欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

组合图形面积教学教案

时间:2022-09-04 08:16:32 其他范文 收藏本文 下载本文

下面给大家分享组合图形面积教学教案,本文共17篇,欢迎阅读!

组合图形面积教学教案

篇1:组合图形面积教学教案

组合图形面积教学教案

组合图形面积教学教案 张同娟 教学目标: 1. 明确组合图形的意义.  2. 知道求组合图形的面积就是求几个图形面积的和(或差). 3. 能正确地进行组合图形面积计算,并能灵活思考解决实际问题. 教学重难点:能正确进行组合图形面积计算 教具准备:平面图形和组合图形图片 教学过程: 一、复习基本图形 师:同学们,我们已经认识了长方形、正方形、平行四边形、三角形、梯形等图形,你们有印象吗请?请说出老师手中的图形是什么图形及它的面积公式和字母表达式。 师出示平面图形,生说面积公式及字母表达式 …… 师:同学们都很熟悉这些图形,师出示例题问:这是什么图形? 生:组合图形。 师:对,这些本图形组合而成的图形叫组合图形。你们已经能求出各种基本图形的面积,现在能求出这个组合图形的面积吗? 生:能! 师:有什么好办法? 生:用割补法。(学生用硬纸板示范) 师:很有办法,那么你们就用割补法求一下它的面积吧. 二、探索新授 1、出示例题: 临街拐角建一座拐角楼(平面图如下)。这是拐角楼地基,请你算一算,并与同学进行交流。   18米 40 18 60   2、学生思考,尝试用不同方法解决问题。 3、学生汇报解决方法: 生1:我把图形分割成两个长方形。(如图1) 生2:我是把图形分割成两个长方形。(如图2) 生3:我把图形分成两个梯形。(如图3) 生4:我把图形画完整,变成一个长方形,再用大长方形的面积减去小正方形的'面积。(如图4) 师:这种方法也我们解决组合图形的很好方法,它叫补拼法。是把图形补充成完整基本图形,再用大图形减去增加图形。 生5:我把图形分成两个长方形纸和一个正方形。(如图5)     一 二 三 四 五   师:还有别的方法吗? 师:既然有那么多方法,那你觉得用什么方法比较好呢? 生:越简单越好。 …… 三、解决实际问题 1、出示教科书上的练习学生先说你想怎么做,在自主做,然后全班交流。 2、做第三题时教师先问:这道题得注意什么? 等腰直角三角行有什么特点? 哪儿是减掉的图形? 3、学生自己做,全班交流。 四、拓展练习五、师小结 在本节课中,我从学生喜欢的复习形式引入组合图形,在组合图形面积计算方法的探究中,学生更是从不同角度思考问题,不为做题而做题,而是善于归纳方法,思维在探索中得到不断的提高。 我个人认为,组合图形是由几个简单的基本图形组成的一种图形。解决几何图形的面积,不仅可以拓展学生的想像能力和空间思维能力,还可以渗透从多种角度思考问题的解决问题策略。      

篇2:《组合图形的面积》教案

设计理念:本节课的中心与着力点是“方法”的体会与感悟,计算面积不是刚学,不是重点,但不能忽视,可以加大力度;还要指导学生能根据各种组合图形的条件,有效地选择方法。在整个探索过程中,相信学生,鼓励学生,给予学生充足的独立思考、交流讨论的时间。

本节课还得预设学生在学习过程中可能出现哪些问题,做好提前准备,这样到课堂上才能真正做到“以不变应万变”。

教学目标:

知识目标:

1、在自主探索的活动中,理解组合图形面积的计算方法。

2、能根据各种组合图形的条件,灵活有效的选择计算方法并进行正确的解答。

能力目标:

1、能运用所学的知识,解决生活中组合图形的实际问题。

2、通过图形的组合和分解培养分析问题、解决问题的能力及动手创新的意识学会把复杂问题转化为简单问题,渗透转化思想。

情感与价值观目标:

1、通过动手操作,给学生以美的享受,并能展示自我,张扬个性。

2、让孩子体验到成功的喜悦,培养了学生战胜困难的决心和勇气,团结友爱的美好情感。

教学重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。

教学难点:选择有效的计算方法解决实际问题。

教学过程:

一、复习旧知,引入新课

1、师:我们会求哪些平面图形的面积了?请回忆下面积计算公式。

2、看黑板上一些正六边形(六边相等、六角相等),你有它们的面积计算公式吗?那要求它的面积,怎么办呢?(转化成我们学过的图形)

[设计意图:让学生初步体会到学过的面积计算方法应用的广泛性,渗透转化思想,培养空间观念。]

二、探索组合图形面积计算方法

1、割

那你能想办法用学过的方法来求正六边形的面积吗?请上来画一画说一说。

这些同学的方法可以归结为一个字:割。就是把一个没学过的图形割成学过的图形,然后利用面积公式算出每一块面积,再求出整个图形的面积。且方法千变万化,只要你有目标,就一定能成功。

[设计意思:拓展思维,一题多解,感受探索的乐趣,培养学生学习的平面图形的兴趣。]

2、补、大面积-小面积

出示一个组合图形

(1)师:请同学们选择一种方法计算这个组合图形的面积。(生独立完成)

师:谁来说说你是用哪种方法计算的。

生介绍,师根据学生的介绍演示不同的方法。

师:这几种方法你们最喜欢哪一种呢?

师:为什么?(引导学生选择分得最少的,计算又简洁的方法)

(2)这儿又有一种新方法,没有把组合图形分割,而是补上一块。(板演:补),算出补后的大面积,减去补上的那部分面积,便可得出原来图形的面积。(板演:大面积-小面积)

3、小结求组合图形面积常用的方法

割、补、大面积-小面积。

4、小试牛刀

课后第一题。

请说说你用了什么方法。你更喜欢哪种方法?

