下面是小编整理的浅析初中数学的思想方法论文,本文共15篇,欢迎您阅读,希望对您有所帮助。

篇1:浅析初中数学的思想方法论文
浅析初中数学的思想方法论文
一、初中数学思想方法教学的重要性
长期以来,传统的数学教学中,只注重知识的传授,却忽视知识形成过程中的数学思想方法的现象非常普遍,它严重影响了学生思维发展和能力培养。随着教育改革的不断深入,越来越多的教育工作者,特别是一线的教师们充分认识到:中学数学教学,一方面要传授数学知识,使学生掌握必备数学基础知识;另一方面,更要通过数学知识这个载体,挖掘其中蕴含的数学思想方法,更好地理解数学,掌握数学,形成正确的数学观和一定的数学意识。事实上,单纯的知识教学,只显见于学生知识的积累,是会遗忘甚至于消失的,而方法的掌握,思想的形成,才能使学生受益终生,正所谓“授之以鱼,不如授之以渔”。不管他们将来从事什么职业和工作,数学思想方法,作为一种解决问题的思维策略,都将随时随地有意无意地发挥作用。
二、初中数学思想方法的主要内容
初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化的思想方法,数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。(一)转化的思想方法。转化的思想方法是人们将需要解决的问题,通过某种转化手段,归结为另一种相对容易解决的或已经有解决方法的问题,从而使原来的问题得到解决。初中数学处处都体现出转化的思想方法,例如:在解二元一次方程组中,我们一般都通过代入消元法和加减消元法将它转化为一元一次方程,而在解一元二次方程时,可以通过配方法因成分解法直接开平方法,将它化为一元一次方程来解等。它们都是化未知为已知,体现转化的数学思想,又如解方程,我们用换元法来解,也体现转化的数学思想。在几何中很多计算题也同样体现着转化的数学思想。(二)数形结合的思想方法。数学是研究现实空间形式和数量关系的科学,因而研究总是围绕着数与形进行的。“数”就是代数式、函数、不等式等表达式“,形”就是图形、图像、曲线等。数形结合就是抓住数与形之间的本质上的联系,以形直观地表达数,以数精确地研究形。“数无形时不直观,形无数时难入微。”数形结合是研究数学问题的重要思想方法。初中数学中,通过数轴,将数与点对应,通过直角坐标系,将函数与图像对应,用数形结合的思想方法学习了相反数的'概念、绝对值的概念,有理数大小比较的法则,研究了函数的性质等。特别学习一次函数、二次函数更进一步地把直线和一次函数联系着,任向一条直线对着一个不同一次函数表达式,不同的抛物线对着不同的二次函数表达式,而用数形结合的思想,可以利用二次函数或二次函数的图象简单的解出一元一次不等式和一元二次不等式和方程,更好地通过形象思维,过渡到抽象思维。大大减轻了学习的难度,也会增强学生学习的兴趣。
三、分类讨论的思想方法
分为不同种类的思想方法。分类是以比较为基础的,它能揭示数学对象之间的内在规律,有助于学生总结归纳数学知识,解决数学问题。初中数学从整体上看分为代数、几何两大类,采用不同方法进行研究,就是分类思想的体现。具体来说,实数的分类,方程的分类、三角形的分类,函数的分类等,都是分类思想的具体体现。在初中数学问题中,不管是代数问题或者是几何问题,都体现着分类讨论的数学思想方法。
