4)÷7m5p 24.(-2a2)3[-(-a)4]2÷a8
25. 26.xm+n(3xnyn)÷(-2xnyn)
27. 28.
29.[(m+n)(m-n)-(m-n)2+2n(m-n)]÷4n
30.
四、解答题
31.求时,(3x2y-7xy2)÷6xy-(15x2-10x)÷10x-(9y2+3y)÷(-3y)的值.
32.若求m、n的值.
拓展、探究、思考
33.已知x2-5x+1=0,求的值.
34.已知x3=m,x5=n,试用m、n的代数式表示x14.
35.已知除式x-y,商式x+y,余式为1,求被除式.
篇7:中考整式知识点总结
中考整式知识点总结
一、代数式
1. 概念:用基本的运算符号(加、减、乘、除、乘方、开方)把数与字母连接而成的式子叫做代数式。单独的一个数或字母也是代数式。
2. 代数式的值:用数代替代数式里的字母,按照代数式的运算关系,计算得出的结果。
二、整式
单项式和多项式统称为整式。
1. 单项式:1)数与字母的乘积这样的代数式叫做单项式。单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。
2) 单项式的系数:单项式中的 数字因数及性质符号叫做单项式的系数。
3) 单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2. 多项式:1)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。
2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
3. 多项式的排列:
1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
三、整式的运算
1. 同类项——所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。同类项与系数无关,与字母排列的顺序也无关。
2. 合并同类项:把多项式中的同类项合并成一项叫做合并同类项。即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3. 整式的加减:有括号的先算括号里面的,然后再合并同类项。
4. 幂的运算:
5. 整式的乘法:
1) 单项式与单项式相乘法则:把它们的系数、同底数幂分别相乘,其余只在一个单项式里含有的字母连同它的指数作为积的因式。
2) 单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的积相加。
3) 多项式与多项式相乘法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
6. 整式的除法
1) 单项式除以单项式:把系数与同底数幂分别相除作为上的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
2) 多项式除以单项式:把这个多项式的每一项除以单项式,再把所得的商相加。
四、因式分解——把一个多项式化成几个整式的积的形式
1) 提公因式法:(公因式——多项式各项都含有的公共因式)吧公因式提到括号外面,将多项式写成因式乘积的形式。 取各项系数的最大公约数作为因式的系数,取相同字母最低次幂的积。公因式可以是单项式,也可以是多项式。
2) 公式法:A.平方差公式; B.完全平方公式
篇8:七年级上册数学整式的加减知识点
七年级上册数学整式的加减知识点
1.同类项的概念:所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也是同类项。(同类项与系数无关,与字母排列的顺序也无关)。
2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。不能合并的项单独作为一项,不可遗漏
3.整式加减实质就是去括号,合并同类项。
注:去括号时,如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
4.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;(本式中2为平方)
(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1;
(4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 (本式中2为平方)
初中数学常考知识点
全等三角形的判定定理
⑴边边边:三边对应相等的两个三角形全等.
⑵边角边:两边和它们的夹角对应相等的两个三角形全等.
⑶角边角:两角和它们的夹边对应相等的两个三角形全等.
⑷角角边:两角和其中一个角的对边对应相等的两个三角形全等.
⑸斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等.