5、挑战

(1)独立思考

(2)讨论

(3)移、拼的方法

[设计意图:从易到难,层层深入,引出求组合图形面积的常用方法]

3、回顾本节课所学,你有什么收获吗?在求组合图形面积时,你有什么要提醒大家的吗?

[设计意图:锻炼学生总结概括能力,口语表达能力得到发展。]

4、练习:课后2、3

板书:

长方形面积=长×宽割

正方形面积=边长×边长补

平行四边形面积=底×高拼

三角形面积=底×高÷2写大面积-小面积

梯形面积=(上底+下底)×高÷2

篇3:《组合图形的面积》教案

教学目标:

知识与技能:结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。

过程与方法:根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。

情感、态度与价值观:能运用组合图形的知识,解决生活中组合图形的实际问题。

教学重点:理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的条件。

教学难点:根据组合图形的条件,有效地选择汁算组合图形面积的方法。

教学方法:动手实践、自主探索、合作交流。

教学准备:师:多媒体、各种平面图形。

生:七巧板、简单图形学具、少先队中队旗实物。

教学过程

一、情境导入

1.创设情境导入:同学们都玩过七巧板吧,在七巧板里都有哪些图形呢?(长方形、三角形、平行四边形……)

2.你能用七巧板拼出什么图形来?指几名学生用七巧板拼出图形,并展示。

通过学生拼出的图形引出组合图形的定义:由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。

3.这节课我们就一起来学习求组合图形的面积。(板题:组合图形的面积)

二、互动新授

l.谈话:在实际生活中,有许多图形都是由几个简单的图形组合而成的。出示教材第99页的各种图形。

这些组合图形里有哪些是学过的图形?同学们试着找一找。

小组合作,尝试找出情境图中的组合图形是哪些图形组成的,并交流汇报。

2.说一说:在生活中还有哪些地方有组合图形?请同学们说一说。

学生可能会想到:厨房里的三角架、房子的分布图、桌子等。

3.引导思考:关于组合图形,你还想研究它的什么知识?

4.出示教材第99页例4:一间房子侧面墙的形状图。

引导学生观察图并思考:怎样计算出这个组合图形的面积?

组织学生小组合作学习,说一说是怎样分的',然后再算一算。集体汇报。

三、巩固拓展

1.完成教材第101页“练习二十二”第1题。

2.完成教材第101页“练习二十二”第2题。

3.完成教材第101页“练习二十二”第3题。

四、课堂小结

师:这节课你学会了什么?有哪些收获?

板书设计:

组合图形的面积

由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。

5×5+5×2÷2(5+5+2)×(5÷2)÷2×2

=25+5=12×2.5÷2×2

=30(2)=30(2)

教学反思:

篇4:《组合图形的面积》教案

教学内容:小学数学第十二册第126页

教学目标:

1、使学生进一步掌握求平面组合图形面积的计算方法,并能合理地把平面组合图形转化为简单图形,再进行面积的计算。

2、培养学生分析、判断能力,并发挥学生的主体作用,积极探索解决新问题,培养学生的创新意识。

教学重点:进一步培养学生学会观察。

教学难点:进一步学会找隐蔽条件。

教学过程:

一、复习基本知识

1、我们已学过哪些平面图形?(请生回答,并出示图形)。

2、请生回答这些平面图形的面积怎样计算?用字母公式表示。

3、基本练习:求各图形面积。(单位:厘米)开火车

4、导入:今天我们继续复习图形的面积DD组合图形的面积(板书)

二、变化练习

1、小组讨论:从刚才的简单图形中挑选两个图形组成一个新的图形,你会计算他们的面积吗?你们有几种情况?(让生拼一拼,摆一摆。)

2、学生汇报:(边出示,边板书)

(1)三角形面积+正方形面积列式:4×4÷2+4×4(图略)

(2)正方形面积-角形面积列式:4×4-4×4÷2

(3)半圆的面积+梯形面积列式:3.14×22÷2+(3+5)×4÷2

(4)梯形面积-半圆的面积列式:(3+5)×4÷2-3.14×22÷2

(5)长方形面积+半圆的面积列式:3.14×22÷2+4×2

(6)长方形面积-半圆的面积列式:4×2-3.14×22÷2

3、,并回答以下问题:

(1)由几个简单图形组成的图形叫做。

(2)在你拼摆的过程中,你发现图形的组合一般有几种情况?

(3)求组合图形的面积时,解答的步骤是什么?关键是什么?

三、强化练习

1、如图:阴影部分平行四边行的面积是36平方厘米,求出三角形的面积。(单位:厘米)

6(1)先让学生独立思考,然后再请生回答。

(2)你有几种解法?并在大屏幕出示。

9

2、求下列各个阴影部分的面积。(单位:厘米)

(1)(2)

6

6d=6

A:先让学生做在自己的本子上。

B:并让学生说一说你是怎样解答的?

C:核对,并在大屏幕演示。

D::如果组合图形不能直接拆成几个简单图形,那该怎么办呢?

3、计算阴影部分的面积。(单位:厘米)(图略,书本第127页练一练2中的第3小题)

先让学生思考,说一说应该怎么办?然后借助多媒体演示,请生列式。并说一说有几种方法。

4、:通过图形的平移、翻转,可以使它成为两个或两个以上的简单图形。

四、发散练习

如图:两个正方形摆放在一起,(大正方形边长为8厘米,小正方形边长为5厘米),图中有7个点,任意连接其中3个点,可以形成一个三角形,求三角形的面积?

