下面是小编整理的余弦定理教学课件,本文共12篇,欢迎您阅读,希望对您有所帮助。

篇1:余弦定理教学教案
目标
1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。
2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题,
3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。
重点:余弦定理的发现和证明过程及其基本应用;
教学难点:勾股定理在余弦定理的发现和证明过程中的作用。
学法:首先研究把已知两边及其夹角判定三角形全等的方法进行量化,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题,利用向量的数量积比较容易地证明了余弦定理。从而利用余弦定理的第二种形式由已知三角形的三边确定三角形的角
教学设想
[创设情景] C
如图1.1-4,在 ABC中,设BC=a,AC=b,AB=c,
已知a,b和 C,求边c b a
A c B
[探索研究] (图1.1-4)
联系已经学过的知识和方法,可用什么途径来解决这个问题?
用正弦定理试求,发现因A、B均未知,所以较难求边c。
由于涉及边长问题,从而可以考虑用向量来研究这个问题。
A
如图1.1-5,设 , , ,那么 ,则
C B
(图1.1-5)
从而
同理可证
余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即
思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?(由学生推出)从余弦定理,又可得到以下推论:
[理解定理]从而知余弦定理及其推论的基本作用为:
①已知三角形的任意两边及它们的夹角就可以求出第三边;
②已知三角形的三条边就可以求出其它角。
思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?
(由学生总结)若 ABC中,C= ,则 ,这时
由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。
例题:例1.在 ABC中,已知 , , ,求b及A
⑴解:∵
= cos
= = 8 ∴
求 可以利用余弦定理,也可以利用正弦定理:
⑵解法一:∵cos ∴
解法二:∵sin 又∵ >
< ∴ < , 即 < < ∴
评述:解法二应注意确定A的取值范围。
例2.在 ABC中,已知 , , ,解三角形
解:由余弦定理的推论得:
cos ;
cos ;
[随堂练习]第51页练习第1、2、3题。
[补充练习]在 ABC中,若 ,求角A(答案:A=120 )
[课堂小结](1)余弦定理是任何三角形边角之间存在的共同规律,
勾股定理是余弦定理的特例;
(2)余弦定理的应用范围:①.已知三边求三角;
②.已知两边及它们的夹角,求第三边。
(五):作业:第52页[习题2.1]A组第5题。
三角形中的几何计算
教学目标
1.知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。
2. 过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。
3.情态与价值:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。
教学重点:在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。
教学难点:正、余弦定理与三角形的有关性质的综合运用。
学法:通过一些典型的实例来拓展关于解三角形的各种题型及其解决方法。
教学设想:[创设情景]:思考:在 ABC中,已知 , , ,解三角形。从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。下面进一步来研究这种情形下解三角形的问题。
[探索研究]:例1.在 ABC中,已知 ,讨论三角形解的情况
分析:先由 可进一步求出B;则 从而
1.当A为钝角或直角时,必须 才能有且只有一解;否则无解。
2.当A为锐角时,如果 ≥ ,那么只有一解;
如果 ,那么可以分下面三种情况来讨论:(1)若 ,则有两解;
(2)若 ,则只有一解; (3)若 ,则无解。
评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A为锐角且 时,有两解;其它情况时则只有一解或无解。
[随堂练习1]
(1)在 ABC中,已知 , , ,试判断此三角形的解的情况。
(2)在 ABC中,若 , , ,则符合题意的b的值有_____个。
(3)在 ABC中, , , ,如果利用正弦定理解三角形有两解,求x的取值范围。 (答案:(1)有两解;(2)0;(3) )
例2.在 ABC中,已知 , , ,判断 ABC的类型。
分析:由余弦定理可知
(注意: )
解: ,即 ,∴ 。
[随堂练习2]
(1)在 ABC中,已知 ,判断 ABC的类型。
(2)已知 ABC满足条件 ,判断 ABC的类型。
(答案:(1) ;(2) ABC是等腰或直角三角形)
例3.在 ABC中, , ,面积为 ,求 的值
分析:可利用三角形面积定理 以及正弦定理
解:由 得 ,
则 =3,即 ,从而
[随堂练习3]
(1)在 ABC中,若 , ,且此三角形的面积 ,求角C
(2)在 ABC中,其三边分别为a、b、c,三角形的面积 ,求角C
(答案:(1) 或 ;(2) )
[课堂小结](1)在已知三角形的两边及其中一边的对角解三角形时,
有两解或一解或无解等情形;
(2)三角形各种类型的判定方法;
(3)三角形面积定理的应用。
(五)课时作业:
(1)在 ABC中,已知 , , ,试判断此三角形的解的情况。
(2)设x、x+1、x+2是钝角三角形的三边长,求实数x的取值范围。
双曲线、抛物线的参数方程学案
第05时
2、2、2双曲线、抛物线的参数方程
学习目标
了解双曲线的参数方程的建立,熟悉抛物线参数方程的形式,会运用参数方程解决问题,进一步加深对参数方程的理解。
学习过程
一、学前准备
复习:复习抛物线的标准方程的四种形式,并填空:
(1) 表示顶点在 ,
焦点在 的抛物线;
(2) 表示顶点在 ,
焦点在 的抛物线。
二、新导学
探究新知(预习教材P12~P16,找出疑惑之处)
1、类比椭圆参数方程的建立,若给出一个三角公式 ,你能写出双曲线
的参数方程吗?
2、如图,设抛物线的普通方程为 , 为抛物线上除顶点外的任一点,以
射线 为终边的角记作 ,则 ,①
由 和①解出 得到:
(t为参数)
你能否根据本题的解题过程写出抛物线的四种不同形式方程对应的参数方程?并说出参数表示的意义。
应用示例
例1.如图, 是直角坐标原点,A ,B是抛物线 上异于顶点的两动点,且 ,求点A、B在什么位置时, 的面积最小?最小值是多少?
解:
反馈练习
1.求过P(0,1)到双曲线 的最小距离.
解:
三、总结提升
本节小结
1.本节学习了哪些内容?
答:1.了解双曲线的'参数方程的建立,熟悉抛物线参数方程的形式.
2.会运用参数方程解决问题,进一步加深对参数方程的理解。
学习评价
一、自我评价
你完成本节导学案的情况为( )
A.很好 B.较好 C. 一般 D.较差
后作业
1、已知抛物线 ,则它的焦点坐标为( )
A、 B、
C、 D、
2、对下列参数方程表示的图形说法正确的是( )
A、①是直线、②是椭圆
B、①是抛物线、②是椭圆或圆
C、①是抛物线的一部分、②是椭圆
D、①是抛物线的一部分、②是椭圆或圆
3.设P为等轴双曲线 上的一点, 为两个焦点,证明 .
