欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

不等式及其性质教学实录与评析

时间:2022-07-17 08:37:29 其他范文 收藏本文 下载本文

下面小编给大家整理的不等式及其性质教学实录与评析,本文共18篇,希望大家喜欢!

不等式及其性质教学实录与评析

篇1:不等式及其性质教学实录与评析

不等式及其性质教学实录与评析

目前,在教学中多数教师囿于教材,按教材内容分配的课时进行教学.但新课程理念强调:教材不仅仅是知识的载体,更重要的`是成为促进学生令面发展的一种工具、一种方式、一种途径.

作 者:张建国  作者单位:江苏省南通市观河中学,226014 刊 名:上海中学数学 英文刊名:SCHOOL MATHEMATICS IN SHANGHAI 年,卷(期): “”(12) 分类号:G63 关键词: 

篇2:不等式性质教学反思

不等式的性质是不等式变形的依据,也是探索解不等式方法的基础,学生掌握好本节内容是学好本章内容的关键;本节课的内容蕴含着丰富的数学思想,是培养学生类比、化归、数形结合等数学思想的良好素材。学生经历不等式性质的探索过程,体现了学生的主体性地位,充分发挥了学生学习的主动性,对学生掌握不等式的性质打下了基础;会解简单的一元一次不等式,并能在数轴上表示出解集,体会化归思想和数形结合思想;通过类比等式的性质,降低了学生学习不等式性质的难度,也为学生理解不等式的性质提供条件,初步培养类比和数形结合的思想方法。在不等式性质的探究过程中使学生经历类比、猜想、观察、归纳、比较的探究过程和启发式教学方式;利用多媒体,增强了不等式的对比的视觉效果,激发了学生的学习兴趣,帮助学生形象直观的发现规律,辅助对教学重点的突出。

本节课的开始并没有直接提问什么叫不等式,什么叫不等式的解集,而是让学生自己说出一些简单的不等式及其解集;在不等式性质教学过程中也是通过学生自主探究归纳总结出性质,改变了以教室为中心的思想观念。在“试一试”这一环节也没有先直接给出完整的解法而是让一个学生板演后发现问题才纠正补充完整。总的来说,这节课进行的还比较顺利,但是在学生探究不等式性质时,仅仅观察了给出的几个例子,而没有让学生再用其他的不等式或换其他的数加以验证,给学生留的空间太小,致使学生在对不等式的性质的认可、理解、记忆上出现了问题,以至于在做练习时不能准确熟练的'说出是运用了什么性质,再者板书可能有些简单。今后要扬长避短,不断转变观念,改进教学。

篇3:不等式性质教学反思

本节课我采用从生活中假设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比、猜想、验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间、生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

课堂开始通过智力比拼引入课题。激发学生的学习兴趣以及积极性。通过简单的问题引导学生通过探究得出不等式的性质1。然后通过比较简单的不等式的变化,探究出不等式的性质2和3。在这一环节上,留给学生思考的时间有点少。

接下来的问题设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是选好,在引导学生探究的过程中时间控制得不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。

练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。同时使学生体会数学中的分类讨论思想。

本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛活跃。其中不存在不少问题。比如探究的问题比较简单,在使学生体会类比思想以及分类讨论思想时,也可以通过问题设计体会数形结合的思想。但是怕学生接受不了高难度的题目,因此在设计教案时经过反复思考,终究没有选择类似的题目。终究是不放心学生。我会在以后的教学中,努力提高教学技巧,逐步完善自己的课堂教学。

篇4:不等式性质教学反思

关于《不等式的性质》一节的教学,我在集备组的多次建议修改下,把不等式的概念、不等式的性质、运用不等式性质解简单不等式这三个内容整合到本节课;基本思路是:用比较数的大小引进不等式的概念;利用表格对不等式两边进行运算来探索不等式的性质并展开小组讨论加深对不等式性质3的认识;运用不等式的性质把不等式转化为的形式。本节课用的是平行班,强调的是实用性。从新课到练习都充分调动了学生的思考能力。小组讨论又锻炼了学生的创造性和合作性;为后续学习解一元一次不等式打下了一定的基础。自己在这节公开课吸取的经验是:

1、充分准备是保证。从怎么引入怎么引导学生填写表格及探索性质都进行充分的准备,写了份大概的讲话稿,在脑海里反复演练,以帮助克服紧张情绪。

2、专业术语阐述不够清楚,需要加强。部分学生会对数量关系中的“不大于”、“是负数”、“是非负数”等数学术语理解不清,我只是从字面上给予解释,并没有对学生为什么出错进行深究,导致学生在复习回顾环节出错又在新课后的巩固练习出错。

3、对性质3这个难度的教学不够。学生以小组讨论的形式展开了对性质3的探索,但由于对设计意图没有说清楚,导致有几个小组在不等式两边乘了不同的两个数来进行比较;对于不等式两边同时除以同一个负数的教学完全回避了(我以为除法都可以化作乘法来做,所以讲乘法就够了),结果学生在遇到化作之类的题目都卡住了。