(5分钟内看谁做得最多,方法最巧妙)

五、板书设计

平面组合图形的面积

(1)三角形面积+正方形面积

列式:4×4-4×4÷2

(2)正方形面积-角形面积

列式:4×4÷2+4×4

(3)半圆的面积+梯形面积

列式:(3+5)×4÷2-3.14×22÷2

(4)梯形面积-半圆的面积

列式:3.14×22÷2+(3+5×4÷2

(5)长方形面积+半圆的面积

列式:3.14×22÷2+4×2

(6)长方形面积-半圆的面积

列式:4×2-3.14×22÷2

篇5:《组合图形面积》教学反思

教材分析

组合图形的面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生一题多解。

学情分析

在三年级时,学生已经学习了长方形与正方形的面积计算,在本册的第二单元,学生又学习了平行四边形、三角形与梯形的面积计算,所以学习的基础是没有问题的,关键是引导学生学会分析如何将组合图形转化为已学过的基本图形,一般来说,将组合图形的难度控制在通过一次割或补就能转化为两个基本形的面积计算。

教学目标

认知目标:能运用信息的手段,新的学习方法来完成数学知识的学习。

能力目标:能根据同伴所提供的数据来完成一份面积统计表,会使用测量工具及计算工具进行图形面积的计算

发展目标:引导学生利用网络,学会互相协作学习

教学重点和难点

通过运用电脑来完成测量和计算的过程,以及分工合作时信息的传递,发展学生的自主学习能力和协作学习能力。

篇6:《组合图形面积》教学反思

组合图形面积是学生学习了长方形、正方形、平行四边形、三角形、梯形的面积的基础上进行教学的,是日常生活经常需要解决的问题。在本节课的设计和实施中,我根据新课程的理念,进行了大胆地尝试,达到了良好的教学效果。主要有以下几点:

一、复习铺垫,沟通新旧知识的联系

组合图形的面积计算,需要在长方形、正方形、平行四边形、三角形和梯形面积计算的基础上进行。在学习新知之前,我组织学生通过复习,回忆旧知,从学生已有的经验和已有的知识背景出发,找准新知的最佳切入点,为知识的迁移做好铺垫。

二、自主探索,感受解题策略的多样性

学生是学习的主体,只有让学生亲身经历知识的形成过程,这样学得的知识才最深刻。教学中,我放手让学生自主探究,合作交流,亲身经历计算组合图形面积的过程,重视把学生的思维过程充分暴露出来。在自主探索、解决问题中感受解题策略的多样性。

三、有效利用多媒体,提高课堂效率

运用多媒体等现代化的教学手段,能把教学过程组织得更生动、形象,有利于学生进行总结归纳、抽象概括,主动参与知识的形成过程。教学开始,我用动态演示几个基本图形的组合,巧妙地让学生理解了组合图形的定义;理解求组合图形面积的多种方法时,我用生动地分解组合图形,让学生一目了然,加深了学生对知识的理解和掌握。

四、让数学回归生活,提高实践能力

心理学研究表明,当学习内容与学生熟悉的生活实际越贴近,学生自觉接纳知识的程度就越高。教学中,我向学生展示了生活中的组合图形,设计了让学生解决“做一面中队旗至少要用多少布”的生活问题,课后巩固环节让学生运用所学的知识帮助老师解决生活中铺地板的实际问题,学生从周围熟悉的事物中体验、感悟了数学,感受到数学就在我们身边。同时,激发了学生从生活中寻找数学问题的兴趣,提高了学生解决实际问题的能力。

篇7:《组合图形面积》教学反思

《组合图形的面积计算》是学生在学习了平行四边形、三角形、梯形的面积基础上,通过拼补的方法把组合图形转化成我们会计算面积的2个图形的面积进行计算,方法有很多种,学生选择适合自己的就可以。

本节课并不是要教会学生求几个组合图形的面积,而是让学生体会到割补、转化的方法是求未知平面图形面积的重要策略。当学生真正获得了策略的知识、方法的知识的时候,就能举一反三、触类旁通。

通过这一堂课的教学,我感受最深的是:课堂教学是由学生、教师和教材组成的整体,只有发挥这个整体中各个部分及其相互关系的功能,才能取得最佳课堂教学效果。在教学中不能以教师为中心来死搬硬套教材,而应把学生推到学习活动的中心。本堂课创造性地对教材实施了“由静态的信息变为动态的过程”的再加工重组,较合理地利用了教材资源。在教学中,先不给出数据,给学生留下充足的想象空间,使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力。然后再紧紧围绕“根据最少的数据,寻求最佳求面积的方法”这个思维策略思想,逐步展开有层次的思维训练。尽管还是课本的内容,但却演绎出别样的精彩,学生也在其中品尝了学习的欢悦和成功。教材在这儿已经完全成为学生驾驭学习的工具和成长的阶梯了,真正是为学生的学习服务,这也许就是教材重组的意义所在吧!

课堂也存在不足,比如说对例题学习可设计一些思考提示,让学生在思考的基础上尝试解决,学生有需要的话点击提示,这样能使学生的思维处于积极状态,获得成功的情感体验。在后面的练习设计中,也可围绕一定的问题情境设计一些联系实际的问题,发挥学生的主观能动性,以学生自主探索,寻找解决问题的途径,真正将发现问题,解决问题的成就感还给学生。

篇8:《组合图形面积》教学反思

1、例1第二种算法教学失败。

教材例1共呈现两种不同的算法,第一种算法直接利用插图中的数据,而且还列出了算式,学生只需完成计算即可。第二种算法教材只提示了可以把它分成两个完全一样的梯形,列式则完全放手让学生独立尝试。由于这种解法梯形的下底、高都无法直接由图中得出,因此步骤较多。在教学中,我是引导学生们先分析得出第一种解法并正确列出算式后再开书完成填空,并根据方法提示,尝试写出第二种算法。殊不知真正需要我引导分析的却是第二种。课下与学生困生交谈中了解到其实在昨天预习时,第一种方法我都已经会了,但今天听您讲了第二种算法,我还是不明白。

我也困惑,当学生已经掌握既简单又易懂的方法后,他们为什么还要去探索这么复杂的算法呢?没有动力的探索又能激起学生多大的学习热情呢?