4、经过抛物线 的顶点O任作两条互相垂直的线段OA和OB,以直线OA的斜率k为参数,求线段AB的中点的轨迹的参数方程。
高二数学2.4 二次分布学案
2.4 二项分布(二)
一、知识要点
1.独立重复试验
二、典型例题
例1.甲、乙两人进行五局三胜制的象棋比赛,若甲每盘的胜率为 ,乙每盘的胜率为 (和棋不算),求:
(1)比赛以甲比乙为3比0胜出的概率;
(2)比赛以甲比乙为3比2胜出的概率。
例2.某地区为下岗免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响。
(1)任选1名下岗人员,求该人参加过培训的概率;
(2)任选3名下岗人员,记X为3人中参加过培训的人数,求X的分布列。
例3.A,B是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效。若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组,设每只小白鼠服用A有效的概率为 ,服用B有效的概率为 。
(1)求一个试验组为甲类组的概率;
(2)观察3个试验组,用X表示这3个试验组中甲类组的个数,求X的分布列。
三、巩固练习
1.某种小麦在田间出现自然变异植株的概率为0.0045,今调查该种小麦100株,试计算两株和两株以上变异植株的概率。
2.某批产品中有20%的不含格品,进行重复抽样检查,共取5个样品,其中不合格品数为X,试确定X的概率分布。
3.若一个人由于输血而引起不良反应的概率为0.001,求
(1)人中恰有2人引起不良反应的概率;
(2)2000人中多于1人引起不良反应的概率;
四、堂小结
五、后反思
六、后作业
1.接种某疫苗后,出现发热反应的概率为0.80,现有5人接种该疫苗,至少有3人出现发热反应的概率为(精确为0.0001)_________________。
2.一射击运动员射击时,击中10环的概率为0.7,击中9环的概率0.3,则该运动员射击3次所得环数之和不少于29环的概率为_______________。
3.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;③他至少击中目标1次的概率是1-0.14。
其中正确结论的序号是_______________。(写出所有正确结论的序号)
4.某产品10,其中3次品,现依次从中随机抽取3(不放回),则3中恰有2次品的概率为_____________。
5.某射手每次射击击中目标的概率都是0.8,现在连续射击4次,求击中目标的次数X的概率分布。
6.某安全生产监督部门对6家小型煤矿进行安全检查(简称安检),若安检不合格,则必须进行整改,若整改后经复查仍不合格,则强行关闭,设每家煤矿安检是否合格是相互独立的,每家煤矿整改前安检合格的概率是0.6,整改后安检合格的概率是0.9,计算:
(1)恰好有三家煤矿必须整改的概率;
(2)至少关闭一家煤矿的概率。(结果精确到0.01)
7.9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种。
(1)求甲坑不需要补种的概率;
(2)求3个坑中需要补种的坑数X的分布列;
(3)求有坑需要补种的概率。(精确到0.001)
解三角形
一、目标
1、知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用
2、过程与方法:本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。另外本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解。只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点。
3、情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验
二、重点:推导三角形的面积公式并解决简单的相关题目。
教学难点:利用正弦定理、余弦定理来求证简单的证明题。
三、教学方法:探析归纳,讲练结合
四、教学过程
Ⅰ.课题导入
[创设情境]
师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。在
ABC中,边BC、CA、AB上的高分别记为h 、h 、h ,那么它们如何用已知边和角表示?
生:h =bsinC=csinB,h =csinA=asinC,h =asinB=bsinaA
师:根据以前学过的三角形面积公式S= ah,应用以上求出的高的公式如h =bsinC代入,可以推导出下面的三角形面积公式,S= absinC,大家能推出其它的几个公式吗?
生:同理可得,S= bcsinA, S= acsinB
师:除了知道某条边和该边上的高可求出三角形的面积外,知道哪些条件也可求出三角形的面积呢?
生:如能知道三角形的任意两边以及它们夹角的正弦即可求解
Ⅱ.探析新课
[范例讲解]
例1、在 ABC中,根据下列条件,求三角形的面积S(精确到0.1cm )(1)已知a=14.8cm,c=23.5cm,B=148.5 ;(2)已知B=62.7 ,C=65.8 ,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm
分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。
解:(1)应用S= acsinB,得 S= 14.8 23.5 sin148.5 ≈90.9(cm )
(2)根据正弦定理, = ,c = ,S = bcsinA = b
A = 180 -(B + C)= 180 -(62.7 + 65.8 )=51.5
S = 3.16 ≈4.0(cm )
(3)根据余弦定理的推论,得cosB = = ≈0.7697
sinB = ≈ ≈0.6384应用S= acsinB,得
S ≈ 41.4 38.7 0.6384≈511.4(cm )
例2、如图,在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm )?
师:你能把这一实际问题化归为一道数学题目吗?
生:本题可转化为已知三角形的三边,求角的问题,再利用三角形的面积公式求解。
由学生解答,老师巡视并对学生解答进行讲评小结。
解:设a=68m,b=88m,c=127m,根据余弦定理的推论,cosB= = ≈0.7532,sinB= 0.6578应用S= acsinB S ≈ 68 127 0.6578≈2840.38(m )
答:这个区域的面积是2840.38m 。
例3、在 ABC中,求证:(1) (2) + + =2(bccosA+cacosB+abcosC)
分析:这是一道关于三角形边角关系恒等式的证明问题,观察式子左右两边的特点,联想到用正弦定理来证明
证明:(1)根据正弦定理,可设 = = = k,显然 k 0,所以
左边= = =右边
(2)根据余弦定理的推论,
右边=2(bc +ca +ab )
=(b +c - a )+(c +a -b )+(a +b -c )=a +b +c =左边
变式练习1:已知在 ABC中, B=30 ,b=6,c=6 ,求a及 ABC的面积S
提示:解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数。
答案:a=6,S=9 ;a=12,S=18
Ⅲ.课堂练习:课本练习第1、2题
Ⅳ.课时小结:利用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系,从而确定三角形的形状。特别是有些条件既可用正弦定理也可用余弦定理甚至可以两者混用。
Ⅴ.课后作业:课本习题2-3 A组第12、14、15题
等比数列的概念及通项
M
课时20 等比数列的概念及通项
目标:1.掌握等比数列的概念。
2.能根据等比数列的通项公式,进行简单的应用。
过程:
1.观察以下数列:
1,2,4,8,16,……
3,3,3,3,……
2.相比与等差数列,以上数列有什么特点?
等比数列的定义:
定义的符号表示 ,注意点:① ,② 。
3.判断下列数列是否为等比数列,若是,请指出公比 的值。
(1)
(2)
(3)
(4)
4.求出下列等比数列的未知项。
(1) ; (2) 。
5.已知 是公比为 的等比数列,新数列 也是等比数列吗?如果是,公比是多少?
6.已知无穷等比数列 的首项为 ,公比为 。
(1)依次取出数列 中的所有奇数项,组成一个新数列,这个数列还是等比数列吗?如果是,它的首项和公比是多少?
(2)数列 (其中常数 )是等比数列吗?如果是,它的首项和公比是多少?
二、通项公式
1.推导通项公式
例1.在等比数列 中,
(1)已知 ,求 ; (2)已知 ,求 。
例2.在243和3中间插入3个数,使这5个数成等比数列,求这三个数。
例3.已知等比数列 的通项公式为 ,(1)求首项 和公比 ;
(2)问表示这个数列的点 在什么函数的图像上?
例4.类比等差数列填空:
等差数列等比数列
通项
定义从第二项起,每一项与它的前一项的差都是同一个常数。
首项,公差(比)
取值有无限制没有任何限制
相应图像的特点直线 上孤立的点
课后作业:
1. 成等比数列,则 = 。
2.在等比数列 中,
(1)已知 ,则 = , = 。
(2)已知 ,则 = 。
(3)已知 ,则 = 。
3.设 是等比数列,判断下列命题是否正确?