4、用式子表示不等式的三条性质一笔带过,备课还需要加强。我备课时认为这个知识点不重要,但后来听教研员说这里才是展示教学个性的地方,并且可以训练学生的数学符号语言能力。

5、注意学生的反应。这个班平常回答问题等都比较积极。但这次他们也是第一次经历,学生也显得紧张,我没能缓解他们的紧张情绪,课堂气氛调动不出来。本节课是第九章的第一节课,内容安排的有点多,对于中下学生的学习是不利的,但我没有在课堂及时的调整。准备在后续的课当中再反复训练,循环提高。公开课是对我的锻炼,不仅仅是教学能力,更是心理素质的锻炼。

总的来说,本节课勉强完成了教学任务,我要进一步学习的还很多很多,我会多多向前辈老师学习。

篇5:不等式性质教学反思

数学来源于生活,又应用于生活。因此我们在认识不等式的教学过程中大量地运用现实生活情景:如跷跷板问题、上学迟到等实际情境引入与学生共同探索,让学生在探索中发现新的知识,认识不等式,让学生意识到不等关系和相等关系都是现实生活中的重要数量关系,意识到数学就在我们身边,离我们是那么的近,增强学生学习的兴趣与自信心。

本节的主要内容是一元一次不等式解法及其简单应用。这是继一元一次方程和二元一次方程组的学习之后,又一次数学建模思想的教学,是培养学生分析问题和解决问题能力的重要内容。本节的教学设计主要是改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和经验,实施开放性教学。

不等式的基本性质和解一元一次不等式,是一些基本的运算技能,也是学生以后学习一元二次方程、函数,以及进一步学习不等式知识的基础。由于不等式是刻画现实世界中量与量之间变化规律的重要模型,因此,我们在一元一次不等式的应用教学中通过与生活贴近的具体例子渗透量与量之间内在联系,帮助学生从整体上认识不等式,感受不等式的作用,进一步提高学生分析问题解决问题的能力,增强学生学数学、用数学的意识。

篇6:不等式性质教学反思

一、教学过程中的成功之处

1、类比法讲解让学生更易把握

类比一元一次方程的解法来学习一元一次不等式的解法,让学生非常清楚地看到不等式的解法与方程的解法只是最后未知数的系数化为1不同,其它的步骤都是相同的,还特别能强调最后一步“负变,正不变”。

2、少讲多练起效果

减少了教师的活动量,给学生足够的活动时间去探讨。教师只作出适当的引导,做到少讲,少板书,让学生有足够的时间和空间进行自主探究,自主发展,促使学生学会学习。

3、数形结合更形象

通过画数轴,并把不等式的解集用数轴表示出来体现了“数形结合”的数学思想。

二、不足和遗憾之处

1、内容过多导致学生灵活应用时间少

一堂40分钟的课要容纳不等式三条性质的探索与应用,显然在时间上是十分仓促的。实践也表明确实如此,在探索好三条性质后,时间所剩无几,只能简单的应用所学知识解决一些较为简单的问题,学生灵活运用知识的能力没有很好地体现出来。

2、教学过程中的小毛病还需改正

在上课的过程中,许多平时忽视的小毛病在课中也都体现出来了,例如:学生在回答问题的过程中,为了更快的得到自己预期的答案,往往打断学生的回答,剥夺了学生的主动权;要求学生进行操作实验时,老师所下达的指令不是特别清楚,时常在学生进行操作的过程中再加以补充说明,这样对学生思考问题又带来一定影响;课堂小结中学生的体会与收获谈的不是很好,由此可见,这是平时上课过程中的忽视所导致的。

篇7:不等式的性质

不等式的基本性质

1、假设x>y,那么y

2、假设x>y,y>z;那么x>z;(传递性)

3、假设x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)

4、假设x>y,z>0,那么xz>yz;假设x>y,z<0,那么xz

5、假设x>y,m>n,那么x+m>y+n;(充分不必要条件)

6、假设x>y>0,m>n>0,那么xm>yn;

7、假设x>y>0,那么x的n次幂>y的n次幂(n为正数),x的`n次幂

篇8:不等式的性质教学方案

不等式的性质教学方案

一、明确复习目标

掌握不等式的性质及其证明,能正确使用这些性质解决一些简单问题

二.建构知识网络

1.比较原理:

两实数之间有且只有以下三个大小关系之一:aa

; ; .

以此可以比较两个数(式)的大小,作差比较法.

或作商比较:aa0时, .

2.不等式的性质:

(1)对称性: ,

证明:(比较法)

(2)传递性: ,

(3)可加性: .

移项法则:

推论:同向不等式可加.

