以下是小编精心整理的五年级下册数学第四单元知识点,本文共6篇,供大家阅读参考。

篇1:五年级下册数学第四单元知识点
五年级下册数学第四单元知识点归纳
第一课时 分数的产生、分数的意义
1、在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。
2、单位“1”的含义:一个物体、一个计量单位或是一些物体等都可以看作一个整体,这个整体可以用自然数1来表示,通常把它叫做单位“1”,也叫整体“1”。
3、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数。
4、把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。
5、一个分数的分母是几,它的分数单位就是几分之一;分子是几,它就有几个这样的分数单位。
6、一个分数的分母是几,它的分数单位就是几分之;分子是几,它就有几个这样的分数单位。
第二课时 分数与除法
1、分数与除法的关系:被除数÷除数=被除数/除数,用字母表示为a÷b=a/b (b≠0)
2、“求一个数是另一个数的几分之几”和“求一个数是另一个数的几倍”,计算方法相同,都可以用除法计算,即一个数÷另一个数=一个数是另一个数的几分之几(或几倍)。
(二)真分数和假分数
1、真分数的意义;分子比分母小的分数叫做真分数。
2、真分数的特征:真分数小于1。
3、假分数的意义:分子比分母大或分子和分母相等的分数叫做假分数。
4、假分数的特征:假分数大于1或等于。
5、带分数的意义:由整数(不包括0)和真分数合成的数叫做带分数。带分数的读法:先读整数部分,再读分数部分,中间加上一个“又”字。带分数的写法:先写整数部分,再写分数部分,分数部分的分数与整数的中间对齐。
6、把假分数化成整数或带分数,根据分数与除法的关系,用分子除以分母:
(1)如果能整除,那么商就是所要化成的整数。
(2)如果能整除,那么商就是带分数的整数部分,余数是带分数的分数部分的分子,分母不变。
(三)分数的基本性质
1、分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变,这叫做分数的'基本性质。
2、利用分数的基本性质,可以把分母不同的分数化成分母相同的分数,还可以把一个分数化为指定分母的分数。
(四)约分
第一课时 最大公因数
1、几个数共有的因数叫做这几个数的公因数;其中最大的那个公因数叫做这几个数的最大公因数。
2、求两个数的最大公因数的方法:
(1)列举法:先分别找出两个数的因数,再从中找出公因数,最后找出最大的一个;
(2)筛选法:先找出两个数中较小的因数,再从中圈出另一个数的因数,最后看圈出另一个数的因数,最后看圈出的因数中哪一个最大。
3、解决地砖的边长及最大边长是多少这类问题,实际上就是求两个数的公因数和最大公因数。
第二课时 约分
1、约分的意义:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
2、约分的方法:
(1)逐次约分法:用分子和分母的公因数(1除外)依次去除分子和分母,除到分子和分母的公因数只有1为止。
(2)一次约分法:用分子和分母的最大公因数去除分子和分母。
3、分子和分母只有公因数1的分数叫做最简分数。
(五)通分
第一课时 最小公倍数
1、几个数公有的倍数,叫做这几个数的公倍数。其中,最小的一个公倍数叫做这几个数的最小公倍数。
2、求两个数的最小公倍数的方法;
(1)列举法:先分别找出两个数各自的倍数,再找出这两个数的公倍数和最小公倍数;
(2)筛选法:先写出两个数中叫大数的倍数,再按照从小到大的顺序圈出叫小数的倍数,圈出的第一个数就是它们的最小公倍数。
第二课时 通分
1、分母相同、分子不同的两个分数,分子大的分数就大。
2、分子相同分母不同的两个分数,分母小的分数反而较大。
3、通分:把异分母分数化成和原来分数相等的同分母分数。
4、通分的方法:同分时,用原分母的公倍数作公分母,为了计算简便,通常选用原分母的最小公倍数作公分母,然后把每个分数都化成用这个最小公倍数作分母的分数。
(六)分数和小数的互化
1、小数化成分数的方法:小数表示的就是十分之几、百分之几、千分之几…….的数,所以可以直接写成分母是10,100,1000,…….的分数。原来是几位小数,就在1后面写几个0作分母,把原来的小数去掉小数点作分子,能约分的要约成最简分数。
2、分数化成小数的方法:
(1)分母不是10,100,1000,…的分数化成小数,可以直接去掉分母,看1后面有几个0,就从分子的右边起向左数出几位,点上小数点,位数不够时,用0补足。
(2)分母不是10,100,1000,…的分数化成小数,根据分数与除法的关系,用分子除以分母,除不尽时按“四舍五入”法保留几位小数。
数学两位数乘两位数速算绝招
(A)60×20=『』,把60×20看作60乘2,得120,20是2的10倍,再将得数扩大10倍得1200,心算过程是60×2=120,2的后面有一个0,积120后面加一个0,得1200.