(1) 是等比数列 ( ); (2) 是等比数列 ( )
(3) 是等比数列 ( ); (4) 是等比数列 ( )
(5) 是等比数列 ( ); (6) 是等比数列 ( )
4.设 成等比数列,公比 =2,则 = 。
5.在G.P 中,(1)已知 ,求 ;(2)已知 ,求 。
6.在两个同号的非零实数 和 之间插入2个数,使它们成等比数列,试用 表示这个等比数列的公比。
7.已知公差不为0的等差数列的第2,3,6项,依次构成一个等比数列,求该等比数列的通项。
8.已知 五个数构成等比数列,求 的值。
9.在等比数列 中, ,求 。
10.三个正数成等差数列,它们的和为15,如果它们分别加上1,3,9就成等比数列,求这三个数。
11.已知等比数列 ,若 ,求公比 。
12.已知 ,点 在函数 的图像上,( ),设 ,求证: 是等比数列。
问题统计与分析
平面向量的坐标表示
总 题向量的坐标表示总时第23时
分 题平面向量的坐标运算分时第2时
目标掌握平面向量的坐标表示及坐标运算
重点难点掌握平面向量的坐标表示及坐标运算;平面向量坐标表示的理解
引入新
1、在直角坐标平面内一点 是如何表示的? 。
2、以原点 为起点, 为终点,能不能也用坐标表示 呢?例:
3、平面向量的坐标表示。
4、平面向量的坐标运算。
已知 、 、实数 ,那么
例题剖析
例1、如图,已知 是坐标原点,点 在第一象限, , ,求向量 的坐标。
例2、如图,已知 , , , ,求向量 , , , 的坐标。
例3、用向量的坐标运算解:如图,质量为 的物体静止的放在斜面上,斜面与水平面的夹角为 ,求斜面对物体的摩擦力 。
例4、已知 , , 是直线 上一点,且 ,求点 的坐标。
巩固练习
1、与向量平行的单位向量为( )
、 、 、 或 、
2、已知 是坐标原点,点 在第二象限, , ,求向量 的坐标。
3、已知四边形 的顶点分别为 , , , ,求向量 , 的坐标,并证明四边形 是平行四边形。
4、已知作用在原点的三个力 , , ,求它们的合力的坐标。
5、已知 是坐标原点, , ,且 ,求 的坐标。
堂小结
平面向量的坐标表示;平面向量的坐标运算。
后训练
班级:高一( )班 姓名__________
一、基础题
1、若向量 , ,则 , 的坐标分别为( )
2、已知 ,终点坐标是 ,则起点坐标是 。
3、已知 , ,向量 与 相等.则 。
4、已知点 , , ,则 。
5、已知 的终点在以 , 为端点的线段上,则 的最大值和最小值分别等于 。
6、已知平行四边形 的三个顶点坐标分别为 , , ,求第四个顶点 的坐标。
7、已知向量 , ,点 为坐标原点,若向量 , ,求向量 的坐标。
8、已知点 , 及 , ,求点 , 和 的坐标。
三、能力题
9、已知点 , , ,若点 满足 ,
当 为何值时:(1)点 在直线 上? (2)点 在第四象限内?
基本不等式
第04讲: 基本不等式
高考《考试大纲》的要求:
① 了解基本不等式的证明过程
② 会用基本不等式解决简单的最大(小)值问题
(一)基础知识回顾:
1.定理1. 如果a,b ,那么 ,(当且仅当_______时,等号成立).
2.定理2(基本不等式):如果a,b>0,那么______________(当且仅当_______时,等号成立).
称_______为a,b的算术平均数,_____为a,b的几何平均数。基本不等式又称为________.
3. 基本不等式的几何意义是:_________不小于_________. 如图
4.利用基本不等式求最大(小)值时,要注意的问题:(一“正”;二“定”;三“相等”)
即: (1)和、积中的每一个数都必须是正数;
(2)求积的最大值时,应看和是否为定值;求和的最小值时,应看积是否为定值,;
简记为:和定积最_____,积定和最______.
(3)只有等号能够成立时,才有最值。
(二)例题分析:
例1.(陕西)设x、y为正数,则有(x+y)(1x+4y)的最小值为( )
A.15 B.12C.9 D.6
例2.函数 的值域是_________________________.
例3(江西、陕西、天津,全国、理) 设计一幅宣传画,要求画面面积为4840cm2,画面的宽与高的比为 ,画面的上、下各有8cm空白,左、右各有5cm空白,怎样确定画面的高与宽尺寸,能使宣传画所用纸张的面积最小?
(三)基础训练:
1.设 且 则必有( )
(A) (B)
(C) (D)
2.(湖南理)设a>0, b>0,则以下不等式中不恒成立的是( )
(A) ≥4 (B) ≥
(C) ≥ (D) ≥
3.(2001春招北京、内蒙、安徽、理)若 为实数,且 ,则 的最小值是( )
(A)18 (B)6(C) (D)
4. 已知a,b ,下列不等式中不正确的是( )
(A) (B)
(C) (D)
5.(福建)下列结论正确的是( )
A.当 B.
C. 的最小值为2D.当 无最大值
6. 已知两个正实数 满足关系式 , 则 的最大值是_____________.
7.若 且 则 中最小的一个是__________.
8.(2005北京春招、理)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量 (千辆/小时)与汽车的平均速度 (千米/小时)之间的函数关系为: 。
(1)在该时段内,当汽车的平均速度 为多少时,车流量最大?最大车流量为多少?(精确到 千辆/小时)
(2)若要求在该时段内车流量超过10千辆/小时,则汽车站的平均速度应在什么范围内?
(四)拓展训练:
1.(2000全国、江西、天津、广东)若 ,P= ,Q= ,R= ,则( )
(A)R
2.若正数a、b满足ab=a+b+3,分别求ab与a+b的取值范围。
参考答案
第04讲: 基本不等式
(二)例题分析: 例1. C; 例2. ;
例3解:设画面高为x cm,宽为λx cm,则λ x2 = 4840.
设纸张面积为S,有S = (x+16) (λ x+10)= λ x2+(16λ+10) x+160,
将 代入上式,得 .
当 时,即 时,S取得最小值.
此时,高: ,宽: .
答:画面高为88cm,宽为55cm时,能使所用纸张面积最小.
(三)基础训练: 1. B; 2. B; 3. B; 4. B 5.B; 6. 2 ; 7.
8. 解:(Ⅰ)依题意,
(Ⅱ)由条得
整理得v2-89v+1600<0, 即(v-25)(v-64)<0, 解得25 答:当v=40千米/小时,车流量最大,最大车流量约为11.1千辆/小时.如果要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应大于25千米/小时且小于64千米/小时. (四)拓展训练:1. B; 2.解:因为a、b是正数,所以 ,即 , 法一:令 ,则 ,由ab=a+b+3≥2 +3,得 ,(t>0) 解得t≥3, 即 ,所以ab≥9,a+b=ab-3≥6. 法二:令 ,则由ab=a+b+3可知a+b+3 = ,得 ,(x>0) 整理得 ,又x>0,解得x≥6,即a+b≥6,所以ab=a+b+3≥9. 答: ab与a+b的取值范围分别是 与 。 射阳县教育局教研室 王克亮 教学目标:(1)掌握余弦定理,并能解决一些简单的度量问题. (2)初步运用余弦定理解决一些与测量和几何计算有关的实际问题. (3)经历余弦定理的发现与验证过程,增强学生的理性思维能力. 教学重点:余弦定理的发现与运用. 教学难点:余弦定理的证明. 课前准备:(1)自制一个如图所示的道具. (2)课前,教者在黑板上画好如图所示的三个三角形. 固定联结点 A 塑料棒1 细绳 可动联结点 可转动点 塑料棒2 道具 b B B B A 教学过程: 一、情境创设 提出问题 [1]情境引入 师:首先请看两个实际问题: 情境1 A,B两地之间隔着一座小山,现要测量A、B之间即将修建的一条直的隧道的长度.另选一个点C,可以测得的数据有:AC?182m,BC?126m,?ACB?630,如何求A、B两地之间隧道的长度(精确到1m). A B B D C E A 情境2 一位工人欲做一个三角形的支架.已知杆BC的长度为6分米,DAE是由一根直的钢管沿着点A弯折而成.若弯折点A与焊接点B,C的距离分别为4分米和5分米,欲弯折后杆BC恰好能与两焊接点相接,则弯折后∠BAC的大小是多少(精确到0.1度)? [2]提出问题 师:显然,这两个都是解三角形的问题.