【再教设计】

再教时我会先引导学生先分析第二种解法,并列出正确算式,然后再放手让学生探索还有没有更简洁更易懂的方法。

2、作业的格式教学失败。

教材列的是综合算式,我在指导练习时也是按教材格式书写的板书。但在作业中,我却要求大家都用分步解答。由于我的示范作用不到位,所以作业虽然正确率较高,但格式却是各具特色,很不统一。在这一失误中,让我常常体会到其身正,不令而行;其身不正,虽令不从。

其实我要求学生用分步解答,主要基于以下几点考虑:1、分步列式时是先写字母公式再代入求值,这样不仅可以巩固所学面积计算公式,而且可以有效防止学生列式出错。2、在考试中如果列综合算式,无论是写错一个数据还是少了2均视为全错。可如果列分步则不同,可以按步骤适当给分。(呵呵,有点应试教育的思想在作祟)。

【再教设计】

要求学生列分步解答,那么教学时我一定要按照自己所规定的格式为学生作好示范,并向学生解释这样做的理由。只有当我的理由足以使他们信服,我的行为足以成为他们的表率时,我想推进起来可能会顺畅一些吧

困惑:当把图形变形后的列式该如何评价?

有学生将例2第二种算法中的两个完全一样的梯形通过旋转平移变成一个平行四边形。他们的列式与第一种算法的步骤一样多,也只需要4步。即(5+2+5)(52)这种列式可行吗?

组合图形是由几个简单的图形组合而成的,一般是要将若干个简单图形的面积相加(或相差)求的,那么这种经过转化只需用简单图形面积公式求的结果的方法可行吗?

篇9:《组合图形面积》教学反思

组合图形面积是学生学习了长方形、正方形、平行四边形、三角形与梯形的面积计算的基础上进行教学的,组合图形面积的教学,是这些知识的发展和延伸,也是日常生活中经常需要解决的问题。

在教学过程中,主要让学生在操作、探究、合作的过程中,认识组合图形的形成及其特点,让学生自主解决组合图形面积计算的问题,并在解决问题的过程中总结出组合图形面积计算的一般方法,并能运用所学知识解决日常生活中一些组合图形面积的计算问题。

教学活动开始时,让学生以小组合作的形式,用认识过的各种平面图形拼成自己喜欢的图形,既调动了学生的学习积极性,又为学生认识组合图形和后面分割组合图形做好了充分准备,我认为自己对此环节的设计比较好,在后面让学生判断是否是组合图形和分割组合图形的效果中得到了体现。

在教学组合图形面积的计算方法时,首先是让学生自己对所求的组合图形的面积进行计算,在学生交流的方法的过程中,使学生自觉意识到计算组合图形的面积可以用分割或填补的方法,而且在分割或添补时要根据已知条件进行,分割或添补时要尽量使计算简单。教学这一环节时,我认为自己处理得是环环相扣,步步逼近,学生理解得也很清楚。

但由于课上到还剩十分钟时,突然停电,对于“组合图形不能随意分割”和“添补”的方法没有充分展示,时间也比较匆忙,没有照顾到学困生,这是这节课的一个小小遗憾,在今后的教学设计时还应该考虑意外情况的出现。除此之外,整个课堂时间的把握也稍稍有点欠缺,课堂小结的时间占用了课间一点时间,主要是在前面讨论用多种方法计算组合图形面时花得时间过长。

总的来说,本节课还是充分体现了自己的设计意图,比较好的体现了本教学内容的教学目标,有较好的教学效果,自己感觉比较满意。对于教学中的不足,自己以后一定会认真思考,找出比较合理的办法来克服课中的不足。

篇10:《组合图形面积》教学反思

《组合图形面积》是义务教育课程标准实验教科书(北师大版)五年级数学上册第五单元第一课时的内容(北师大版义务教育课程标准实验教科书五年级数学上册第7576页的内容),这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上安排学习的。

本节课,重在引导学生结合实际情境和具体的图形来探索组合图形面积的计算方法,不仅能够巩固已学的基本图形面积的计算方法,培养学生的分析问题和解决问题的能力,而且也有利于发展学生的空间观念,提高学生的综合能力,为以后立体图形的学习做好铺垫。在本节课的教学过程中,我注重了以下几个方面

1、创设情景,激发学习兴趣。

好的开始等于成功的一半。本课一开始我就从介绍学生所熟悉的笑笑和她家的新房入手,进而出示房屋平面图,让学生观察得出这个图形是由几个已学过的图形组合而成的,接着再出示一组生活中的组合图形,使学生充分感受到数学与生活的密切联系,激发学生的学习兴趣,为下一步探究组合图形做好铺垫。

2、让学生在自主探索的基础上进行合作交流。

本节课,我组织学生以小组为单位,采用小组合作的学习方式,让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。