(B)估算时,把一个两位数看成是整十数进行估算,如39×40,把39看成40,40×40=1600,39×40~1600.51×30=『』,估算过程是50×30=1500,51×30~1500.
(C)35×11+『』,把35乘10得350,再用35×1=35,350+35=385,心算过程是:35×11=350+35=385,又如43×11=430+43=473.
(D)23×19=『』,把19看作20来乘,多乘龙1个23,再减去23,心算过程是:23×20-23=460-23=437,如45×21=『』,把21看作20来乘,少乘1个45,再加上45,45×20+45=900+45=945.
(E)34×15=『』,把34×10后再加34×5,因为34×5=34×10 / 2=340 / 2=170,所以34×15的心算过程是:340+340 / 2=340+170=510.
学数学三角形的体积公式
三角形是二维图形,二维图形没有体积公式。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。
体积,几何学专业术语,是物件占有多少空间的量。体积的国际单位制是立方米。一件固体物件的体积是一个数值用以形容该物件在三维空间所占有的空间。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。
三角形计算公式
1、两边之和大于第三边,两边之差小于第三边。
2、大角对大边。
3、周长c=三边之和a+b+c
4、面积:
s=1/2ah(底x高/2)
s=1/2absinC(两边与夹角正弦乘积的一半)
s=1/2acsinB
s=1/2bcsinA
5、正弦定理:
sinA/a=sinB/b=sinc/C
6、余弦定理:
a^2=b^2+c^2-2bccosA
b^2=a^2+c^2-2accosB
c^2=a^2+b^2-2abcosA
篇2:人教版五年级下册数学第四单元知识点
人教版五年级下册数学第四单元知识点
1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)
3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如4/5的分数单位是1/5。
4、分数与除法
A÷B=A/B(B≠0,除数不能为0,分母也不能够为0) 例如:4÷5=4/5
5、真分数和假分数、带分数
1、真分数:分子比分母小的分数叫真分数。真分数
2、假分数:分子比分母大或分子和分母相等的分数叫假分数。假分数≥1
3、带分数:带分数由整数和真分数组成的分数。带分数>1.