四、函数与方程的思想方法
函数思想是客观世界中事物运动变化,相互联系,相互制约的普遍规律在数学中的反映,它的本质是变量之间的对应。用变化的观点,把所研究的数量关系,用函数的形式表示出来的,然后用函数的性质进行研究,使问题获解,如果函数的形式是用解析式的方法表示出来的。在实中数学教材中,其它的思想方法都是隐藏在数学知识里,没有单独提出来,而函数与方程的思想方法,其内容和名称形式一致,单独作为章节系统学习。
篇2:浅谈数学思想方法的教学策略论文
浅谈数学思想方法的教学策略论文
摘要:
随着新课改的实施,在数学课堂教学中有意识地进行数学思想方法的教学日益显得重要。本文阐述了数学思想方法的涵义,指出了加强数学思想方法教学的重要性及如何在课堂教学中选准时机进行数学思想方法的教学。
关键词:数学思想方法 渗透
思想是对数学知识内容的本质认识,是对数学规律的理性认识。数学方法是在数学提出问题、研究问题和解决问题的过程中所采用的各种手段和途径,思想是方法的升华,方法是思想的体现。没有不含数学方法的数学思想,也没有不以数学思想为指导的数学方法,因此我们通常把数学思想方法视为一个整体。
纵观数学教学的现状,仍有一些数学课基本上还是在应试教育的惯性下运行,课堂上就题论题,致使我们的孩子至今仍被困惑在无边的题海之中。究竟怎样走出题海,提高他们的数学能力,实现素质教育的目标呢?这就要求我们要更新观念,在数学教学中适时地渗透数学思想方法,所以在数学课堂教学中渗透数学思想方法的教学是新课改的要求。
1、几种常见的数学思想方法。
(1)函数的思想。
函数的思想就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的.知识,使问题得到解决,诸如正比例、反比例概念中揭示的两种相关联的量之间的关系实质上就是函数关系。
(2)数形结合的思想。
数形结合思想是通过数形间的对应来研究解决问题的思想方法,数形结合的本质是数量关系决定了几何图形的性质,几何图形的性质又反映了数量关系。数形结合就是抓住数与形之间的内在联系,以“形”直观地表达“数”,以“数”精确地研究“形”。我国著名数学家华罗庚曾对数形结合的作用进行了高度的概括:“数缺形时少直观,形无数时难入微,数形结合百般好,割裂分家万事休。”咱们熟悉的笛卡尔坐标系就是笛卡尔通过建立点与有序数组的对应,实现了“位置的量化”。
(3)分类讨论的思想。
分类讨论思想是根据数学对象的本质属性的相同点和不同点,将数学对象区分为不同种类的数学思想。“物以类聚,人以群分”,将事物进行分类,然后对划分的每一类分别进行研究,这是深化研究对象必不可少的思想方法。
(4)化归思想。
数学问题的解决是数学教学中一个重要的组成部分,在解决数学问题时我们不是对问题直接求解,而是将问题转化变形,使之归结为容易解决的问题,这就是化归思想。例如“多边形的内角和”问题通过分解多边形为三角形来解决,这都是化归思想在实际问题中的具体体现。
2、教学中渗透数学思想方法的有效途径。
作为一名数学教师如果不懂得数学思想方法的教学那么就不可能在教学过程中科学地培养学生的思维能力。所以在教育改革不断深化的今天,在数学教学中我们应重视对数学思想方法的渗透,使学生学会正确的思维方法,从而促进学生数学能力的发展。那么在教学中渗透数学思想方法的途径有哪些呢?