学生在探索的过程中,放手让他们拼画图,分割图,并自行解决提出的问题。让学生在画一画,分一分的活动中,初步形成组合的概念,从而对组合图形的意义有了更深一层的理解。

3、注重方法的指导与总结。

组合图形,从不同的角度认识,每个图形均可分为相应的几个部分。学生在解答中也将产生不同的思考方法。因此,在本课的教学过程中,我十分注重分析、解题方法的指导,在层层深入,环环相扣的学习过程中,始终坚持为学生创设小组合作和自主探索的情境,启发学生多角度、多方向、多层次挖掘新奇思路、各自提出有价值的分割方法,让学生通过一题多解的训练,培养学生的发散思维,体验成功的愉悦

总的来说,本节课的'教学始终贯穿着学生的自主参与,我只是辅助学生参与到整个过程中,学生由探究到发现到总结,思维活跃,兴致勃勃。课堂成为师生、生生的互动过程,培养了学生自主探究、合作学习的能力,在数学知识技能的形成、情感态度的发展、思维能力的培养等方面均取得了较好的效果。

当然,每节课都不可能做到十全十美,本节课,我认为也还有很多细节的地方需要改进,比如教师语言的启发性,小组合作及学生动手操作时方法的指导,以及学生汇报的形式等等,这都有待于在今后的教学中进一步加以完善。

篇11:《组合图形面积》说课稿

组合图形的面积是一个抽象的计算概念。组合图形是具有普遍特点的平面几何图形,是平面几何初步知识的总结与延伸。尤其是组合图形面积计算公式的推理过程(不同于简单图形面积公式的推导)蕴含叠加转化的数学思想,对学生今后计算复杂图形面积公式具有重要意义。听了黄老师执教的《组合图形的面积计算》一课,深受启发。由于黄老师能深入钻研教材,准确理解教材编写意图,跳出教材,对传统的课堂教学结构进行大胆

的改革,把教师的主导作用和学生主体作用紧密结合起来,强化教学互动,对提高学生素质和培养学生的创新意识与实践能力具有一定的作用,取得了较好的教学效果。我认为主要有以下几方面的亮点:

一、转变教师角色,改善教学行为。

在实施新课程的背景下,在“以发展为本”的课堂教学中,“教师的职责现在已经越来越少地传授知识,而是越来越多地激励思考......他将越来越成为一位顾问,一位交换意见的参加者,一位帮助发现矛盾论点而不是拿出现成真理的人。他必须拿出更多的时间和精力去从事哪些有效果的和有创造性的活动:互相影响、讨论、激励、了解、鼓舞”。本课教学中,黄老师更多地体现为:引导者――给学生的学习了提供明确的导航目标,辅导者――为学生提供各种便利与支持,使学生能够比较轻松地完成学习了任务。合作者――关注学生的学习了,参与学生的学习了活动,与学生共同探讨问题,共同寻求问题的答案。与学生构成良好的学习了共同体。

二、重视自主探究,发挥学生主体性。

学生主动参与学习了活动,不但能使学生主动获取知识,促进知识的意义建构,更能培养学生的参与意识和创新精神。在教学“组合图形的面积计算”时,黄老师先让学生跟老师一起画一个图形,然后留给学生充分的时间和空间,让学生在自己动手、动脑的基础上,再引导学生交流、验证自己的想法,看看自己没想到的方法有哪些,根据自己的能力有选择地学习了其它方法。这样有序的学习了,不仅发展了学生的智能,而且提高了学生的素质。

三、注重兴趣的激发,找准新旧链接。

组合图形的面积计算,需要在长方形、正方形、平行四边形、三角形和梯形面积计算的基础上进行。黄老师在学习了新知之前,先组织学生从自己制作的七巧板图形中找出2个图形拼成一个新的图形,并给它取个名字,像我们生活中的什么。这样的设计,既激发了学生的学习了兴趣,又能体现从学生已有的经验和已有的知识背景出发,找准新知的最佳切入点,为知识的迁移做好铺垫。

四、紧密联系生活,突出学以致用。

数学与人类的生活息息相关,它来源于生活,又应用于生活。本节课中,黄老师紧密联系学生的实际经验,创设了让学生自由拼凑图形这一情境,向学生展示了生活中的组合图形,从中提出数学问题,并加以解决,从而顺利地引出新课,最后又让学生计算家里楼房挑梁的侧面面积,通过联系实际,计算面积,进一步激发了学生对数学学习了的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣,也培养了学生提出问题,解决问题的能力。

总之,这节课充分体现了黄老师先进的教学理念和高超的教学艺术,充分体现黄老师追求课堂教学有效性的探索过程,给我们以深刻的启示和借鉴。当然,黄老师能否在以下几方面再继续探究,以达更好的教学效果呢?

1、能否在课堂评价方面加以改进。评价作为新课标的一个重要环节对培养学生的情感和态度有着十分重要的作用。巴班斯基指出:“只有在师生积极的相互作用中,才能产生一个完整的教学过程。”师生共同全方位参与的课堂才会产生心理共鸣,充满激情,充满活力。因为学生很在乎别人,尤其是同伴对自己的肯定。本节课中我感觉在这方面稍微欠缺了一点点。

2、我觉得学生的练习了偏少了一点,是否需要增加。(可能由于课件出现了问题,黄老师临时调整了教学策略后,造成了时间紧张,才减少了练习了)。

篇12:《组合图形面积》数学教案

教材分析:

《组合图形面积》是义务教育课程标准实验教科书(北师大版)五年级数学上册第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级数学上册第7576页的内容),这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,学习组合图形面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生的综合能力,发展学生的空间观念,为以后立体图形的学习做好铺垫。

教学目标:

知识目标

1、在自主探索的活动中,理解计算组合图形面积的多种方法。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、能运用所学的知识,解决生活中有关组合图形的实际问题。

过程和方法

让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。

情感、态度与价值观

1、结合具体的题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。

2、渗透转化的数学思想和方法。

教学重点:

学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形面积的计算方法。

教学难点:

理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,分成已学过的图形,选择有效的方法求组合图形的面积。

教学准备:

多媒体课件和组合图形图片。

教学过程:

一、激趣导入、复习铺垫、认识组合图形

1、介绍笑笑和她家的新房子

师:同学们,请看大屏幕,你们还记得她是谁吗?欢迎她今天和我们一起来学习吗?她还想把她家那漂亮的房子介绍给同学们呢!我们先听听她怎么说,好吗?(课件出示笑笑和她家的新房子,笑笑说:欢迎!欢迎!同学们,这是我家的新房子,漂亮吧?)