其中,情境1的实质是知道了三角形的两边与其夹角,求第三边的长度;而情境2的实质就是已知三角形的三条边,要求其一个内角的大小. 请问:(1)这两个问题能用正弦定理来解决吗? 生:不能. (2)那么,这两个问题之间有联系吗? 生:互逆. 师:对,在解法上是互逆的,所以本节课我们将要探究的核心问题是:在已知三角形两条边的前提下,其夹角的大小与第三条边的长度之间有着怎样的关系?这正是余弦定理所揭示的规律----引入课题. 二、问题探究 知识建构 问题1 在?ABC中,已知CB?a,CA?b(其中a?b),当?C从小到大变化时,AB的长度的变化趋势如何? 师:(学生思考了一会儿后)我们可以用一个简单的实验看一下. (课上,利用课前制作道具做一下演示实验.) 生: AB的长度随着?C的增大而增大. 师:这是一个定性的结论.那么对于定量的研究,一个常用的思维策略是特殊化. 取C=90?是最容易想到的;另外,虽然角C不能取0?与180?,但它可以无限接近这两个角,所以不妨再考察一下这两种情形. 续问: 若将?C的范围扩大到[00,1800],特别地:当?C?00,?C?900,?C?1800这三种特殊情形时,AB的长度分别是多少? 生:当?C?00时,AB?a?b;当?C?900时 ,AB?;当?C?1800 时,AB?a?b. 师:我们不妨把这三个结论在形式上写得更接近些,即 : 当?C?00时,AB?当?C?900时,AB?当?C?1800时,AB?B A 问题2 请你根据上述三个特例的结果,试猜想:当?C??(00???1800)时,线段AB的长度是多少? (在学生独立思考的基础上,小组讨论交流后请学生回答) 生 :AB?问题3 你能验证该猜想吗?请试一试. (课上,利用课前画好的三张图进行讨论.先让学生独立思考一会儿,然后根据学生回答的情况进行讲解,至少讨论下列前两种方法.) 方法一: 证: (1)当?C??为锐角时,过点A作AD?BC于D. 则AB2?BD2?AD2?(a?bcos?)2?(bsin?)2=a2?b2?2abcos?. D B A (2)当?C??为直角时,结论显然成立. (3)当?C??为钝角时, 过点A作AD?BC交BC的延长线于D. 则AB?BD?AD?(a?bcos(???))?(bsin(???)) ?(a?bcos?)?(bsin?)=a?b?2abcos?. D 2 2 2 2 2 2 2 A b 22 C a B 综上所述, 均有AB?故猜想成立. 师:这种思路是构造直角三角形,利用勾股定理来计算AB的长,但要注意这里要分三种情况讨论. 方法二: ????????????????2????????2 证:因为AB?AC?CB,所以AB?(AC?CB) ????2????2???????? ?AC?CB?2AC?CB?a2?b2?2abcos(???)?a2?b2?2abcos?, B A 即AB?故猜想成立. 师:这种方法的思路是构造向量,借助向量的运算来证题.将向量等式转化数量等式常用的手段是作数量积. 方法三: 证:以C为坐标原点,CB所在直线为x轴,建立平面直角坐标系. ???? 则B(a,0),A(bcos?,bsin?),则BA?(bcos??a,bsin?),所以 ????2 |AB|?(bcos??a)2?(bsin??0)2=a2?b2?2abcos?, ???? 即AB?|AB|?故猜想成立. 师:这种思路是建立平面直角坐标系,借助于坐标运算来证题.利用坐标法的优点在于不必分类讨论了且运算简单. 当然,我们还可以从其它途径来验证这一猜想,这里就不再讨论了,有兴趣的同学课后我们可以作些交流. 问题4 在三角形中,如何用符号语言与文字语言表示出上述结论? (提示:根式的表示形式不如平方的形式来得美观.) c2?a2?b2?2abcosC, 生:符号语言:在△ABC中,有a2?b2?c2?2bccosA, b2?a2?c2?2accosB. 文字语言:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍. 师:很好!这一结论我们称之为余弦定理,上述三个公式是余弦定理的一种表现形式. 问题5 如何根据三角形三条边的长度来求其内角的大小呢? a2?b2?c2b2?c2?a2a2?c2?b2 生:将上述结论变形为: cosC?,cosA?,cosB?. 2ab2bc2ac 师:这是余弦定理的另一种表现形式.对于余弦定理的这两种形式,我们在解题中应该灵活地加以选用. 感悟:(1)在第一组式子中,当C=90°时,即有c2?a2?b2.所以,勾股定理是余弦定理 的特殊情形,余弦定理可以看做是勾股定理的推广. (2)在第二组式子中,我们考察式子左右两边的符号,不难发现: 在△ABC中,C为锐角?a2?b2?c2;C为直角?a2?b2?c2;C为钝角?a2?b2?c2. 师:也就是说,在三角形中,要判断一个内角是什么角,只要看它的对边的平方与其它两边平方的和的.大小. 三、数学应用 深化理解 例1 在△ABC中,已知b=3,c=1,A=60°,求a. 解析:由余弦定理,得a2?b2?c2?2bccosA?32?12?2?3?1?cos600?7, 所以a?问:在此条件下,其它元素可求吗? 反思:(1)利用余弦定理,可以解决“已知两边和它们的夹角,求第三边和其他两个角”的问题. (2)用余弦定理求边的长度时,切记最后的结果要开平方. 师: 情境1就是这种类型的问题,我们也不妨看一下解答. 情境1:A,B两地之间隔着一座小山,现要测量A、B之间即将修建的一条隧道的长度.另选一个点C,可以测得的数据有:AC=182m,BC=126m,∠ACB=63°,如何求A,B两地之间隧道的长度(精确到1m). 解析: 在?ABC中,因为AC?182m,BC?126m,?ACB?630,则由余弦定理,得 AB2?AC2?BC2?2AC?BCcos?ACB?1822?1262?2?182?126cos630 ?1822?1262?2?182?126?0.454?28177.15, 所以AB?168m. 答:A,B两地之间隧道的长度约为168m. 例2 在?ABC中,已知a=7,b=5,c=3,求A. b2?c2?a252?32?721 解析:由余弦定理,得cosA????, 2bc2?5?32 所以A=120°. 问:在此条件下,其它两个角可求吗? 众生:可求. 反思: (1)利用余弦定理,可以解决“已知三边,求三个角”的问题. 师:情境2就是这种类型的问题,我们不妨看一下解答. 情境2: 一位工人欲做一个三角形的支架.已知杆BC的长度为6分米,DAE是由一根直的钢管沿着点A弯折而成.若弯折点A与焊接点B,C的距离分别为4分米和5分米,欲弯折后杆BC恰好能与两焊接点相接,则弯折后∠BAC的大小是多少(精确到0.1度)? 解析:在?ABC中,因为c?4,b?5,a?6,则由余弦定理,得 b2?c2?a252?42?62 cosA???0.125,,所以A?82.80; 2bc2?5?4 A E 答:弯折后,?BAC?82.80. D 反思:(2)利用余弦定理解决实际问题,解题的关键是建立出相应的三角形的模型.同时,要注意最后结果的精确度的要求. 变式:(1)在△ABC中,已知a2+b2+ab=c2,求角C的大小. a2?b2?c2?ab11222222 ???,即cosC??, 解析:由a+b+ab=c,得a?b?c??ab,则 2ab2ab22 所以C?1200. 反思:(3)在解三角形时,由边的条件式求角时,别忘了余弦定理;同时要注重余弦定理的逆用. 变式:(2)若三条线段的长分别为5,6,7,则用这三条线段( ). A.能组成直角三角形 B.能组成锐角三角形 C.能组成钝角三角形 D.不能组成三角形 解析:首先因为两条小边之和大于第三边,所以能够组成三角形;接着,只要看最大的角是什么角.因为52?62?72,所以最大角为锐角,故这三条线段能组成锐角三角形. 思考:(1)若用长为5,6,x的三条线段构成的三角形是钝角三角形,则正数x的取值范围 是________. (2)在?ABC中,已知a +c =2b,求证:B≤45°. ?x?6?x?6?? 解析:(1)由?x?5?6或?5?x?6, ?x?11或1?x??x2?52?62?62?x2?52?? (2)要证: B≤60°,只要证:cosB? 1c?a?b1???22ca21 所以cosB?,故B≤60°. 