(4)可乘性: ,

推论1:同向(正)可乘:

证明:(综合法)

推论2:可乘方(正):

(5) 可开方(正):

证明:(反证法)

不等式的性质有五个定理,三个推论,一个比较原理,是解、证不等式的基础,对于这些性质,关键是正确理解和熟练运用,要弄清每一个条件和结论,学会对不等式进行条件的放宽和加强

三、双基题目练练手

1.(春上海) 若 ,则下列不等式成立的是( )

A. . B. . C. . D. .

2.(北京)已知a、b、c满足 ,且 ,那么下列选项中不一定成立的是 ( )

A. B. C. D.

3. 对于实数,下命题正确的是 ( )

A.若a

C.若 ,则 . D.若a0,d0,则

4.(2004春北京)已知三个不等式:ab0,bc-ad0, - 0(其中a、b、c、d均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的.正确命题的个数是

A.0 B.1 C.2 D.3

5.(2004辽宁)对于 ,给出下列四个不等式

① ②

③ ④

其中成立的是_________

6.a0,m0,n0,则 , , , 的由大到小的顺序是____________.

练习简答:1-4.CCCD; 5. ②与④; 6.特殊值法,答案:

四、经典例题做一做

【例1】已知a2,

求c的取值范围.?

解:∵b2a

c=b-2a0,

b-4 -2a= .

c的取值范围是:

【例2】设f(x)=ax2+bx,且1f(-1) f(1) 4 ,求f(-2)的取值范围

解:由已知12, ①, 24 ②

若将f(-2)=4a-2b用a-b与a+b,表示,则问题得解

设4a-2b=m(a-b)+n(a+b), (m,n为待定系数)

即4a-2b=(m+n)a-(m-n)b,

于是得 得:m=3, n=1

由①3+②1得54a-2b10

即5f(-2)10,

另法:由 得

f(-2)=4a-2b=3 f(-1)+ f(1)

特别提醒:常见错解:由①②解出a和b的范围,再凑出4a-2b的范围.错误的原因是a和b不同时接近端点值,可借且于线性规划知识解释.

【例3】(1)设A=xn+x-n,B=xn-1+x1-n,当xR+,nN时, 比较A与B的大小.

(2)设00且a ,试比较|log3a(1-x)3|与|log3a(1+x)3|的大小.

解: (1)A-B=(xn+x-n)-(xn-1+x1-n)

=x-n(x2n+1-x2n-1-x)

=x-n[x(x2n-1-1)-(x2n-1-1)]

=x-n(x-1)(x2n-1-1).

由xR+,x-n0,得

当x1时,x-10,x2n-1-1

当x1时,x-10,x2n-10,即

x-1与x2n-1-1同号.A-B0.AB.

(2)∵0

①当3a1,即a 时,

|log3a(1-x)3|-|log3a(1+x)3|

=|3log3a(1-x)|-|3log3a(1+x)|

=3[-log3a(1-x)-log3a(1+x)]

=-3log3a(1-x2).

∵01,-3log3a(1-x2)0.

②当01,即0

|log3a(1-x)3|-|log3a(1+x)3|

=3[log3a(1-x)+log3a(1+x)]

=3log3a(1-x2)0.

综上所述,|log3a(1-x)3||log3a(1+x)3|.

提炼方法:(1)作差分解因式、配方或利用单调性,分类判断差式的符号.

篇9:《不等式的性质》教学反思

《不等式的性质》教学反思

一、教学过程中的成功之处

1、类比法讲解让学生更易把握

类比一元一次方程的解法来学习一元一次不等式的解法,让学生非常清楚地看到不等式的解法与方程的解法只是最后未知数的系数化为1不同,其它的步骤都是相同的,还特别能强调最后一步“负变,正不变”。

2、少讲多练起效果

减少了教师的活动量,给学生足够的活动时间去探讨。教师只作出适当的引导,做到少讲,少板书,让学生有足够的时间和空间进行自主探究,自主发展,促使学生学会学习。

3、数形结合更形象

通过画数轴,并把不等式的解集用数轴表示出来体现了“数形结合”的数学思想。

二、不足和遗憾之处

1、内容过多导致学生灵活应用时间少

一堂40分钟的课要容纳不等式三条性质的探索与应用,显然在时间上是十分仓促的。实践也表明确实如此,在探索好三条性质后,时间所剩无几,只能简单的应用所学知识解决一些较为简单的问题,学生灵活运用知识的能力没有很好地体现出来。

2、教学过程中的小毛病还需改正

在上课的过程中,许多平时忽视的小毛病在课中也都体现出来了,例如:学生在回答问题的过程中,为了更快的得到自己预期的答案,往往打断学生的.回答,剥夺了学生的主动权;要求学生进行操作实验时,老师所下达的指令不是特别清楚,时常在学生进行操作的过程中再加以补充说明,这样对学生思考问题又带来一定影响;课堂小结中学生的体会与收获谈的不是很好,由此可见,这是平时上课过程中的忽视所导致的。