2、引导学生观察,复习有关平面图形面积的计算公式

师:从这座房子中可以找到哪些平面图形?会求它们的面积吗?

3、欣赏图片(课件出示一组图片)

师:请观察这几个图形,它们有什么共同的特征呢?(指名回答)

4、教师总结,揭示课题并板书

师:说得真好!像这样由两个或两个以上的简单的图形组合而成的一种图形我们把它称为组合图形(板书:组合图形),今天我们就一起来探究组合图形面积的计算(板书:面积)

二、创设情境、探究新知

笑笑家的新房正在装修,但却遇到了几个难题,需要同学们帮帮忙,你们愿意吗?那我们就一起来看看吧。(课件出示笑笑和她家客厅的平面图,笑笑说:这是我家的客厅,计划给它铺上地板。你们来得真巧,快来帮我算算,我家至少要买多大面积的地板呢?)

1、估计地板的面积

请同学们先估一估她家至少要买多大面积的地板呢?(学生说数据,师板书)

2、采用不同的方法求客厅的面积。

同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证一下吧!请同学们观察这个图形,这是一个(组合图形),这样的图形的面积我们以前学过了吗?你会用什么方法来求它的面积呢?请把你的想法用虚线在客厅平面图中表示出来。再与同桌说说自己的想法。

(1)生动手画图

(2)汇报交流:同学们做好了吗?现在谁来说说你的想法?

3、师生归纳方法并比较

(1)观察找特点

根据学生的汇报小结四种基本方法(课件演示)(师小结:分成的图形越简洁,其解题的方法也将越简单。所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。)

(2)引导比较,对方法进行分类,找出最简单的方法

师:请同学们观察这三种方法,它们有什么相同的特点呢?像这样的方法我们把它称为分割法添补法(板书)它们都是计算组合图形常用的方法。(师小结:其实不管是分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成已学过的图形,就容易计算出它的面积了。)

(3)现在,你能计算这个客厅地板的面积了吧!请根据下面的提示求出这个客厅地板的面积。(课件出示,学生齐读:要算每个小图形的面积分别需要哪些条件?请找一找,并标出来,再列式计算。)

(4)学生独立计算,四人板演。

(5)汇报交流,集体订正。

(6)引导比较(同学们现在我们已经计算出了这个组合图形的`面积,请把计算出的正确答案与刚才同学们估计的数据比较一下,谁估得最接近呢?(表扬最接近的同学)

4、归纳算法

刚才我们帮笑笑计算出了客厅的面积即组合图形的面积。现在一起来回忆一下计算组合图形面积的计算过程。

师生齐说:刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。

三、实际应用、解决问题

1、画一画:你能用最少的线段把下面各个图形分成已学过的图形吗?(课件出示)

(1)学生拿出先准备好的图形,动手画

(2)展示交流

2、计算墙壁的面积

观察图形选择方法独立计算汇报交流

同学们帮笑笑解决了难题,相信她会很感激大家的,咱们一起听听她怎么说。[课件出示,笑笑说:同学们,你们真厉害!我在这里谢谢大家了。请大家再帮我一个忙吧,我们家想把这面墙(如下图)粉刷一遍,你们愿意帮我算算吗?](1)需要粉刷的面积一共是多少平方米?(2)如果每平方米需要0.15千克涂料,一共要用多少千克涂料?

观察图形选择方法独立计算汇报交流

3、求门油漆的面积。

师:同学们以自己的聪明才智帮笑笑又解决了一个难题,咱们再听听她怎么说。课件出示:笑笑说,同学们,你们个个都是好样的。可还得请你们再帮我一个忙,我家要油漆6扇门的外面(门的形状如图,单位:米)

(1)需要油漆的面积一共是多少?

(2)如果油漆每平方米需要药费5元,那么我家共要花费多少元?

四、归纳小结、提升知识

这节课你学会了什么?

(师小结:这节课我们学会了计算组合图形的面积,这部分知识在实际生活中是经常会用到的,相信同学们都能很好的运用这些知识,解决一些实际问题。)

五、拓展延伸

师:请同学们课后在身边的事物中找一个组合图形,并想办法求出它的面积。

1.6m 4 m 10

板书设计:

篇13:组合图形面积课后练习

一、判断题

1.两个三角形可以拼成一个平行四边形。………………………………

2.平行四边形的一个顶点向对边作高只能作1条。………………()

3.梯形的上底比下底短。………………()

4.有一组对边平行的四边形叫做梯形。………………()

5.平行四边形是特殊的梯形。………………()

二、填空

1.把两个边长分别为10cm,4cm,7cm的三角形,拼成一个平行四边形,共有()种拼法,其中周长最大的平行四边形的周长是()cm。

2.有一堆钢管,最上层是12根,最下层是26根,每相邻上下两层之间相差一根,这堆钢管共有()根。

3.形的面积公式是S=(a+b)h÷2,当上底与下底相等,即a=b时,梯形变成()形,这时面积S=()。

4.个直角三角形的三条边长分别是10厘米、8厘米、和6厘米,斜边上的高是()厘米。

[组合图形面积课后练习]