2 2 2 2 1. 2 c2?a2?( 而cosB? c?a2 ) 13c2?3a2?6ca3(c?a)2??0, ?= 8ca8ca2ca2 四、思维提升 巩固拓展 [1]课堂小结 数学知识----本节课新学的数学知识只有余弦定理.余弦定理与正弦定理是三角形中的两朵奇葩,从形式上看,两者都具有“美观”的外形,余弦定理虽有多个表达式,但它们之间具有可以轮换的对称美;从本质上看,两者都揭示了三角形中边与角之间“美妙”的内在联系. 在解三角形的问题中,“已知三个元素”包括了“三条边,两角一边,两边一角”这三种情况,前面学习的正弦定理能够解决已知“两角与任一边” 以及“两边与其中一边的对角”这两类问题;今天学习的余弦定理又能够解决已知“三边” 以及“两边及其夹角”的这两类问题.这样,对于一般的解三角形问题,我们就都能找到解决的办法了.当然,对于一些较为复杂的三角形问题,往往还要把这两个定理联合起来解决问题. 思维启迪----从本节课的讨论与研究中,我们获得了以下的一些思维启迪: (1)本节课上,对于余弦定理的发现,我们是从三个特例开始的,这遵循了“从特殊到一般”的思维策略. (2)在三个特例的基础上,我们进行了大胆的猜想,所以合理运用数学猜想等合情推理手段,是我们进行数学发现的一个重要途径. (3)另外,在验证余弦定理时,我们运用到了几何、三角、向量等多个知识领域,所以我们要注重不同知识内容之间的融会贯通. [2]作业布置 必做作业:教材第16页习题1.2第1,2,3,4题. 选做作业:教材第16页习题1.2第12题. 课后探究: (1) 思考:若用长为5,6,x的三条线段构成的三角形是钝角三角形,则正数x的取值范围是________. (2)在?ABC中,已知a +c =2b,求证:B≤45°. 本节课的教学是在学生学习了三角函数、平面向量、正弦定理等基础上而设置的教学内容,从解三角形的实际应用问题出发,提出问题,引发学生思考,激发学生的求知欲,调动学生的积极性,在对旧知识应用中提炼出新知识,从而新旧知识融为一体,使学生建立完整的知识系统. 教学中,引导学生从已学知识进行多角度分析问题,从而培养了学生思考问题的灵活性,在得到定理猜想后,找出证明定理的办法,揭示了蕴含在处理问题中的数学思想方法,不仅知其然,而且知其所以然.在引导学生推导出公式《余弦定理》,培养学生善于观察,归纳,发现特点,总结规律的好习惯.通过和勾股定理的比较,得出勾股定理是余弦定理的特殊情况,使学生加深了对余弦定理的理解,思维问题更加深入,提高了思维能力. 常言说:要学以致用。余弦定理的应用是本节教学的重要一环.所以,例题的选择和讲解是学习本节课的重要一环.例1、例2是余弦定理的简单应用,目的在于巩固余弦定理知识,加深对定理的理解;练习是余弦定理的变形应用,通过本题的训练,使学生更灵活地应用余弦定理,使定理的应用提高到了新的高度;通过解题比较,加深了对正、余弦定理的理解,体现了两者的联系,训练了学生从多角度、多方面思考问题的习惯. 本节课的教学设计是在吸取传统教学模式下的优点,结合新课改的要求进行改进设计的,以引导为主,重在发展学生的数学思维能力,培养其提出问题、解决问题的能力. 1、余弦定理是解三角形的重要依据。本节内容安排两节课适宜。第一节,余弦定理的引出、证明和简单应用;第二节复习定理内容,加强定理的应用. 2、当已知两边及一边对角需要求第三边时,可利用方程的思想,引出含第三边为未知量的方程,间接利用余弦定理解决问题,此时应注意解的不唯一性。但是这个问题在本节课讲给学生,学生不易理解,可以放在第二课时处理. 3、本节课的重点首先是定理的发现和证明,教学中,我采取“情境―问题”教学模式,沿着“设置情境―提出问题―解决问题―总结规律―――应用规律”这条主线,从情境中提出数学问题,以“问题”为主线组织教学,形成以提出问题与解决问题携手并进的“情境―问题”学习链,目的使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成 本课是在学生学习了三角函数、平面几何、平面向量、正弦定理的基础上而设置的教学内容,因此本课的教学有较多的处理办法。从解三角形的问题出发,提出解题需要,引发认知冲突,激起学生的求知欲望,调动了学生的学习积极性;在定理证明的教学中,引导学生从向量知识、坐标法、平面几何等方面进行分析讨论。在给出余弦定理的三个等式和三个推论之后,又对知识进行了归纳比较,发现特征,便于学生识记,同时也指出了勾股定理是余弦定理的特殊情形,提高了学生的思维层次。 命题的应用是命题教学的一个重要环节,学习命题的重要目的是应用命题去解决问题。所以,例题的精选、讲解是至关重要的。设计中的例1、例2是常规题,让学生应用数学知识求解问题,巩固余弦定理知识。例3是已知两边一对角,求解三角形问题,可用正弦定理求之,也可用余弦定理求解,通过比较分析,突出了正、余弦定理的联系,深化了对两个定理的理解,培养了解决问题的能力。本课在继承了传统数学教学模式优点,结合新课程的要求进行改进和发展,以发展学生的数学思维能力为主线,发挥教师的设计者,组织者作用,在使学生掌握知识的同时,帮助学生摸索自己的学习方法。 本课的教学应具有承上启下的目的。因此在教学设计时既兼顾前后知识的联系,又使学生明确本课学习的重点,将新旧知识逐渐地融为一体,构建比较完整的知识系统。所以在余弦定理的表现方式、结构特征上重加指导,只有当学生正确地理解了余弦定理的本质,才能更好地应用求解问题。本课教学设计力求在型(模型、类型),质(实质、本质),思(思维、思想方法)上达到教学效果。本课之前学生已学习过三角函数,平面几何,平面向量、解析几何、正弦定理等与本课紧密联系的内容,使本课有了较多的处理工具,也使余弦定理的探讨有了更加简洁的工具。因此在本课的教学设计中抓住前后知识的联系,重视数学思想的教学,加深对数学概念本质的理解,认识数学与实际的联系,学会应用数学知识和方法解决一些实际问题。学生应用数学的意识不强,创造力不足、看待问题不深入,很大原因在于学生的知识系统不够完善。因此本课运用联系的观点,从多角度看待问题,在提出问题、思考分析问题、解决问题等多方面对学生进行示范引导,将旧知识与新知识进行重组拟合及提高,帮助学生建立自己的良好知识结构。 本课学生动手较多,会有很多新问题产生,因此显得课堂时间不足。今后教学要在这方面注意把握。 “正弦定理和余弦定理”是高中数学必修5中“解三角形”的一节内容。本节在有关三角形、三角函数和解直角三角形知识的基础上,通过对任意三角形边角关系的研究,发现并掌握三角形中边角之间的数量关系。本节教学内容与前后知识联系紧密,涉及多种数学思想方法,现反思如下。 一、解三角形与判定三角形全等之间的关系 解三角形讨论的是三角形中的各种几何量之间的关系,如边、角、面积、外接圆半径和内切圆半径等之间的.关系,而正弦定理和余弦定理是解三角形的主要工具。平面几何主要是从定性的角度研究三角形,解三角形主要是从定量的角度研究三角形中的各种几何量之间的关系,是用解析的方法研究三角形。两种研究角度不同,可以互补,相得益彰。 判定三角形全等的公理有:边角边公理(SAS)、边边边公理(SSS)、角边角公理(ASA)和角角边公理(AAS)。其中至少有一个元素是边,仅有三个角(AAA)对应相等的两个三角形相似但不全等。判定三角形全等条件的几何意义是三角形的其它变量可以用所给的一组变量表达。如,SSS公理判定三角形全等的几何意义是:△ABC三边的长可以唯一地确定它的三个内角,如已知△ABC的三边,可用余弦定理的推论,求得三角。SAS公理判定三角形全等的几何意义是:△ABC的两条边的长及其夹角唯一地确定了第三边的长,进而唯一地确定了它的其余两条边长。如已知△ABC的两边及其夹角C,可以用余弦定理求出第三边。这时,三边已知,可用余弦定理的推论求出其余两角。这正是余弦定理可以解决的两类问题:已知三边,求三角(SSS);已知两边及其夹角,求第三边和其余两角(SAS)。 角边角(ASA)公理和角角边公理(AAS)借助三角形内角和定理,可以认为是实质相同的,其几何意义是△ABC的两角和任一边可以唯一确定其余的角和边,如已知△ABC的两角A,B和夹边c,可以求出这是正弦定理所能解决的一类问题:已知两角和任一边,求其余的边和角(ASA,AAS)。