篇10:不等式的性质教学反思

不等式的性质教学反思

(1)本节课我采用类比等式性质的方法引导学生的自主探究活动,教给学生类比、猜想、验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,鼓励学生大胆积极参与,使学生在自主探究和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程中充满师生交流、生生交流以及互动。

(2)我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛活跃。其中不存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步完善自己的课堂教学。

篇11:不等式的性质教学反思

不等式的性质教学反思

教前设想

这节课是一节概念课,学习不等式的性质。前面学生学习了不等式的解和解级以及等式的性质,为了解一元一次不等式,我们要引入不等式的性质来解。

这节课的内容不是很多,重点是让学生理解并掌握不等式的性质并用不等式的性质解一元一次不等式。对于不等式的性质,不是很难懂,这里完全可以放手给学生自己探索,自己总结,从特殊到一般,所以安排了三个思考题让学生分别总结出不等式的性质。利用不等式的性质解不等式可以参考利用等式的性质解一元一次方程的思想,要将不等式最后化成x>a或x

教中情况

这整节课上下来学生学的'比较轻松。一节课中,学生课堂的效率比较高,学生学习的效果比较好。

教后反馈

通过对学生课后作业的情况的批改情况以及听课老师的意见,觉得这节课还有一些不足,表现为:

1、这节利用探索稿教学,学生自我学习,这要求学生的素质比较高。在学生要独立完成思考和总结这个环节可以让学生一活动小组的形式进行,活跃课堂的次序。

2、在学生总结不等式的性质的探索过程中,让学生直接从数字总结出不等式的性质比较困难,可以从数字到字母的过程中加入比较简单的数字和字母之间的加减乘除的题目,这样从特殊到一般的过度就比较顺理成章。

3、探索稿怎么去利用?其实一般探索稿可以在上新课的前一天发给学生,让学生利用课余时间预习,这样可以节约很多课堂的时间,然后在课堂上对答案,教师简单的讲解,处理疑问,但这要求学生的的层次比较高,教师在课前做好大量的准备工作。这节课由于内容比较简单,可以在课堂上处理,但由于内容比较多,整个课程比价经凑。

4、在批改学生的作业时发现,学生在不等式的两边同时乘或除同一个负数时,没有把不等号改变,虽然课堂上教师也做了特别的强调,这里还需要改进。

5、在讲解不等式的性质1和性质2中,借用了天平来讲解,不高效果不是很好,学生理解不是很好,可以考虑去掉这个环节。

6、其实在学生在黑板上板演后可以让学生来讲解。

7、在这节课的后面讲例题的过程中可以多让学生见几种题型,可以多找一点最近几年的与不等式性质相关的题目。

其实,在教学的过程中,我们教师往往重视教的过程,而往往忽视了学生学的过程,如过我们能够多让学生动手,动脑,多总结,掌握一个好的学习方法,这比我们教任何知识点都要重要。

篇12:不等式的性质教学反思

本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质的方法,引导学生自主探究,教给学生类比,猜想,验证的问题研究方法,培养学生善于观察、善于思考的学习习惯。

活动一、通过回顾旧知识,抓住新知识的切入点进入数学课堂,也为学习新知识做好准备。在这一环节上,留给学生思考的时间有点少。

从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质。这一环节上展现给学生一个实物,使学生获得直观感受。

问题2的设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是很好,在引导学生探究的过程中时间控制的不紧凑,有点浪费时间。

让学生比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识、发展学生的辨证思维。

让学生通过构图反思,进一步引导学生反思自己的学习方式,培养他们归纳,总结的习惯,让学生自主构建知识体系,激起学生感受成功的喜悦。

活动三、通过两个题帮助学生应用提升,第一题以判断得形式让学生体验不等式性质的简单应用,第二题是利用性质化简不等式成“x>a”或“x

整节课在运用符号语言的过程中,学生会出现各种各样的问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予鼓励。这样既调动了学生的学习兴趣,也培养了学生的符号语言表达能力。

本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。

篇13:不等式的基本性质的教学课件

不等式的基本性质的教学课件

【教学重点与难点】

教学重点:掌握不等式的三条基本性质,尤其是不等式的基本性质3.

教学难点:正确应用不等式的三条基本性质进行不等式变形.

【教学目标】

1、 探索并掌握不等式的基本性质

2、 会用不等式的基本性质进行化简

【教学方法】

通过观察、分析、讨论,引导学生归纳总结出不等式的三条基本性质,从具体上升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.

【教学过程】

一、创设情境 复习引入

(设计说明:设置以下习题是为了温故而知新,为学习本节内容提供必要的知识准备.)

问题:1、什么是等式?等式的基本性质是什么?

2、 什么是不等式?

3、 用“>”或“<”填空.

(1)7>3 (2)-1<3

7+5 3+5 -1+2 3+2

7-5 3-5 -1-4 3-4

(教学说明: 复习等式的基本性质后学生自然会联想到,不等式是否有与等式相类似的性质,从而引起学生的探究欲望.接着问题3为学生探究不等式的性质提供了载体,通过观察,寻找规律,得出不等式的性质.)