篇14:组合图形的面积

1、组合图形的面积计算方法

1、分割法

把一个组合图形根据它的特征和已知条件分割成几个简单的规则图形,分别算出各个图形的面积,最后求出它们的面积的和。

2、旋转法

把原图形进行一次或多次旋转,使它变成我们所熟悉的新图形,然后再进行计算。

3、割补法

把图形的.某一部分割下来补到另一部分上,使它变成一个我们已学过的几何图形,然后再进行计算。

4、挖空法

把多边形看成是一个完整的规则图形,计算它的面积以后,再减去空缺部分的面积。

5、折叠法

把组合图形折成几个完全相同的图形。,先求出一个图形的面积,再求几个图形的面积之和。

篇15:关于五年级数学组合图形面积教案

教学内容:

课本第92页到第93页的教学内容

教学目标:

1、认识组合图形、会把组合图形分解成已学过的平面图形。

2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。

4、通过拼组图形,使学生感受教学与现实生活的密切关系,体会数学带给大家的生活美。

重、难点与关键

1.探索并掌握组合图形的面积计算方法。

2.理解并掌握组合图形的组合及分解方法。

教具准备

教学用三角尺或教学挂图、PPT课件。

教学过程

一、复习导入

1.复习。

你们已经学会了计算哪些平面图形的面积?说一说这些图形的面积计算公式?

长方形的面积=长×宽; 正方形的面积=边长×边长

平行四边形的面积=底×高 ; 三角形的面积=底×高÷2

梯形的面积=(上底+下底)×高÷2

2.导入。

3.大家学会的知识可真多。为了奖励你们,老师请你们去欣赏一些美丽的图案,请同学们欣赏时认真想想:你们发现了什么?

二、新授课

1.认识组合图形。

出示课本第92页的四幅图。

认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开课本第92页,先找一找,然后在四人小组内互相讨论。比比看哪一个小组的分法最简单?

(1)四人小组讨论。

(2)小组各自展示各种分法。

(3)让学生举例说说生活中的组合图形。

同学们,开动脑筋想象:生活中哪些地方还有组合图形

2.探索组合图形面积的计算方法。

教师引导:大家真了不起,知道生活中存在着这么多的美丽组合图形,那如果我们想知道这些组合图形有多大,实际上是求什么?现在我们就来探讨组合图形的面积计算方法。

板书课题:组合图形的面积

(1) 出示例题4(电子教材)

(2) 学生独立解答。

学生解答时,让他们思考还有其他解法吗?如果有困难,可以在小组内互相帮助。

(3) 学生汇报。

解法一:5×5+5×2÷2 解法二:(5+7)×2.5÷2×2

=25+5 =12×2.5÷2×2

=30(m2) = 30(m2)

学生在汇报时,教师提问:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同,所以请同学们想想。求组合图形面积时关键是做什么?(图形分解)

三、巩固练习

完成课本第93页的“做一做”。

问:这块地是由哪些简单的图形组成的?

1.学生独立计算。

2.学生汇报,展示思路。

四、课堂小结

通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的?有哪些不明白的地方?

在小结过程中,不仅让学生小结这节课学到的知识,而且让学生学会评价,学会评价自己和他人。

五、布置作业

这是我们学校将要开辟的一块草坪,如下图。你能算出它的面积吗?现在有两家公司联系,A公司说种一平方米草要5元,B公司说种同样的草一共需要2500元。如果让你决定,你会选择哪家公司?

篇16:关于五年级数学组合图形面积教案

教学内容:《义务教育课程标准实验教科书 数学 五年级上册》第92~94页。

教学目标:

1.使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积。

2.综合运用平面图形面积计算的知识,进一步发展学生的空间观念。

3.培养学生的认真观察、独立思考的能力。

教具准备:课件、图片等。

教学过程:

一、展示汇报 建立概念

师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。 (指名回答)

生1:这枝铅笔的面是由一个长方形和一个三角形组成的。

生2:这条小鱼的面是由两个三角形组成的。

……

师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?

(设计意图:根据学生已有的知识经验和生活经验,让学生在课前进行搜集生活中的组合图形的图片,学生热情高涨、兴趣盎然。通过学生查、拼、摆、画、剪、找等活动,使学生在头脑中对组合图形产生感性认识。)

师:老师也搜集了一些生活中物品的图片,( 课件出示:房子、队旗、风筝、空心方砖、指示牌、火箭模型)这些物品的表面,都有哪些图形?谁来选一个说说。

生1:小房子的表面是由一个三角形和一个正方形组成的。

生2:风筝的面是由四个小三角形组成的。

生3:火箭模型的面是由一个梯形、一个长方形和一个三角形组成的。……

师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?

生1:由两个或两个以上的图形组成的是组合图形。

生2:有几个平面图形组成的图形是组合图形。

……

师小结:组合图形是由几个简单的图形组合而成的。

说一说,生活中有哪些地方的表面有组合图形? (学生自由回答)

师:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识?

生1:我想了解组合图形的周长。

生2:我想知道组合图形的面积怎样计算。

……

这节课我们重点学习组合图形的面积。(设计意图:唤起学生学习数学的好奇心和积极的探究态度,鼓励学生自己提出问题,使学生认知活动中的智力因素和非智力因素都处于状态,形成强烈的求知欲。)

二、自主探索 计算方法

(课件出示)下图表示的是一间房子侧面墙的形状。

认真观察这个组合图形,怎样计算出面积呢?