4、真分数<1≤假分数
真分数<1<带分数
6、假分数与整数、带分数的互化
(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子, 如:
(2)整数化为假分数,用整数乘以分母得分子 如:
(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:
(4)1等于任何分子和分母相同的分数。如:
7、分数的基本性质:
分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不可以。
9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
如:24/30=4/5
10、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。
如:2/5和1/4 可以化成8/20和5/20
11、分数和小数的互化
(1)小数化为分数:数小数位数。一位小数,分母是10;两位小数,分母是100……
如:
0.3=3/10 0.03=3/100 0.003=3/1000
(2)分数化为小数:
方法一:把分数化为分母是10、100、1000……
如:3/10=0.3 3/5=6/10=0.6
1/4=25/100=0.25
方法二:用分子÷分母
如:3/4=3÷4=0.75
(3)带分数化为小数:
先把整数后的分数化为小数,再加上整数
12、比分数的大小:
分母相同,分子大,分数就大;
分子相同,分母小,分数才大。
分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。
13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。
1/2=0.5 1/4=0.25 3/4=0.75
1/5=0.2 2/5=0.4 3/5=0.6
4/5=0.8
1/8=0.125 3/8=0.375 5/8=0.625 7/8=0.875 1/20=0.05 1/25=0.04
14、两个数互质的特殊判断方法:
① 1和任何大于1的自然数互质。
② 2和任何奇数都是互质数。
③ 相邻的两个自然数是互质数。
④ 相邻的两个奇数互质。
⑤ 不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
15、求最大公因数的方法:
① 倍数关系:最大公因数就是较小数。
② 互质关系:最大公因数就是1
③ 一般关系:从大到小看较小数的因数是否是较大数的因数。
如何提高数学成绩
认真听讲的
这里的听“讲”,应包括两方面的意思:一是指在课堂上,精力要集中,不做与学习无关的动作,要认真倾听老师的点拨、指导,要抓住新知识的生长点,新旧知识的联系,弄清公式、法则的来龙去脉。二是说要认真地听其他同学的发言,对他人的观点、回答能做出评价和必要的补充。
认真审题
审题是正确解题的前提,养成认真审题的习惯,不但是提高学习成绩的保障,而且能使孩子从小就具有做事细心、踏实的品性。
认真计算
计算是小学生数学学习中最基本的技能。一个从小就能慎重对待计算的人,在以后的行事中就不会轻易犯下草率从事的错误。所以,家长要训练孩子沉着、冷静的学习态度。不管题目难易都要认真对待。对于孩子认真计算有进步的时候要给予鼓励表扬,及时树立自信心。
检验改错
在数学知识的探索中,有错误是难免的,正如在人生的旅程中,总是难免有各式各样的错误。因此,检验改错的习惯正是孩子必不可少的一个发展性学习习惯。由此,在日常练习中应把检查和验算当作不可缺少的的步骤,养成检验的好习惯。
数学统计知识点
(一)简单的数据分析:在画条形图时要先利用格尺找准数量,做好标记后再画。
(二)求平均数用移多补少的方法:
平均数 = 总数量 / 总份数
总数量 =平均数 × 总份数
总份数 = 总数量 /平均数
篇3:数学三年级下册第四单元知识点
数学三年级下册第四单元知识点
1、一年有12个月:一、三、五、七、八、十、十二月是大月,有31天;四、六、九、十一月是小月,有30天;二月平年有28天,闰年有29天。
2、全年天数:平年有365天,闰年有366天。
3、判断平年、闰年:A)年份能被4除尽而没有余数的是闰年,有余数的为平年;
B)整百整千的年份要能被400除尽才是闰年。
4、比年大的时间单位是世纪,1世纪=1。
5、用24时计时法表示:A)上午时间直接读出钟面上时间即可;
B)下午的时间在钟面上所指时间的基础上加上12小时。
6、时间单位的换算关系:1小时=60分,1分=60秒,1刻=15分,一昼夜=24小时,1周=7天。7、经过的天数的计算分为三种情况:(A)头尾都算:结束时间-开始时间+1
(B)头尾都不算:结束时间-开始时间-1
(C)头尾算其一:结束时间-开始时间。
小学数学无限循环小数怎么表示
1无限循环小数的表示
比如3.33333333333333333333.........表示3.3,第二个3上加一点。
无限循环小数:从小数点后某一位开始不断地出重复现前一个或一节数码的十进制无限小数。如2.1666…、35.232323…等,被重复的一个或一节数码称为循环节。
无限不循环小数:有些小数虽然也是无限的但不循环。无理数不像循环小数每个数字是重复的,但也属于无限小数。
2无限循环小数化成分数
所有的无限不循环小数都是无法化成分数的。
那么循环小数可不可以化成分数呢?这个是可以的。那对于纯循环小数,那么我们怎么把它化成分数呢?