二、师生互动,探索新知

1、不等式的基本性质

问题1:观察思考问题3,猜想出不等式的性质

先让学生独立思考,后合作交流,通过充分讨论,类比等式性质得出不等式的性质.

观察时,引导学生注意不等号的方向,通过(1)题学生容易得出不等式性质1:

不等式基本性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.

比较(2)、(3)题,注意观察不等号方向,并思考不等号方向的改变与什么有关?由学生概括总结,教师补充完善得出:

不等式基本性质2 不等式两边乘(或除以)同一个不为零的正数,不等号的方向不变.

不等式基本性质3 不等式两边乘(或除以)同一个不为零的负数,不等号的方向改变.

2、图形演示

通过PPT用图形演示不等式的基本性质,让学生更加清楚地认识不等式的基本性质。

3、拓展及应用

提问:不等式有对称性吗?

不等式有传递性吗?

【学生通过讨论能够比较容易得出结论:不等式有对称性,但要注意其不等号方向的`变化;不等式也有传递性,但要注意的是同向传递性。】

三、巩固训练,熟练技能:

1、(1) a - 3____b - 3;

(2) a÷3____b÷3

(3) 0.1a____0.1b;

(4) -4a____-4b

(5) 2a+3____2b+3;

(6) (2+1) a ____ (2+1)b (为常数)

【本题目采用提问的方式,因为内容相对简单,所以可以迅速得到结论。要让提问者说清楚答案,并说明利用不等式的性质几来进行判定的。】

2、判断下列各题的推导是否正确?为什么

(1)因为7.5>5.7,所以-7.5<-5.7;

(2)因为a+8>4,所以a>-4;

(3)因为4a>4b,所以a>b;

(4)因为-1>-2,所以-a-1>-a-2;

(5)因为3>2,所以3a>2a.

【学生口答,并说明为什么。本题重点是第5小题,要引导学生总结出a的取值会影响到答案。当a>0时,3a>2a.(不等式基本性质2)

当 a=0时,3a=2a.当a<0时,3a<2a.(不等式基本性质3) 】

3、独立完成习题

学生自己完成以下题目,之后进行集体讲解。

(1)如果x-5>-1,那么______________________,得:x>4

(2)如果-2x>3,那么那么______________________,得X=______

四、小结

师生共同小结本节课所学重点,不等式的基本性质的具体内容。

五、作业、

习题2.2

篇14:《不等式的性质二》教学反思

《不等式的性质二》教学反思

课前复习提问时,给学生的复习思考时间太短,开始问了几个学生不等式的三个基本性质,有的答不出来,有的答对一点但不完整。在很多学生没有作好充分准备时问到这个问题有点慌乱,我觉得更好的办法是先让学生看一下书复习一下不等式的三个基本性质,然后合起书再叫同学来说效果会更好。

例2学生对实际问题中的字母取值范围考虑不全,在讲解这个问题时带有点填压式,告诉学生字母的取值要大于或等于0,讲过之后可能学生印象还是不深。我觉得应先举一些实际生活中常见的例子,比如在数人的个数时字母应取什么值等,多列举一些例子让学生感性上认识,从而引导学生思考例2的字母的.取值范围。

例3学生根据三边关系往往只列出一个不等式,在教学时我先采取了提问的方式,给出了三个问题,引出三个不等式,然后让学生移项变形,又得出三个不等式,对总结三角形任意两边之差小于第三边做了辅垫。教学效果较好。

学生在回答问题的过程中,为了更快的得到自己预期的答案,往往打断学生的回答,剥夺了学生的主动权;比如学生在总结不等式性质3时,总怕他们出错所以老师急于公布结论。有时在学生思考问题时做一些补充打断学生的思路,这样对学生思考问题又带来一定影响;课堂小结中学生的体会与收获谈的不是很好。

篇15:数学《不等式基本性质》教学设计

教学目的

掌握不等式的基本性质,会用不等式的基本性质进行不等式的变形,数学教案-不等式基本性质。

教学过程

师:我们已学过等式,不等式,现在我们来看两组式子(教师出示小黑板中的两组式子),请同学们观察,哪些是等式?哪些是不等式?

第一组:1+2=3; a+b=b+a; S =ab; 4+x =7.

第二组:-7 < -5; 3+4 > 1+4; 2x ≤6, a+2 ≥0; 3≠4.

生:第一组都是等式,第二组都是不等式。

师:那么,什么叫做等式?什么叫做不等式?

生:表示相等关系的式子叫做等式;表示不等式的式子叫做不等式。

师:在数学炽,我们用等号“=”来表示相等关系,用不等式号“〈”、“〉”或“≠”表示不等关系,其中“>”和“<”表示大小关系。表示大小关系的不等式是我们中学教学所要研究的。

前面我们学过了等式,同学们还记得等式的性质吗?