分式的运算
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。
一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”。
提高数学成绩的方法
1.要提高初中生对数学学习的兴趣和动力。首先可以从家庭引导,家长可以对数学产生浓厚的兴趣,言传身教,让孩子对数学有一种神秘的好感。老师也可以和学生进行贴心的交流,打造自己的人格魅力,让学生被自己吸引从而更好的对数学感兴趣。
2.初中生想要提高数学成绩就一定要重视基础,千里之堤始于砖泥,不重视基础的下场就是你觉得自己的数学学得很好成绩会很好,但是在你成绩出来的时候会低于你的预期很多。很多初中生经常是知道怎么演算就算了,而不去认真的做几遍,好高骛远,总想去冲击难题,结果连考试中最基础的方程都会错。
3.要抓好几个提高数学成绩的必要条件。数学运算,数学解题(保证数量和质量),准备错题本,准备一本参考书,遇到难题尽量靠自己去解决而不是直接看答案,再保持勤奋和多动笔练习。
篇9:数学七年级上册整式的加减知识点
数学七年级上册整式的加减知识点
整式
①单项式:表示数或字母积的式子
②单项式的系数:单项式中的数字因数
③单项式的次数:一个单项式中,所有字母的指数和
④几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。
⑤多项式里次数最高项的次数,叫做这个多项式的次数。
⑥单项式与多项式统称整式。
整式的'加减
①同类项:所含字母相同,而且相同字母的次数相同的单项式。
②把多项式中的同类项合并成一项,叫做合并同类项。
③合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
④如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
⑤如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
⑥一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
初中数学垂直平分线定理知识点
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
数学的学习思维方法
公式法
运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是孩子学习数学必须学会和掌握的一种方法。但一定要让孩子对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
逻辑法
逻辑是一切思考的基础。逻辑思维,是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻辑思维,在解决逻辑推理问题时使用广泛。
逆向思维法
逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。
分类法
根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。
分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。
篇10:初一数学上册整式加减总结
一.知识框架二.知识概念
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
通过本章学习,应使学生达到以下学习目标:
1.理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2.理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
初一数学上册必考知识点
一、代数初步知识。
1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)
2.列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a。
二、几个重要的代数式(m、n表示整数)。
(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;
(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;
(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2。
三、有理数。
1.有理数:
(1)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;
注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0。
四、有理数法则及运算规律。
1.有理数的运算法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数。
2.有理数加法的运算律:
(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c)。
3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。
4.有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
5.有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac。
6.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数。
7.有理数乘方的法则:
正数的任何次幂都是正数;
五、乘方的定义。
1.求相同因式积的运算,叫做乘方;
2.乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
3.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。
4.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。
5.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则。
6.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明。
篇11:《整式的加减》说课稿
《整式的加减》说课稿
各位老师:
一、说教材:
1、教材所处的地位及作用:
本节课选自新人教版数学七年级上册2.2节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。
2、学生情况分析:
七年级学生理性思维的发展还很有限,他们在身体发育、知识经验、心理品质方面,依然保留天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心和求知欲,形象直观思维比较成熟,但抽象思维能力还比较薄弱。因此,我们要营造轻松、和谐的课堂气氛,充分激活学生的探索欲望,让学生在教师创设的情景中充满好奇的学,留给学生足够的自主活动、相互交流的空间,让学生在观察中不断发现数学问题,在实践中领悟数学思想,在评价中逐步形成数学价值观。
二、教学目标:
关于教学目标,教学重难点以及教法在这里就不作一一说明了,重点给大家介绍一下教程。
三、教学流程:
(1)导入环节:
多媒体出示两个问题,以具体生活情景为背景,有效的吸引学生的注意力,增强好奇心及求知欲。
(2)形成概念:
在讲解同类项概念时为让学生充分发挥主体作用,从自己的视点去观察、归纳、总结出同类项的概念,我设计了小白兔找家和讨论环节。并编了一个同类项的口诀。
(3)强化概念:
为强化概念使学生牢固掌握同类项的知识,进一步加强对同类项概念的.理解。增强应用意识,培养学生的发散思维。我设计了真真假假和填空。
(4)合并同类项的讲解:
讲解合并同类项时,以生活实例为切入点,通过对简单的、熟悉的数量运算,激发学生学习合并同类项的欲望,从而较自然的引入新课题合并同类项。
分解难度,设计过渡问题,使学生能自然的感受法则的探索过程。又编了另一个口诀。
以一道例题的训练为桥梁来得出合并同类项的一般步骤。通过具体的练习让学生初步掌握如何运用合并同类项法则。
在比较两种方法的过程中,体会合并同类项对运算的简化作用。
(5)数学与生活:
通过对熟悉的事物,让学生感受到数学就在身边,提高学生应用数学知识解决实际问题的能力,增强应用意识。
(6)总结:
由学生总结本节课内容,逐步提高学生的归纳总结能力和语言表达能力。
(7)课堂感悟:
进一步让学生巩固基本知识,渗透数学分类思想;使知识结构更完善。
(8)作业:
进一步巩固学生所学知识,及时发现和弥补知识缺陷,起到课后巩固和反馈作用。
篇12:整式加减教学反思
整式加减教学反思
本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。
针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的'目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础。
但是,课后作业出现了以下错误:
1、忘记圆周率p是常数
2、忘记次数是字母指数和
3、忘记字母的指数有一次
4、加强时没有完善在考虑各种要求。
篇13:整式的加减课堂实录
整式的加减课堂实录第一课时
一、激趣导入
1、师:你们都是聪明而又大胆发言的孩子对吗?