比如将循环小数0.1212……化成分数。设x=0.12……,它的循环节是两位,那么我们直接扩大100倍,变成100x=12.1212……。100x-x=12.1212……-0.1212……,循环部分可以抵消掉,99x=12,x=12/99。
3一些常见的分数化无限循环小数
1/3=0.3333……
1/6=0.1666……
1/7=0.142857142857142857……
1/9=0.1111……
1/11=0.090909……
1/99=0.010101……
1/101=0.009900990099……
1/111=0.009009009……
小学数学运算顺序知识点
(1)小数、分数、整数
小数四则运算的运算顺序和整数四则运算顺序相同;分数四则运算的运算顺序和整数四则运算顺序相同。
(2)没有括号的混合运算
同级运算从左往右依次运算;两级运算 先算乘、除法,后算加减法。
(3)有括号的混合运算
先算小括号里面的,再算中括号里面的,最后算括号外面的。
(4)第一级运算
加法和减法叫做第一级运算。
(5)第二级运算
乘法和除法叫做第二级运算。
篇4:二年级下册数学第四单元知识点
二年级下册数学第四单元知识点
1、乘法的初步认识(第一课时)44页------46页
(1)结合数一数、摆一摆的具体活动,经历相相同加数连加算式的抽象过程,感受这种运算与日常生活的联系,体会学习乘法的必要性。
(2)结合具体情境,经历把相同加数的连加算式抽象为乘法算式的过程,初步体会乘法运算的意义,体会乘法和加法之间的联系与区别。
(3)会把相同加数的连加算式改写为乘法算式,知道写法、读法,并能应用加法计算简单的乘法算式的结果。
2、乘法的初步认识(第二课时)47页
(1)能根据加法算式列出乘法算式,知道乘法算式中各部分的名称及含义。
(2)知道用乘法算式表示相同加数连加算式比较简便,为进一步学习乘法奠定基础。
(3)能从生活情境中发现并提出可以用乘法解决的问题,初步学会解决简单的乘法问题。
3、5的乘法口诀
(1)结合具体情境,进一步体会乘法的意义,并经历5的乘法算式的计算过程和5的乘法口诀的编制过程。
(2)能用5的乘法口诀进行乘法计算,体验运用乘法口诀的优越性。
(3)能用5的乘法运算解决生活中简单的实际问题。
4、2、3、4的乘法口诀(分2课时)
(1)结合具体情境,经历2、3、4的乘法口诀的编制过程,进一步体会编制乘法口诀的方法。
(2)能够发现每一组乘法口诀的排列规律,培养有条理的思考问题的习惯,逐步的发展数感。
(3)掌握2、3、4的乘法口诀,会用已经学过的口诀进行乘法计算,并能解决简单的实际问题。
5、56页例5
(1)结合具体情境,掌握乘加、乘减算式的运算顺序,并能正确计算。
(2)能用含有两级运算的算式解决简单的实际问题,培养应用数学的意识和能力。
(3)培养学生从不同的角度观察思考问题的习惯,体现解决问题策略的多样化。
(4)在做一做2题中,应适当拓展,引导学生发现相邻两句口诀之间的关系,帮助学生理解和记忆乘法口诀。
6、6的乘法口诀
(1)经历独立探索、编制6的乘法口诀的过程,体验从已有的知识出发探索新知识的思想和方法。
(2)掌握6的乘法口诀,并能用它解决一些简单的实际问题。
轴对称图形
1、对折后左右两边完全重合的图形是轴对称图形。
2、常见的轴对称图形有:长方形、正方形、圆形、等边三角形。
3、字母是轴对称图形的有:A、B、C、D、E、H、I、K、M、O、T、V、U、W、X、Y。
4、根据轴对称图形的一半,画出它的另一半。
常用的数量关系
1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数
2、1倍数×倍数=几倍数;几倍数÷1倍数=倍数;几倍数÷倍数=1倍数
3、速度×时间=路程;路程÷速度=时间;路程÷时间=速度
4、单价×数量=总价;总价÷单价=数量;总价÷数量=单价