大家在图上先分一分,再算一算。

然后,在小组里互相说说自己的想法。

(学生活动,教师进行巡视指导)

指名汇报:

生:把组合图形分成一个三角形和一个正方形。(教师用课件演示:三角形和正方形分别闪动。)先分别算出三角形和正方形的面积,再相加。

教师边听边列式板演:5×5+5×2÷2

=25+5

=30(平方米)

师:还有不同的算法吗?

生:把这个组合图形分成两个完全一样的梯形。(教师用课件演示:两个完全一样的梯形闪动)先算出一个梯形的面积,再乘2就可以了。

学生说算式教师进行板演:(5+5+2)×(5÷2)÷2×2

=12×2.5÷2×2

=30(平方米)

师:你认为那种方法比较简便呢?

学生说自己的想法。

师:在计算组合图形的面积时有多种算法,同学们要认真观察、多动脑筋,选择自己喜欢而又简便的方法进行计算。

(设计意图:在学生解决组合图形的面积时,重视把学生的思维过程充分暴露出来,让学生认真观察、独立思考、培养了能力。这时,为每个学生提供参与数学活动的空间和时间,鼓励学生用不同的方法进行计算,开拓思维,并引导学生寻找最简方法,实现方法的化。通过学生的试做、交流、讨论,使学生进一步理解和掌握组合图形面积的计算方法,进一步发展学生的空间观念。)

师:通过学习,你认为怎样计算组合图形的面积?

学生回答。

师小结:在计算面积时,先把组合图形分解成已经学过的图形,然后分别求出它们的面积再相加。

在计算面积时,还要注意些什么?(学生根据自己的想法回答)

三、反馈练习及时巩固

1.(课件出示:队旗)要做一面这样的队旗,需要多少布呢?认真观察图,选择有用的数据,你想怎样计算?把你的算法在小组里交流。

指名汇报。对于不同的算法,师生共同分析,提升比较简便的方法,加以指导。

2.(课件出示:空心方砖)它的实际占地面积是多少?自己独立思考并计算,说说自己的想法。

3.(课件出示:火箭模型的平面图)选择有用的数据,独立完成,师生共同订正。

4.同学们刚才计算的是老师搜集的组合图形的面积,你们想不想算一算自己搜集的组合图形的面积呢?选择一个简单的图形,量出有用的数据,算一算组合图形在纸上的面积。先指名汇报,再互相检查算得对不对。

5.出示题目: ( 单位:厘米 )计算下面图形的面积。你有不同的算法吗?

(设计意图:这组习题形式多样、难易适度,既巩固了本课所学的知识,又培养了学生的学习能力。体现了数学来源于生活,有应用于生活的教育理念。)

四、课后小结:这节课你学会了什么?有什么收获?

篇17:组合图形的面积计算教案

组合图形的面积计算教案

教学目标:

1、通过尝试、讨论、反馈、学生讲解、教师点拨,使学生学会用割、补等方法把一个组合图形划分为几个已经学习过的图形,从而计算出组合图形的面积。

2、培养学生的合作能力和自己学习的能力。

教学重点:学会计算组合图形面积的分析方法。

教学过程:

一、复习引入

1、让学生举例说一说我们学过哪些平面图形的面积,各是怎样学习的(推导过程)。

长方形面积=长×宽正方形面积=边长×边长

平行四边形面积=底×高三角形面积=底×高÷2

梯形面积=(上底+下底)

×高÷2

2、引入:学样要造一个专用的.活动室,由于受地形的限制,平面图形如下:虽然这个活动室的工程不大,但要有质量保证,因而进行了工程招标。在招标之前先要进行面积计算,以便在招标时提供底价。现在有个难题:这个平面图形不是我们学过的简单的平面图形,你能不能动动脑筋,把它的面积算出来。

48

10单位:米

14

二、合作学习,自主探索。

1、让学生4人一小组进行讨论、试做,看哪组的方法最多。

2、反馈:让学生把自己的做法向大家介绍。做法可能有以下几种:(并说出想法)

(1)8×4=32(平方米)

(8+14)×(10-4)=66(平方米)

32+66=98(平方米)

(2)10×8=80(平方米)

(14-8)×(10-4)÷2=18(平方米)

80+18=98(平方米)

(3)14×10=140(平方米)

(4+10)×(14-8)÷2=42(平方米)

140-42=98(平方米)

(4)(4+10)×8÷2=56(平方米)

14×(10-4)÷2=42(平方米)

56+42=98(平方米)

3、小结:刚才我们求的这个平面图形是由两个基本的平面图形拼成的,叫组合图形,这些图形不能直接求面积,需要把它们划分成几个已经学过的图形,分别计算它们的面积,再求出这个组合图形的面积。

三、练习

1、求下面图形的面积(单位:厘米)

1832

625

286

1512

4

24

2、求下面阴影部分的面积。

16220

10阴影8210

52530

20阴影阴影

640

3、提高题

(1)求下列图形中阴影部分的面积(单位:分米)12

7

55

阴影阴影

5

201512

24

(2)一个长方形长4厘米,宽3厘米,A为长方形内的任意一点,求阴影部分的面积。

A

四、总结。

建议:1、讲清楚多边形的概念;

2、小结时重点点出割、补两种思路;

3、重视比较,以得出最简洁的方法。

《组合图形面积》说课稿

组合图形的面积计算教案

组合图形的面积教学设计

组合图形的面积教学设计

《组合图形面积的计算》教学反思

五年级上《组合图形面积》教学设计

组合图形面积评课稿

五年级数学组合图形面积说课稿

组合图形的面积教学设计及反思

六年级《组合图形面积》评课稿

《组合图形面积教学教案(通用17篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档