正弦定理还能解决一类问题:已知两边和其中一边的对角,求第三边和其余两角(SSA)。从几何意义上讲,SSA不能判定三角形全等,也就不能唯一确定一个三角形,表现在用正弦定理解三角形时会出现两解、一解和无解的情况。 从正弦定理和余弦定理的角度看,判定三角形全等的边角边公理(SAS)、边边边公理(SSS)、角边角公理(ASA)和角角边公理(AAS)是相互等价的。 由上可见,研读教材时,要从整体和全局的高度把握教材,了解教材的结构、地位作用和相互联系,使之相互诠释补充,产生新的见解。教学中,剖析透彻三角形全等的判定公理与解三角形之间的关系,可以完善学生的认知结构,将初中知识升华。 二、数学思想方法 数学思想方法的教学是数学教学中的重要组成部分,有利于加深学生对数学知识的理解和掌握,提高学生解决数学问题的能力。本节的两个主要结论是正弦定理和余弦定理,教学中应重视与内容密切相关的数学思想方法的教学,在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。 在正弦定理部分,考虑到不容易直接得出一般三角形中边和角的关系,可以先引导学生在直角三角形中,考虑与边角有关的三角函数知识来发现这一规律,接着猜想这一规律的一般性,然后在锐角三角形和钝角三角形中进行证明,从而得出正弦定理,这一过程体现了由特殊到一般和分类讨论的数学思想。在锐角三角形和钝角三角形中证明结论时,也是通过作高将其转化为直角三角形进行证明,体现了转化与化归的数学思想。 在余弦定理部分,得出余弦定理后,分析余弦定理的形式并提出已知三边求角的问题,结合方程的思想得出余弦定理的推论,从数量化的角度刻画了判定三角形全等的“边、边、边”结论。在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中。提出了一个思考问题:“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系。如何看这两个定理之间的关系?”进而结合余弦函数的性质分析得出:余弦定理是勾股定理的推广,把勾股定理纳入到余弦定理的知识系统中,体现了从一般到特殊的思想。 正弦定理和余弦定理的应用,都通过两种不同类型的例题介绍。正弦定理主要介绍“角角边”和“边边角”两种类型,余弦定理主要介绍“边角边”和“边边边”两种类型,体现了分类讨论的思想。 三、数学知识之间的联系 正弦定理和余弦定理的证明和应用中涉及诸多数学知识,如向量、三角函数、解析几何等,教学时应予以注意。 正弦定理和余弦定理刻画了三角形中边角的数量化关系,与初中学过的三角形中边角的基本关系和判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系。我们是否能得到这个边、角关系准确量化的表示呢?”在引入余弦定理内容时,从初中所学的三角形全等出发,定性说明已知三角形两边及夹角则该三角形完全确定,从而提出问题:已知三角形两边及夹角能否定量计算第三边呢?最后,正弦定理和余弦定理落脚于解三角形,使初中学习的判定三角形全等的公理得到了理性化的解释。是定性到定量的升华,也可以说二者在这里找到了共鸣,融为一体。这样,用联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。 《义务教育数学课程标准》把“正弦定理和余弦定理”这部分内容安排在必修5,位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、解析几何等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,例如正弦定理的证明,教材采用的是借助直角三角形中边角的三角函数关系,事实上,还可以借助三角形外接圆和向量进行证明。余弦定理的证明,除了教材中采用的向量法,还可以运用坐标法,借助两点间距离公式和三角知识证明。教学中,注意多种证明方法的运用,既可以巩固各部分知识,体会数学知识之间的内在联系,体现数学知识的作用和威力,如向量、三角函数,又可通过多种方法的比较,开阔思路,汲取精华,提炼最优解题方法。 因此,进行正弦定理和余弦定理教学时,要注意与前后各章内容的联系,注意复习和应用已学内容,并为后续章节内容做好准备。这样,能使整套教科书成为―个有机整体,提高教学效果,并有利于学生对数学知识的学习和巩固。 1、创设数学情境是“情境。应用”教学的基础环 本课中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为余弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实,为今后的“定理教学”提供了一些有用的借鉴。 创设数学情境是“情境。应用”教学的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。 从应用需要出发,创设认知冲突型数学情境,是创设情境的常用方法之一。“余弦定理”具有广泛的应用价值,故本课中从应用需要出发创设了教学中所使用的数学情境。该情境源于教材第一章1。3正弦、余弦定理应用的例1。实践说明,这种将教材中的例题、习题作为素材改造加工成情境,是创设情境的一条有效途径。只要教师能对教材进行深入、细致、全面的研究,便不难发现教材中有不少可用的素材。 “情境。应用”教学模式主张以问题为“红线”组织教学活动,以学生作为提出问题的主体,如何引导学生提出问题是教学成败的关键,教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境(不仅具有丰富的内涵,而且还具有“问题”的诱导性、启发性和探索性),而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。关注学生学习的结果,更关注学生学习的过程;关注学生数学学习的水平,更关注学生在数学活动中所表现出来的情感与态度;关注是否给学生创设了一种情境,使学生亲身经历了数学活动过程.把“质疑提问”,培养学生的数学问题意识,提高学生提出数学问题的能力作为教与学活动的起点与归宿。 2、培养学生自主学习、合作学习、研究(探究)性学习的学习方式 (1)新教材与一期教材相比,有一个很大的变化就是在课本中增加了若干“探究与实践”的研究性课题,这些课题往往有着一定的实际生活情景,如出租车计价问题,测量建筑高度,邮资问题,“雪花曲线”等等,这些课题除了增强学生的数学应用能力之外,还有一个重要作用就是改变学生以往的学习方式。 在教学实践中,我对不同内容采取了不同的处理方式,像用单位圆中有向线段表示三角比;组合贷款中的数学问题主要在课堂引导学生完成;像邮件与邮费问题、上海出租车计价问题、声音传播问题、测建筑物的高度则采取课内介绍、布置、检查,学生主要在课外完成的方法。学生通过调查、上网收集数据,集体研究讨论,实践动手操作,无形之中使自己学习的主动性得以大大提高,自学能力也有所长足发展,从而有效的培养学生自主获取知识的能力,以适应未来社会发展的需要。 由此可见,新课程突出了“以学生发展为本”的素质教育理念与目标,强调素质的动态性和发展性,揭示了素质教育的本质,把学生素质的发展作为适应新世纪需要的培养目标和根本所在。因此,在教学实践中必须确立学生的主体地位。 (2)从培养学生的学习兴趣着手,变被动接受性学习为主动学习、自主学习、合作学习、研究(探究)性学习。根本改变重教法而轻学法的状况,使学生真正做到不但“知其然”,而且“知其所以然”,教师不仅要授之于“鱼”,更应该授之于“渔”,把本来应该让学生分析、总结、归纳、解决的问题由学生自己来解决。对学习有困难的学生,教师要多给予及时的关照与帮助,鼓励他们主动参与数学学习活动,尝试用自己的方式解题,敢于发表自己的看法,对出现的问题要帮助他们分析产生的原因,并鼓励他们自己去改正,从而增强学习数学的信心和兴趣。对于学有余力并对数学有兴趣的学生,教师可以为他们提供一些有价值的材料,指导他们阅读,发展他们的数学才能。 1.本节课的教学过程大体上可以分为四个阶段,一是复习旧知识(余弦定理的内容是什么?定理有什么特点?),二是推导余弦定理的推论,三是余弦定理及其推论的简单运用和应用,四是总结归纳解斜三角形的一般思路、一般方法。 2.学生课堂表现非常积极,思维比较活跃,兴趣比较高,形成了一个比较好的上课氛围。