5、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间
篇5:四年级下册数学第四单元知识点
四年级下册数学第四单元知识点
1.在进行测量和计算时,往往不能正好得到整数的结果,这时就需要用小数来表示,这样就产生了小数。
2.分母是10、100、1000的分数可以仿照整数的写法写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几的数,叫做小数。
3.小数的计数单位是十分之一、百分之一、千分之一分别写作0.1、0.01、0.001
每相邻两个计数单位间的进率是10。
4.一位小数的计数单位是十分之一(写作0.1),两位小数的计数单位是百分之一(写作0.01),,三位小数的计数单位是千分之一(写作0.001)。
5.十分之几用一位小数表示,百分之几用两位小数表示,千分之几用三位小数表示
6.小数的读法:
(1)先读整数部分,再读点,最后读小数部分。
(2)整数部分按照整数的读法来读,小数部分要依次读出每个数字。
(3)整数部分是0的小数,整数部分就读零,小数部分有几个0,就读几个零。
7.小数的性质:小数的.末尾添上0或去掉0,小数的大小不变。
8.利用小数的性质进行小数的化简和改写。
例如:0.70=0.7 105.0900=105.09(这是小数的化简)
又如:不改变数的大小,把下面各数写成三位小数
0.2=0.200 4.08=4.080 3=3.000(这是改写小数)
9.如何比较小数的大小?
先比较整数部分,整数部分相同,比较十分位上的数;十分位上的数相同,比较百分位上的数;百分位上的数相同,比较千分位上的数
10.小数点移动的规律:
(1)小数点向右
移动一位,小数就扩大到原数的10倍;
移动两位,小数就扩大到原数的100倍;
移动三位,小数就扩大到原数的1000倍;
(2)小数点向左
移动一位,小数就缩小到原数的1/10;
移动两位,小数就缩小到原数的1/100;
移动三位,小数就缩小到原数的1/1000;
11.把量和单位名称合起来的数叫名数。
12.单名数:只带一个单位名称的名数。例如:4千米、0.8吨、15.38元
13.复名数:带有两个或两个以上的单位名称的名数。例如:
20元5角8分 5吨600克
14.名数改写的规律:先找进率;再看是把高级单位改写成低级单位,还是是把低级单位改写成高级单位;最后移动小数点。口诀如下:
(1)高到低,乘进率,小数点,向右移,移几位,看进率。
例如:1.32千克=(1320 )克 (58 )厘米=0.58米
1千克=1000克 1米=100厘米
高低 低高
1.321000=1320克 0.58100=58厘米
(2)低到高,用除法,小数点,向左移,移几位,看进率。
例如:
7450米=(7.45 )千米 (9.02)吨=9020千克
1千米=1000米 1吨=1000千克
低高 高低
74501000=7.45千米 9000=9.02吨
15.求小数的近似数,可用四舍五入法。
16.在表示近似数时,小数末尾的0不能去掉。
17.求小数的近似数的方法:
求近似数时,保留整数,表示精确到个位,看十分位上的数;保留一位小数,表示精确到十分位,看百分位上的数;保留两位小数,表示精确到百分位,看百分位上的数;保留三位小数,表示精确到千分位,看万分位上的数。然后根据四舍五入法进行取舍。
例如:9.953 10 (保留整数)
9.95310.0 (保留一位小数)
9.9539.95 (保留两位小数)
23.439523.440 (保留三位小数)
18. 1.0比1精确。保留的位数越多,数就越精确。
19.如何把一个数改写成以万为单位的数?
方法一:把已知数的小数点向左移动四位,进行化简后,在数的末尾加写一个万字。
方法二:(1)先找万位;(2)在万位后面点.(3)根据实际情况进行化简;(4)在数的末尾加写一个万字;(5)如果有单位名称一定照抄过来。
20.如何把一个数改写成以亿为单位的数?