生:等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以( 除数不为零)同一个数,所得到的仍是等式。

师:很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的'两边都加上,或都减去,或都乘以,或都除经(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习,初中数学教案《数学教案-不等式基本性质》。

练习1 (回答)用小于号“<”或大于号“>”填空。

(1)7 ___ 4; (2)- 2____6; (3)- 3_____ -2; (4)- 4_____-6

练习2(口答)分别从练习1中四个不等式出发,进行下面的运算。

(1)两边都加上(或都减去)5,结果怎样?不等号的方向改变了吗?

(2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?

(3)两边都乘以(或都除以)(-5),结果怎样?不等号的方向改变了吗?

生:我们发现:在练习2中,第(1)、(2)题的结果是不等号的方向不变;在第(3)题中,结果是不等号的方向改变了!

师:同学们观察得很认真,大家再进一步探讨一下,在什么情况下不等号的方向就会发生改变呢?

生甲:在原不等式的两边都乘以(或除以)一个负数的情况下,不等号的方向要改变。

师:有没有不同的意见?大家都同意他的看法吗?可能还有同学不放心,让我们再做一些试验。

练习3(口答)分别在下面四个不等式的两边都以乘以(可除以)-2,看看不等号的方向是否改变:

7>4;-2<6;-3<-2;-4>-6。

师:现在我们可以归纳出不等式的基本性质,一般地说,不等式的基本性质有三条:

性质1:不等式的两边都加上(或都减去)同一个数,不等号的方向 。

(让同学回答。)

性质2:不等式的两边都乘以(或都除以)同一个正数,不等号的方向 。(让同学回答。)

性质3:不等式的两边都乘以(或都除以)同一个负数,不等号的方向 。(让同学回答。)

现在请大家翻开课本,一起朗读用黑体字写的三条基本性质。

不等式的这三条基本性质,都可以用数学语言表达出来,先请一位同学说一说第一条基本性质。

生:如果a<b。那么a+c<b+c(或a-c<b-c;如果a>b,那么a+c>b+c(或a-c>b-c)。

师:对a和b有什么要求吗?对c有什么要求?

生:没有什么要求。

篇16:不等式的性质说课稿

一、教材分析:

1、教材的地位和作用

本课位于人民教育出版社义务教育课程标准实验教科书七年级下册。主要内容是让学生在充分感性认识的基础上体会不等式的性质,它是空间与图形领域的基础知识,是《不等式》的重点,学习它会为后面的学习不等式解法、不等式的计算等知识打下坚实的“基石”.同时,本节学习将为加深“不等式”的认识,建立空间观念,发展思维,并能让学生在活动的过程中交流分享探索的成果,体验成功的乐趣,把代数转化为数轴,提高运用数学的能力。

2、教学重难点

重 点  不等式的性质;

难 点 “不等式”意义理解及应用。

二、教学目标

知识目标 在了解不等式的意义基础上,掌握不等式的性质,并能计算不等式,了解不等式在实际中的应用。

能力目标

①通过观察、思考探索等活动归纳出不等式的性质,培养学生转化的数学思想,培养学生动手、分析、解决实际问题的能力。

②通过活动及实际问题的研究引导学生从数学角度发现和提出问题,并用数学方法探索、研究和解决问题。

情感目标

①感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣,培养敢想、敢说、敢解决实际问题的学习习惯。

通过学生体验、猜想并证明,让学生体会数学充满着探索和创造,培养学生团结协作,勇于创新的精神。

②通过“转化”数学思想方法的运用,让学生认识事物之间是普遍联系,相互转化的辩证唯物主义思想。

三、教学方法

1、采用指导探究法进行教学,主要通过学生拔河活动,师生互动,共同探不等式的性质。②导――知识类比,合理引导等突出学生主体地位,让教师成为学生学习的组织者、引导者、合作者,让学生亲自动手、动脑、动口参与数学活动,经历问题的发生、发展和解决过程,在解决问题的过程中完成教学目标。

2、根据学生实际情况,整堂课围绕“情景问题――学生体验――合作交流”模式,鼓励学生积极合作,充分交流,既满足了学生对新知识的强烈探索欲望,又排除学生学习数轴陌生和学无所用的思想顾虑。对学习有困难的学生及时给予帮助,让他们在学习的过程中获得愉快和进步。

3、利用课件辅助教学,突破教学重难点,扩大学生知识面,使每个学生稳步提高。

四、教学流程:

我的教学流程设计是:从创设情境,孕育新知开始,经历探索新知,构建模式;解释新知,落实新知;总结新知,布置作业等过程来完成教学。

创设情境,孕育新知:

①师生欣赏拔河比赛图片,让学生观察、思考从人数上看有什么不同点。

②从学生经历过的事入手,让学生比较两个数的大小,并说明理由,让学生留心实际生活,欣赏不等式的意义和性质。

③落实到学生是否会解不等式?本环节教师展示图片,学生观察思考,交流回答问题,了解实际生活中不等式的性质的广泛应用。

设计意图:通过图片和动画展示,贴近学生生活,激发学生的学习兴趣。从学生经历过的事入手。让学生知道数学知识无处不在,应用数学无时不有。符合“数学教学应从生活经验出发”的新课程标准要求。