(1)在知识的发生过程中,适时渗透数学思想方法。
数学思想方法的教学必须通过具体的教学过程得以实现,因此必须把握好教学过程进行数学思想方法教学的契机―――概念形成的过程、结论推倒的过程、方法思考的过程、规律揭示的过程,忽视和压缩这些过程就必然失去渗透数学思想方法的良机。例如在加法教学时进行函数思想的渗透:2+3=5,把左端的3变成6、右端的5随之变成8,把左端的3变成7右端的5随之变成9,由此说明:一个加数不变时,和随着另一个加数的变化而变化,对于另一个加数所取的每一个值,我们都可以算得和的唯一值与之对应,即一个加数不变时,和是另一个加数的函数。
(2)在复习与小结中提炼、概括数学思想方法。
小结与复习是数学教学的一个重要环节。数学的小结与复习,不能仅停留在把已学的知识温习记忆一遍的要求上,而要去努力思考新知识是怎样产生、展开和证明的,因此在这个过程中,提供了发展和提高能力的极好机会,也是渗透数学思想方法的极好途径。比如在学习一元二次不等式的解法时用“化归、类比、分类、数形结合”等数学思想方法连接知识之间的关系,这样就能优化学生关于不等式解法的知识结构,促进学生知识结构的不断完善。
(3)通过问题解决,突出和深化数学思想方法。
杨振宁博士曾指出理科要讲理,对数学来说就是要讲清数学知识在产生和形成中及数学方法在挑选和演进中的思维活动过程,数学思想方法存在于数学问题的解决过程中,数学问题的步步转化无不遵循数学思想方法的指导,我们教师应通过这种教学逐步引导学生科学地思考问题。如小学教材中为了说明“同样多”、“多些”、“少些”的含义,利用在实物图间画线的办法渗透对应思想,以后在应用题的教学中,可常利用画线段图建立数与形之间的对应关系,使数量关系形象化。
(4)引导学生进行反思,从中领悟数学思想方法。
著名数学教育家弗赖登塔尔指出“:反思是数学思维活动的核心和动力。”因此教师应该创设各种情境,为学生创造反思的机会,如解法是怎样想出来的?关键是哪一步?通过解这个题我学到了什么?以后遇到这类题我能独立解决吗?如通过分数和百分数应用题有规律的对比、反思,指导学生小结解答这类应用题的关键,这时学生已意会到对应思想和化归思想,但这是学生自己提炼、概括出来的,因而具有更强的活力。
3、数学思想方法教学中应注意的问题。
(1)教师要更新观念纵观数学教学的现状。
应该看到确实有很多站在了波峰浪尖,但也仍有许多数学课基本上还是在应试教育的惯性下运行,数学教育家李玉琪在《数学教育概论》一书中写道:如果说“问题”是数学的“心脏”,“知识”是数学的“躯体”,“数学思想”无疑是数学的“灵魂”。我们教师要从思想上不断提高对数学思想方法重要性的认识,在备课时要把掌握数学知识和挖掘数学思想方法同时纳入教学目标,并在教案中设计好数学思想方法的教学内容和教学过程,只有这样才能使学生较好地形成数学能力,实现素质教育的目标。
(2)注意渗透数学思想方法的渐进性和长期性。
数学思想方法是在启发学生思维过程中逐步积累和形成的。在教学中,首先要特别强调解决问题以后的“反思”,因为在这个过程中提炼出来的数学思想方法对学生来说才是易于体会、易于接受的。其次,对学生进行数学思想方法的渗透不是一朝一夕就能见效的事,而需一个过程,数学思想方法蕴含在数学知识里,渗透在全部数学教学内容中,这就要求我们教师在数学教学过程中要根据所讲内容与学生实际潜移默化地去影响学生,逐步提高学生解决问题的能力。
总之,数学思想方法是数学的灵魂、是数学的精髓,我们老师只有在教学中长期渗透并灵活运用,方能“随风潜入夜,润物细无声”,让学生在不知不觉中领会、掌握、自觉运用,从而形成能力,以利于终身学习和发展。
参考文献:
[1]李玉琪。数学教育概论[M]。中国科学技术出版社,1994。
[2]张景中。感受小学数学思想的力量[J]。人民教育,(18)。
篇3:初中数学教学中数学思想方法的渗透论文
初中数学教学中数学思想方法的渗透论文