生:对
师:那我们来玩猜数游戏,看谁最先猜出老师手中的数。
师:比800大得多,比一千三小一些的数是多少?生:1000
生:……
生:1200。
师:正确!恭喜你,回答正确。你好厉害!
接着,生在老师的提示下依次猜出3600、650、80。
2、说数的组成,导入新课。
师:谁来说说这些数的组成?
生:1200由1个千2 个百组成。
师:这位同学的回答不但正确,而且非常完整。谁来说其他各数的组成?
……
师:刚才这几位同学证明了自己是个聪明的孩子,同时老师发现他们还是勇敢的孩子。因为当老师提出问题时,他总是在第一时间举起他们高高的小手!利用数的组成规律,可以口算整百整千数的加减法。(板书课题:整百整千数加减法)
二、交流探究
1、教学例9
师:近年来,在党的关怀下,我们的生活有了很大的提高,瞧昨天我村的王大爷,上街买了一台电视机1000元,一台电冰箱2000元(板书:电视机1000元,电冰箱2000元)
师:你们看到这两个信息,能提出什么数学问题呢?
师:请说说你提出的问题。
生:电视机和电冰箱一共要多少元?
生:电冰箱比电视机贵多少元?
师:同学们提出了这么有价值的问题。你们能解决吗?
学生尝试解决第一个问题。
1000+2000=
师:怎样计算1000+2000等于多少呢?大家算一算,然后与同桌交流算法。
……
师:请位同学说说是怎么算的。
生:1个千加2个千是3个千,3个千是3000.
生:从1+2=3想出1000+2000=3000.
生:从100+200=300想出1000+2000=3000.
师:同学们可真会动脑筋,想出了这么多的方法,有的同学用数的组成规律来算,还有的同学更聪明,由1+2=3想出了1000+2000=3000.这么多方法.你喜欢哪种方法?)
生:我喜欢第一种方法,因为它比较不会弄错。
生:我喜欢第二各方法,因为它很简便,可以很快得出答案。
生:……
师:另外一个问题你能解决吗?请大家列式计算,然后同桌交流。
2、教学例10
师:试试看,口算下面两题。(80+50= 130-50= )写在你的练习纸上。(老师在上课前发给同学每人一张)
生尝试,师与有困难同学交流。
师:谁来说说,你的怎样算的?
生:8+5=13,80+50=130。
生:8个十加5 个十是13个十,80+50=130。
生:80+50=80+20+30=130。
师:这位同学的算法很有创意!130-80呢?
生:13个十减去5个十是8个十.8个十是80.
生:由13-5=8想到130-50=80.
生:我是由加法想到的,80+50=130,130-50=80。
师:他想的方法和别人不同,你们想对他说点什么呀?
生:他很棒!
师:你们太了不起了,想出了这么多方法来解决这些问题,现在请同学们看课本.把它们补充完整,如果有问题可以提出来。
……
3、你是怎样想的
师:看书本,P81下面小精灵聪聪还有两个题目想考考你,赶快来展示你的本领吧!
900+600=
1500-600=
同桌说说计算方法。
师:计算整百、整千数的加减法,可以用不同的方法。你觉得啊一种最新简单就用哪一种。
文档为doc格式