2、实验操作,探索新知------不等式的性质

篇17:不等式的性质说课稿

教师展示一组练习,学生独立完成,巩固新知。

在这一环节中,教师应关注:

①学生能否理解不等式的性质,动手操作答案是否准确

②学生能否独立探究、参与、合作、交流

设计意图:复习提问,利用教具、学具让学生动手,提高学生学习兴趣,调动学生思考和积极性,提高学生合作交流的能力和质量,教师有的放矢,让学生掌握重点,培养学生自主探究的学习习惯和能力。及时练习巩固,体现学以致用的观念,消除学生学无所用的思想顾虑。

3、大胆猜想, ⑴学生分组讨论:学生用语言表述推理过程,教师深入学生中并点拨将未知的转化为已知,并规范推理过程。和学生一起归纳不等式的性质。

(2)学生独立完成练习。

本环节教师关注:

①学生能否主动参与数学活动,敢于发表个人观点。

②小组团结协作程度,创新意识。

③表扬优秀小组

设计意图:猜想、交流、归纳,符合知识的形成过程,培养学生转化的数学思想,学会将陌生的转化为熟悉的,将未知的转化为已知的。并用练习及时巩固,落实新知与方法,增强学生运用数学的能力。加强学生运用新知的意识,培养学生解决实际问题的能力和学习数学的兴趣,让学生巩固所学内容,并进行自我评价,既面向全体学生,又照顾个别学有余力的`学生,体现因材施教的原则。

总结新知,布置作业

五、教学设计

本节课的教学设计,依据《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标,内容安排从不等式的意义到不等式的性质的发现、论证和运用,逐步展示知识的过程,使学生的思维层层展开,逐步深入。在教学设计时,利用学具及多媒体辅助教学,展示图片和动画,使学生体会到数学无处不在,运用数学无时不有。以动代静,使课堂气氛活跃,面向全体学生,给基础好的学生充分的空间,满足他们的求知欲,同时注重利用学生的好奇心,培养学生的创新能力,引导学一从数学角度发现和提出问题,并用数学方法探索、研究和解决,体现《新课标》的教学理念。

篇18:不等式的性质说课稿

教学分析

本节将在初中学习的不等式的三条基本性质的基础上,系统归纳整理不等式的其他性质, 这是进一步学习不等式的基础。要求学生掌握不等式的基本性质与推论,并能用这些基本性质证明简单不等式,进而更深层地从理 性角度建立不等观念。对不等式的基本性质,教师应指导学生用数学的观点与等式的基本性质作类比、归纳逻辑分析,并鼓励学生从理性角度去分析量与量之间的比较过程。

基本性质2、3、4在初中是由实例验证,在高中里要进行逻辑证明。教学中教师一定要认识到对学生进行逻辑训练的必要性,注意启发学生要求证明的欲望。

在中学数学中,不等式的地位不仅特殊,而且重要,它与中学数学几乎所有章节都有联系,因此,不等式才自然而然地成为高考中经久不衰的热点、重点,有时也是难点。为此,在进行本节教学时,教材中基本性质的推论可由学生自己证明,课后的练习A、B要求学生全做。

三维目标

1.通过对初中三条基本性质的回忆,以及上节学习的知识,证明不等式的基本性质和推论。

2.在了解不等式的基本性质的基础上,利用它们来证明一些简单的不等式。

3.通过本节的学习,激发学生顽强的探究精神和严肃认真的科学态度。体会数学的结构美和系统美,激发学生学习数学更大的热情。

重点难点

教学重点:理解并证明不等式的基本性质与推论,并能用基本性质证明一些简单的不等式。

教学难点:不等式基本性质的灵活应用。

课时安排

1课时

教学过程

导入新课

思路1.(复习导入)让学生回忆并叙述初中所学的不等式的三条基本性质,即不等式的两边都加上(或减去)同一个数,不等号的方向不变;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不 等式的两边都乘以(或除以)同一个负数,不等号的方向改变。让学生根据上一节的学习将上面的文字语 言用不等式表示出来,并进一步探究,由此而展开新课。

思路2.(类比导入)等式具有许多性质,其中有:在等式的两边都加上,或都减去,或都乘以,或都除以(除数不为零)同一个数,所得的仍是等式。我们自然会联想到,不等式是否也会有此同样的性质呢?学生会进一步探究验证这个联想,由此而展开新课。

推进新课

新知探究

提出问题

(1)怎样比较两个实数或代数式的大小?(2)初中都学过不等式的哪些基本性质?你能给出证明吗?(3)不等式有哪些基本性质和推论?这些性质有哪些作用?