【摘要】在初中的教学当中最重要的就是能够打开学生们对于数学的思维方式,在数学教学的过程当中,将其学生的思维拓展开,从而完成教学水平的增加。在数学的教学过程当中渗透数学的教学思想方法是现在教学过程当中广泛应用的一种方式。数学思维的渗透能够有助于教师在对于学生的建立思维以及能够让学生灵活的运用数学有关方法,这样就能让数学的学习不仅仅是学习理论与概念性的东西,而是让思维打开从而可以增加学生的学习的主动性、建立数学的思维同时也能够将教师的授课能力得到提升。
【关键词】初中数学;渗透;数学思想
在新课程的使用过程当中,对于数学的思想的培养在数学的学科已经从成为了教学过程当中的重点,这也是学生学习数学知识的最基础、最重要的部分,数学的思维方式是将其数学有关的知识转化为能力的中介,这是解决一切数学问题的核心。在很多人的观念当中,数学是一个枯燥的学科,在教学过程当中,学生学习感觉到枯燥,老师授课也感觉到困难,在反复的训练过程当中,只能让学生更加厌恶这门学科,并且学习成绩上升不上去,这其中的原因就是没有使用渗透教学的方式,往往学生与老师都忽视了这个问题。在初中的数学的教学当中怎样能够将其渗透教学的思想运用到实际教学过程当中,本文就此展开讨论。
一、初中数学思想方法的概述
数学的思维方式其看似变化多端,但是本质都是共同的,能够找到他们的共同特点,它是一种逻辑性的思维,可以将正向思维转化为逆向思维,将逆向思维转化为正向思维,其最终得出的结论都是一致的。在数学的解题的过程当中,其解决的'方式往往不是一种。其数学的思维方式还具有将强的灵活性的特点,能够将原来的题目经行微小的改变,这样就能够将题意以及结果完全改变,之后充分的理解题意,才能够让学生轻松的正确的解题,这就是数学思维灵活性的重要表现形式,这就需要教师在对于学生教学的过程当中对于学生进行系统化、有针对化的训练,对于基础知识进行全面的讲解,这样才能够让学生有一个夯实的基础,给未来轻松的解题做出铺垫。
二、初中数学教学中渗透数学思想方法的必要性
在初中的数学的教学过程当中,在夯实基础知识、解题技巧的同时也要对于其数学的思想方式进行灌输,但是在灌输的过程当中其思维方式并不能让学生们独立的理解和获得,学生们理解过程当中也有一定的困难,这就要求教师在教学过程当中使用渗透教学思想方式。初中教学渗透教学思想方法的必要性体现在如下几个方面:其一,从教学大纲的目标来说,其初中的数学教学不仅仅要给学生教授其基础值是,还需要帮助学生建立基本的思维方式,并且培养学生们的智力。最最基础上来说,初中的数学教学最基本的任务就是要求提高学生的数学思维方式,并且增加学生们对于数学观念,形成良好的数学素质的重要手段;其二,在学生学习的目的来说,初中对于数学学习的目的就是为了培养人才,这就需要学生们应用已经掌握的数学方式来解决现实生活中所遇到的问题,但是现在教学的关键就是是否能让学生们找到解题的中心,从而运用合理的解题思维去解决问题;其三,在教学的内容方面来说,初中数学过程当中无疑不体现出算数向代数的过度以及平面几个的认识这两个方面当中,这些也是基础数学的重要体现,这是学习数学入门最重要的转折点,也作为教学的重点和难点,为了推进对中学生的教育,对于其数学教学大纲要求作出了合理的改变,并且减小了考试的内容,但是对于学生思维方式的理解与掌握并没有因此而下降,这样就给数学思维的教学留出了一定的时间,可以让教师对于学生的思维方式经行培养。
三、初中数学教学中需要渗透的数学思想
1。函数与方程思想
函数与方程的思想。这是将其函数与方程进行关联,使用其关联进行相互之间的转换,这样已于理解以及实际的应用,将其变量与变量相互的对应关系转变为已知量与未知量的关系,这样能够更方便的解决实际问题。比如说:有一个工程甲乙两种工人完成工程,甲乙两种工人共需要700人,其甲种工人的工资为800元,乙种工人的工资为1200元,现在要求乙种工人不少于甲种工人的3倍,并且花费的工资最少,怎样聘用甲乙两种工人?