方法一:把已知数的小数点向左移动八位,进行化简后,在数的末尾加写一个亿字。
方法二:(1)先找亿位;(2)在亿位后面点.(3)根据实际情况进行化简;(4)在数的末尾加写一个亿字;(5)如果有单位名称一定照抄过来。
注:对于改写的方法,同学们灵活掌握。
21.下列各数中的6分别表示什么?
6.32(表示6个一) 0.6(表示6个十分之一) 0.86(表示6个百分之一)
62.32(表示6个十) 3.416(表示千分之一)
22.三位小数一定小于四位小数。例如:1.003>0.5678
23.去掉小数点后面的0,小数的大小不变。()
应该是去掉小数末尾的零,小数的大小不变。
24.小数就是比1小的数。()例如:10.1>1
25.近似数是0.5的两位小数有5个。()
近似数是0.5的两位小数有9个,分别是:0.45、0.46、0.47、0.48、0.49、0.51、0.52、0.53、0.54。(先看百分位上的数,再利用四舍五入 法。)
26.近似数4.0与精确数4.0末尾的0都可以去掉。()
在表示近似数时,小数末尾的0不能去掉。
27.小数的位数越多,数就越大。()
28.小数都比自然数小。()
29.整数都大于小数。()
30.0.4与0.6之间的小数只有一个。()因为0.4与0.6之间的小数有无数个。31.近似数是6.50的三位小数中,最大是(6.504),最小是(6.495)。
方法:求最大近似数时,一定比6.50大,千分位上的数必须舍,也就是千分位上只能是1、2、3、4,其中最大的数是4,所以近似数是6.50的三位小数中,最大是6.504。
求最小的近似数时,一定比6.50小一个计数单位(本题少一个0.01,也就是6.49),这时千分位上的数必须入, 千分位上只能是5、6、7、8、9,其中最小的数是5,所以近似数是6.50的三位小数中,最小是6.495。
小学数学中9是最大的自然数吗
1最大自然数
9不是最大的自然数,没有最大的自然数。最小的自然数是0。
自然数指用以计量事物的件数或表示事物件数的数。即用数码0,1,2,3,4,……所表示的数。自然数由0开始,一个接一个,组成一个无穷集体。
2自然数分类
可分为质数、合数、1和0。
1、质 数:只有1和它本身这两个因数的自然数叫做质数。也称作素数。
2、合 数:除了1和它本身还有其它的因数的自然数叫做合数。
3、1:只有1个因数。它既不是质数也不是合数。
4、当然0不能计算因数,和1一样,也不是质数也不是合数。
数学时间知识点
1、1时=(60)分
2、钟面上游(12)个数,这些数把钟面分成了(12)个相等的大格,每个大格又分成了(5)个相等的小格,钟面上一共有(60)个小格。
3、钟面上有(2)根针,短粗一点的针叫(时)针,细长一点的针叫(分)针。分针走1小格是(1)分,走1大格是(5)分,时针走1大格是(1)时。分针从12走到6,走了(30)分;时针从12走到6,走了(6)小时;时针从12开始绕了一圈,又走回了12,走了(12)时。
4、(30)分也可以说成半小时,(15)分也可以说成一刻钟。如8时30分是8时半,9时15分是9时一刻。
5、(3或9)时整,钟面上时针和分针成直角。
篇6:五年级数学下册单元知识点
五年级数学下册因数知识点
知识点一:因数
问题一:一个长方形,它的面积是12平方厘米,如果长方形的长和宽都是整数,请同学们猜一猜这个长方形的长和宽各是多少?
所以12的因数有:
注意:1、在说因数(或倍数)时,必须说明谁是谁的因数(或倍数)。不能单独说谁是因数(或倍数)。2、因数和倍数不能单独存在。
例1 18的因数有那些?
方法一:想18可以有哪两个数相乘得到18=1×18 18=2×9 18=3×6
方法二:根据整除的意义得到
18÷1=18 18÷2=9 18÷3=6
所以18的因数有:
表示方法:
1.列举法︰ 12的因数有:1,2,3,4,6,12
2.用集合表示︰
练习1:30的因数有哪些?36呢?