就是本人给予学生的鼓励和肯定不足,今后的教学中多给学生鼓励和支持。 3.教学目标明确,能有效的对学生具有启发性、思考性、发展性的培养;多媒体的使用比较得当,既形象直观又提高了效率;板书设计比较规范,但自己的字体不好,今后多多训练。 4.我对本节课的课堂认知从教学效果看,应该说达到了预期的教学目标。学生在已有知识的基础上,自主得出了余弦定理的推论与应用;能较好地运用新知识分析问题和解决问题;通过练习的训练加强对知识的理解。 5.仍感到困惑的地方: (1)自主学习时间与课堂容量; (2)在课堂教学中如何关注学生的差异。 《余弦定理》教学反思 本节课是高中数学教材北师大版必修5第二章《解三角形》余弦定理的第一课时内容,《课程标准》和教材把解三角形这部分内容安排在必修5,位置相对靠后,在此前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,使得这部分知识的处理有了比较多的工具,某些内容处理的更加简洁。学数学的最终目的是应用数学,可是比较突出的是,学生应用数学的意识不强,创造能力弱,往往不能把实际问题抽象成数学问题,不能把所学的知识应用到实际问题中去,尽管对一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的思维方法了解不够,针对这些情况,教学中要重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。 余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际问题(如测量等)的重要定理,它将三角形的边角有机的结合起来,实现了边与角的互化,从而使三角和几何有机的结合起来,为求与三角形有关的问题提供了理论依据。 教科书直接从三角形三边的向量出发,将向量等式转化为数量关系,得到余弦定理,言简意赅,简洁明快,但给人感觉似乎跳跃较大,不够自然,因此在创设问题情境中加了一个铺垫,即让学生想用向量方法证明勾股定理,再由特殊到一般,将直角三角形推广为任意三角形,余弦定理水到渠成,并与勾股定理统一起来,这一尝试是想回答:一个结论源自何处,是怎样想到的。正弦定理和余弦定理源于向量的加减法运算,其实向量的加减法的三角法则和平行四四边形法则从形上揭示了三角形的边角关系,而正弦定理与余弦定理是从数量关系上揭示了三角形的边角关系,向量的数量积则打通了三角形边角的数形联系,因此用向量方法证明正、余弦定理比较简洁,在证明余弦定理时,让学生自主探究,寻找新的证法,拓展思维,打通余弦定理与正弦定理、向量、解析几何、平面几何的联系,在比较各种证法后体会到向量证法的优美简洁,使知识交融、方法熟练、能力提升。 数学教学的主要目标是激发学生的潜能,教会学生思考,让学生变得聪明,学会数学的发现问题,具有创新品质,具备数学文化素养是题中之义,想一想,成人工作以后,有多少人会再用到余弦定理,但围绕余弦定理学生学到的发现方法、思维方式、探究创造与数学精神则会受用不尽。数学教学活动首先应围绕培养学生兴趣、激发原动力,让学生想学数学这门课,同时指导学生掌握数学学习的一般方法,具备终身学习的基础。教师要不断提出好的数学问题,还要教会学生提出问题,培养学生发现问题的意识和方法,并逐步将发现问题的意识变成直觉和习惯,在本节课中,通过余弦定理的发现过程,培养学生观察、类比、发现、推理的能力,学生在教师引导下,自主思考、探究、小组合作相互交流启发、思维碰撞,寻找不同的证明方法,既培养了学生学习数学的兴趣,同时掌握了学习概念、定理的基本方法,增强了学生的问题意识。其次,掌握正确的学习方法,没有正确的'学习方法,兴趣不可能持久,概念、定理、公式、法则的学习方法是学习数学的主要方法,学习的过程就是知其然,知其所以然、举一反三的过程,学习余弦定理的过程正是指导学生掌握学习数学的良好学习方法的范例,引导学生发现余弦定理的来龙去脉,掌握余弦定理证明方法,理解余弦定理与其他知识的密切联系,应用余弦定理解决其他问题。在余弦定理教学中,寻求一题多解,探究证明余弦定理的多种方法,指导一题多变,改变余弦定理的形式,如已知两边夹角求第三边的公式、已知三边求角的余弦值的公式,启发学生一题多想,引导学生思考余弦定理与正弦定理的联系,与勾股定理的联系、与向量的联系、与三角知识的联系以及与其他知识方法的联系,通过不断改变方法、改变形式、改变思维方式,夯实了数学基础,打通了知识联系,掌握了数学的基本方法,丰富了数学基本活动经验,激发了数学创造思维和潜能。 教学中也会有很多遗憾,有许多的漏洞,在创设情境,引导学生发现推导方法、鼓励学生质疑提问、猜想等方面有很多遗憾,比如:如何引入向量,解释的不够。最后,希望各位同仁批评指正。 1、余弦定理是解三角形的重要依据,要给予足够重视。本节内容安排两节课适宜。第一节,余弦定理的引出、证明和简单应用;第二节复习定理内容,加强定理的应用。 2、本节课的重点首先是定理的证明,其次才是定理的应用。我们传统的.定理概念教学往往采取的是“掐头去尾烧中断”的方法,忽视了定理、概念的形成过程,只是一味的教给学生定理概念的结论或公式,让学生通过大量的题目去套用这些结论或形式,大搞题海战术,加重了学生的负担,效果很差。学生根本没有掌握住这些定理、概念的形成过程,不能明白知识的来龙去脉,怎么会灵活的应用呢?事实上已经证明,这种生搬硬套、死记硬背式的教学方法和学习方法已经不能适应新课标教育的教学理念。新课标课程倡导:强调过程,重视学生探索新知识的经历和获得的新知的体会,不能再让教学脱离学生的内心感受,把“发现、探究知识”的权利还给学生。 如何证明余弦定理 三角形的正弦定理证明: 步骤1. 在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点H CH=a・sinB CH=b・sinA ∴a・sinB=b・sinA 得到 a/sinA=b/sinB 同理,在△ABC中, b/sinB=c/sinC 步骤2. 证明a/sinA=b/sinB=c/sinC=2R: 如图,任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D. 连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C. 所以c/sinC=c/sinD=BD=2R a/SinA=BC/SinD=BD=2R 类似可证其余两个等式。 2 在△ABC中,AB=c、BC=a、CA=b 则c^2=a^2+b^2-2ab*cosC a^2=b^2+c^2-2bc*cosA b^2=a^2+c^2-2ac*cosB 下面在锐角△中证明第一个等式,在钝角△中证明以此类推。 过A作AD⊥BC于D,则BD+CD=a 由勾股定理得: c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^2 所以c^2=(AD)^2-(CD)^2+b^2 =(a-CD)^2-(CD)^2+b^2 =a^2-2a*CD +(CD)^2-(CD)^2+b^2 =a^2+b^2-2a*CD 因为cosC=CD/b 所以CD=b*cosC 所以c^2=a^2+b^2-2ab*cosC 题目中^2表示平方。 2 谈正、余弦定理的.多种证法 聊城二中 魏清泉 正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法.人教A版教材《数学》(必修5)是用向量的数量积给出证明的,如是在证明正弦定理时用到作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受.本文试图通过运用多种方法证明正、余弦定理从而进一步理解正、余弦定理,进一步体会向量的巧妙应用和数学中“数”与“形”的完美结合. 定理:在△ABC中,AB=c,AC=b,BC=a,则 (1)(正弦定理) = = ; (2)(余弦定理) c2=a2+b2-2abcos C, b2=a2+c2-2accos B, a2=b2+c2-2bccos A. 一、正弦定理的证明 证法一:如图1,设AD、BE、CF分别是△ABC的三条高。则有 AD=bsin∠BCA, BE=csin∠CAB, CF=asin∠ABC。 所以S△ABC=abcsin∠BCA =bcsin∠CAB =casin∠ABC. 