活动:教师引导学生一起回忆等式的性质:等式的两边都加上,或都减去,或都乘以,或都除以(除数不为零)同一个数,所得到的仍是等式。利用这些性质,我们可以对等式进行化简、变形或证明。那么不等式会不会也有类似的性质呢?也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除以(除数不为零)同一个数,结果会不会不变呢?为此教师引导学生回忆上节课学过的实数的基本性质(或用多媒体展示),即a-b>0?a>b;a-b<0?a

根据实数的基本性质,要比较两个实数的大小,可以考察这两个实数的差。这是我们研究不等关系的一个出发点。

从实数的基本性质,我们可以证明下列常用的不等式性质:

性质1,如果a>b,那么bb,即a>b?b

性质2,如果a>b,b>c,那么a>c,即a>b,b>c?a>c.这种性质称为不 等式的传递性。

性质3,如果a>b,那么a+c>b+c,

即不等式的两边都加上同一个实数,所得不等式与原不等式同向。

由此得到推论1,不等式中的任意一项都可以把它的符号变成相反的符号后,从不等式的一边移到另一边。这个推论称为不等式的移项法则。

推论2,如果a>b,c>d,则a+c>b+d.

这类不等号方向相同的不等式,叫做同向不等式,同向不等式可以相加,这个推论可以推广为更一般的结论 .

性质4,如果a>b,c>0,则ac>bc;如果a>b,c<0,则ac

推论1,如果a>b>0,c>d>0,那么ac>bd.

推论2,如果a>b>0,那么an>bn(n∈N+,n>1)。

推论3,如果a>b>0,那么na>nb(n∈N+,n>1)。

以上这些不等式的性质是解决不等式问题的基本依据。其中性质1是不等式的对称性;性质2是不等式的传递性;性质3表明不等式的两边都加上同一个实数,所得不等式与原不等式同向,由此可得不等式中任何一项可以改变符号后移到不等号的另一边;性质4表明,不等式两边允许用非零数(或式)去乘,相乘后的不等式的方向取决于乘式的符号,这点与等式的性质不同;性质4的推论1说明两边都是正数的同向不等式可以相乘;性质4的推论2说明两边都是正数的不等式可以乘方;性质4的推论3说明两边都是正数的不等式可以开方。

对以上性质的逻辑证明,教师可与学生一起完成。5个推论可由学生自己完成,教师给予适当点拨。这是训练学生逻辑推理能力的极佳机会,不可错过。

讨论结果:

(1)(2)略。

(3)4条性质,5个推论。

应用示例

例1(教材本节例题)

活动: 本节教材上共安排了这一个例题,含3个小题,都是不等式性质的简单应用,教师不可忽视本例的训练,过高估计了学生逻辑推理的书写能力。()实践证明,学生往往推理不严密。教学时应指导学生根据不等式的性质的条件和结论,强调推理要有理有据,严谨细致,条理清晰。

点评:应用不等式性质对已知不等式进行变形,从而得出要证的不等式,是证明不等式的常用方法之一。

变式训练

已知a>b>0,c<0,求证: ca>cb.

证明:∵a>b>0,∴ab>0,1ab>0.

于是a?1ab>b?1ab,即1b>1a.

由c<0,得ca>cb.

例2已知-π2≤α<β≤π2,求α+β2,α-β2的取值范围。

活动:教师引导学生回忆本题的背景,这类问题是学习三角函数内容时经常遇到的,由于当时所学知识所限,往往容易出错。这里我们在已知的基础上,运用不等式的基本性质得出所要得到的结果。

解:∵-π2≤α<β≤π2,

∴-π4≤α2<π4,-π4<β2≤π4.

上面两式相加,得-π2<α+β2<π2.

∵-π4<β2≤π4,

∴-π4≤-β2<π4.

∴-π2≤α-β2<π2.

又知α< β,∴α-β2<0.

故-π2≤α-β2<0.

点评:在三角函数化简求值中,角的范围的确定往往成为正确解题的关键。

变式训练

已知函数f(x)=x+x3,x1,x2,x3∈R,x1+x2<0,x2+x3<0,x3+x1<0,那么f(x1)+f(x2)+f(x3)的值( )

A.一定大于0 B.一定小于0

C.等于0                    D.正负都有可能

答案:B

解析:由题意知f(x)是奇函数,且在R上为单调增函数,

所以f(-x2)=-f(x2 ),f(-x3)=-f(x3),f(-x1)=-f(x1),

且x1<-x2,x2<-x3,x3<-x1.

所以f(x1)<-f(x2),f(x2)<-f(x3),f(x3)<-f(x1)。

不等式的性质教学反思

基本不等式教学反思 不等式的基本性质的教学反思

八年级《不等式的基本性质》教学设计

《不等式与实际问题》教学反思

《小雪人》教学实录与反思

《我与地坛》教学实录

民族音乐教学实录与反思

教学实录

基本不等式教学反思

观潮语文教学实录与评析

《不等式及其性质教学实录与评析(精选18篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档