30的因数有:
36的因数有:
观察:18的最小因数是( ),的因数是( )
30的最小因数是( ),的因数是 )
36的最小因数是( ),的因数是( )
一个数的因数的个数是有限的,一个数的最小因数是( ),因数是( )
你要知道:
(1)1的因数只有1,的因数和最小的因数都是它本身。
(2)除1以外的整数,至少有两个因数。
(3)任何自然数都有因数1。
练习2、把下列各数填入相应的集合圈中。
1 2 3 4 5 6 7 8 9 10 12
15 16 18 20 24 30 36 6
36的因数 60的因数
小学五年级数学下册分数的意义与性质知识点
把( )平均分成( )份,这样的( )份用( )表示。
分数的意义:
一个物体、一些物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
例如
一个整体可以用自然数1表示,通常把它叫单位“1”。
把 看成单位“1”,每个 是 的1/4。
练习
每个茶杯是(这套茶杯)的( )分之( )。
每袋粽子是( )的( )分之( )。
每种颜色的跳棋是( )的( )分之( )。
阴影的方格是( )的( )分之( )。
二 分数单位
把单位“1”平均分成若干份,表示其中一份的数叫分数单位。例如 ( )的分数单位是( ),( )的分数单位是( ),( )的分数单位是( )。
三 分数与除法
思考
1、把三个苹果平均分给2个人,每个人分几个?
2、把1个苹果平均分给2个人,每个人分几个?
3、把3块饼平均分给5个小朋友,每人分得多少块?
3÷5= (块)
四 分数的分类(真分数与假分数)
( ) ( ) ( )
这些分数比1大还是小?
分子比分母小的分数叫真分数。真分数小于 1。
( ) ( )
( )
这些分数比 1 大,还是比 1 小?
分子比分母大或分子和分母相等的分数叫做假分数。假分数大于 1 或等于 1。
练习
1. 下面的分数哪些是真分数,哪些是假分数?
3/5 1/6 6/6 3/4 13/6 2/7 1
真分数 假分数
2、
3、(1)写出分母是 7的所有真分数。
(2)写出分子是7的所有假分数 。
4、下面的说法对吗? 为什么?
(1)昨天妈妈买了 1 个西瓜,我一口气吃了 5/4 个。
(2)爷爷把菜地的 2/5 种了西红柿, 3/5 种了茄子, 1/5 种了辣椒。
小学五年级数学11种解题技巧
1、对照法
如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。
这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。
例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少?
对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。
例2:判断题:能被2除尽的数一定是偶数。
这里要对照“除尽”和“偶数”这两个数学概念。只有这两个概念全理解了,才能做出正确判断。
2、公式法
运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
例3:计算59×37+12×59+59
59×37+12×59+59
=59×(37+12+1)…………运用乘法分配律
=59×50…………运用加法计算法则
=(60-1)×50…………运用数的组成规则
=60×50-1×50…………运用乘法分配律
=3000-50…………运用乘法计算法则
=2950…………运用减法计算法则
3、比较法
通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
比较法要注意:
(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。
(2)找联系与区别,这是比较的实质。
(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。
(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。
(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。
例4:填空:0.75的位是(),这个数小数部分的位是();十分位的数4与十位上的数4相比,它们的()相同,()不同,前者比后者小了()。
这道题的意图就是要对“一个数的位和小数部分的位的区别”,还有“数位和数值”的区别等。
例5:六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生?
这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。
找联系:每人种树棵数变化了,种树的总棵数也发生了变化。
找解决思路(方法):每人多种7-5=2(棵),那么,全班就多种了75+15=90(棵),全班人数为90÷2=45(人)。
4、分类法
根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。
分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。
例6:自然数按约数的个数来分,可分成几类?
答:可分为三类。(1)只有一个约数的数,它是一个单位数,只有一个数1;(2)有两个约数的,也叫质数,有无数个;(3)有三个约数的,也叫合数,也有无数个。
文档为doc格式