证法二:如图1,设AD、BE、CF分别是△ABC的3条高。则有 AD=bsin∠BCA=csin∠ABC, BE=asin∠BCA=csin∠CAB。 证法三:如图2,设CD=2r是△ABC的外接圆 的直径,则∠DAC=90°,∠ABC=∠ADC。 证法四:如图3,设单位向量j与向量AC垂直。 因为AB=AC+CB, 所以jAB=j(AC+CB)=jAC+jCB. 因为jAC=0, jCB=| j ||CB|cos(90°-∠C)=asinC, jAB=| j ||AB|cos(90°-∠A)=csinA . 二、余弦定理的证明 法一:在△ABC中,已知 ,求c。 过A作 , 在Rt 中, , 法二: ,即: 法三: 先证明如下等式: ⑴ 证明: 故⑴式成立,再由正弦定理变形,得 结合⑴、 有 即 . 同理可证 . 三、正余弦定理的统一证明 法一:证明:建立如下图所示的直角坐标系,则A=(0,0)、B=(c,0),又由任意角三角函数的定义可得:C=(bcos A,bsin A),以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-∠B, ∴C′(acos(π-B),asin(π-B))=C′(-acos B,asin B). 根据向量的运算: =(-acos B,asin B), = - =(bcos A-c,bsin A), (1)由 = :得 asin B=bsin A,即 = . 同理可得: = . ∴ = = . (2)由 =(b-cos A-c)2+(bsin A)2=b2+c2-2bccos A, 又| |=a, ∴a2=b2+c2-2bccos A. 同理: c2=a2+b2-2abcos C; b2=a2+c2-2accos B. 法二:如图5, ,设 轴、 轴方向上的单位向量分别为 、 ,将上式的两边分别与 、 作数量积,可知 , 即 将(1)式改写为 化简得b2-a2-c2=-2accos B. 即b2=a2+c2-2accos B.(4) 这里(1)为射影定理,(2)为正弦定理,(4)为余弦定理. 参考文献: 【1】孟燕平?抓住特征,灵活转换?数学通报第11期. 【2】《中学生数学》(上)3月上 【3】《数学(必修5)》人民教育出版社 余弦定理教案篇2:“余弦定理”教学设计
篇3:《余弦定理》教学反思
篇4: 《余弦定理》教学反思
篇5: 《余弦定理》教学反思
篇6: 《余弦定理》教学反思
篇7: 《余弦定理》教学反思
篇8:《余弦定理》教学反思
篇9:《余弦定理》教学反思
篇10:如何证明余弦定理
篇11:余弦定理教案
篇12:余弦定理说课稿
各位老师大家好!
今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。下面我分别从教材分析。教学目标的确定。教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。
一、教材分析
本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。
在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。
二、教学目标的确定
基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:
1、知识与技能:熟练掌握余弦定理的内容及公式,能初步应用余弦定理解决一些有关三角形边角计算的问题;
2、过程与方法:掌握余弦定理的两种证明方法,通过探究余弦定理的过程学会分析问题从特殊到一般的过程与方法,提高运用已有知识分析、解决问题的能力;
3、情感态度与价值观:在探究余弦定理的过程中培养学生探索精神和创新意识,形成严谨的数学思维方式,培养用数学观点解决问题的能力和意识、
三、教学方法的选择
基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。
在教学中利用计算机多媒体来辅助教学,充分发挥其快捷、生动、形象的特点。
四、教学过程的设计
为达到本节课的教学目标、突出重点、突破难点,在教材分析、确定教学目标和合理选择教法与学法的基础上,我把教学过程设计为以下四个阶段:创设情境、引入课题;探索研究、构建新知;例题讲解、巩固练习;课堂小结,布置作业。具体过程如下:
1、创设情境,引入课题
利用多媒体引出如下问题:
A地和B地之间隔着一个水塘现选择一地点C,可以测得的大小及,求A、B两地之间的距离c。
【设计意图】由于学生刚学过正弦定理,一定会采用刚学的知识解题,但由于无法找到一组已知的边及其所对角,从而产生疑惑,激发学生探索欲望。
2、探索研究、构建新知
(1)由于初中接触的是解直角三角形的问题,所以我将先带领学生从特殊情况为直角三角形( )时考虑。此时使用勾股定理,得。
(2)从直角三角形这一特殊情况出发,引导学生在一般三角形中构造直角即作边的高,从而在构造的直角三角形中利用勾股定理列出边之间的等式关系、
(3)考虑到我们所作的图为锐角三角形,讨论上述结论能否推广到在为钝角三角形( )中。
通过解决问题可以得到在任意三角形中都有,之后让同学们类比出……这样我就完成了对余弦定理的引入,之后总结给出余弦定理的内容及公式表示。
【设计意图】通过创设情景、引导学生探究出余弦定理这一数学体验,既可以培养学生分析问题的能力,也可以加深学生对余弦定理的认识、
在学生已学习了向量的基础上,考虑到新课改中要求使用新工具、新方法,我会引导同学类比向量法证明正弦定理的过程尝试使用向量的方法证明余弦定理、之后引导学生对余弦定理公式进行变形,用三边值来表示角的余弦值,给出余弦定理的第二种表示形式,这样就完成了新知的构建。
根据余弦定理的两种形式,我们可以利用余弦定理解决以下两类解斜三角形的问题:
(1)已知三边,求三个角;
(2)已知三角形两边及其夹角,求第三边和其他两个角。
3、例题讲解、巩固练习
本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握使用余弦定理解决问题的方法。其中例题先以学生自己思考解题为主,教师点评后再规范解题步骤及板书,课堂练习请同学们自主完成,并请同学上黑板板书,从而巩固余弦定理的运用。
例题讲解:
例1在中,
(1)已知,求;
(2)已知,求。
【设计意图】例题1分别是通过已知三角形两边及其夹角求第三边,已知三角形三边求其夹角,这样余弦定理的两个形式分别得到了运用,进而巩固了学生对余弦定理的运用。
例2对于例题1(2),求的大小。
【设计意图】已经求出了的度数,学生可能会有两种解法:运用正弦定理或运用余弦定理,比较正弦定理和余弦定理,发现使用余弦定理求解角的问题可以避免解的取舍问题。
例3使用余弦定理证明:在中,当为锐角时;当为钝角时,
【设计意图】例3通过对和的比较,体现了“余弦定理是勾股定理的推广”这一思想,进一步加深了对余弦定理的认识和理解。
课堂练习:
练习1在中,
(1)已知,求;
(2)已知,求。
【设计意图】检验学生是否掌握余弦定理的两个形式,巩固学生对余弦定理的运用。
练习2若三条线段长分别为5,6,7,则用这三条线段()。
A、能组成直角三角形
B、能组成锐角三角形
C、能组成钝角三角形
D、不能组成三角形
【设计意图】与例题3相呼应。
练习3在中,已知,试求的大小。
【设计意图】要求灵活使用公式,对公式进行变形。
4、课堂小结,布置作业
先请同学对本节课所学内容进行小结,教师再对以下三个方面进行总结:
(1)余弦定理的内容和公式;
(2)余弦定理实质上是勾股定理的推广;
(3)余弦定理的可以解决的两类解斜三角形的问题。
通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。
布置作业
必做题:习题1、2、1、2、3、5、6;
选做题:习题1、2、12、13。
【设计意图】
作业分为必做题和选做题、针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高。
各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的临时发挥而随机生成。预设效果如何,最终还有待于课堂教学实践的检验。
本说课一定存在诸多不足,恳请老师提出宝贵意见,谢谢。
★教学课件
文档为doc格式