2。数形结合思想
代数与图形结合思想。这种西谁方式通俗的解释就是数形结合,将其抽象代数与实际能够观察到的图形联系起来,这样通过图形的位置、角度等一系列的性质可以将复杂的问题简单化,抽象的问题具体化。
3。分类讨论思想
样有意识的进行分类的考虑,不仅仅能够将问题变得简单化,还能够将结论经行归纳,从而避免了答案的遗漏、错误,在实际的教学过程当中,还可以培养学生们的归类思维。例如在学习有理数之后,对于字母与实际数字的比较以及对于一次函数y=kx+b这一类图像进行分析,归纳总结,并且对于图像进行分类论述和总结。
4。问题转化思想
这种方式就是将陌生的、困难的问题转换为以前见过的、简单的问题来解决,这样可以与当前已经能够掌握的知识相联系。在三角函数、因式分解等数学问题以及理论的过程当中,很多都体现了数学转化的思想模式,一般的转化方式有:等价转化、特殊转化、类比转化、一般转化等。
四、初中数学教学中渗透数学思想方法的途径
在数学的教学过程当中,每一个环节都包含着深刻的数学思想,这就需要老师进行合理的挖掘。老师可以使用适当的方式来培养学生的学习兴趣,使用渗透教学的思想,能够提高学生学习的效率。
1。知识发生过程中渗透数学思想
由于新课程标准的要求,在教学过程当中应该注重解题的过程,以及知识的推导演变的过程,尤其上那些定理、性质、公式的烟花过程,最基本的数学思维方法以及解题方法都是在这个过程当中培养出来的,在不同的时间段进行不断的渗透这样就能够让学生理解和记忆,参与到实际应用当中,可以让学生的思维拓展,产生质的飞跃。在推导过程当中,弄清楚前后关系、相互转之间的相关性,并且与其他知识相互联系,这样就能够让学生的创造性思维运用当实际应用当中。
2。在解决问题中激活数学思想
在实际的教学过程当中,通过解决实际的问题,指导学生怎样进行思考,这样才能够培养学生的数学思想。教师也应该做好总结和归纳,对于每一个类型题进行归纳方法,这也是形成数学思想的一种良好方式,并且还要注重数学在实际的应用,在应用的过程当中培养学生们联想和转化的能力没在初中的教学当中,应哟了很多经典的例子,老师应该适当的进行归类以及合理创新进行联系。
3。例题讲解中渗透数学思想
对于例题讲述的过程当中,老师应该引导学生合理的使用例题进行思维的拓展,在教学过程当中,老师在讲解一个类型题目后,给学生应该合理的分析解题思路、解题方法、重要的知识点、解题方式,之后也应该要求学生感悟理解,并且让学生整理,之后教师在出一些类型的题对于其加强巩固的训练,让学生们学会归纳,并且自我总结数学的基本思维方法,让学生们在潜意识里面能够存在数学思维,并且促使学生们深化和加强对于数学思维的记忆、理解与使用。
4。教学过程设计中渗透数学思想
在教学当中往往出现学生们听懂了,理解了但是遇到实际问题还是不会去应用的情况,这种情况出现的原因就是因为老师在上课的过程当中没有注重解题方式,让学生们机械的听讲与做题。老师应在在教学的过程当中应该教会学生们合理的思考,在问题当中领悟到数学的思想,真正的学会用数学的思维方式对于实际生活的应用。
五、总结
综上所述,数学思想有灵活性以及归一性的特点,在教学过程的当中,只有不断的对于学生进行渗透数学思维方式,学生才能够使用数学来解决实际问题,并且能够合理的应用问题进行解决,教师只有不断的对于学生基础知识进行巩固才能够有效的对于学生思维方式进行培养,并且合理的使用课外书籍,让学生们体会数学思维,从而能提高学生自主学习的能力,让学生们能够让思维打开从而可以增加学生的学习的主动性、建立数学的思维同时也能够将教师的授课能力得到提升。
参考文献:
[1]罗布。浅谈数学思想方法之化归与转化思想[J]。西藏科技,,(04):130—131。
[2]赵亮。转化与化归思想漫谈[J]。中学数学,2012,(05):88—89。
[3]孔翠华。初中数学教学应重视化归思想的培养[J]。中学课程辅导(江苏教师),2012,(02):84。
[4]朱见贤。对中学数学中化归思想的研究[J]。语数外学习(初中版中旬),2012,(01):19—20。
[5]余健棠,侯佳慧。数学化归思想在七年级教学中的渗透——从新人教版七(上)课本谈起[J]。数学教学通讯,,(15):10。
篇4:数学思想方法心得体会
随着素质教育的深入开展,数学思想方法作为数学素质教育的重要内容已引起教育界的普遍关注和高度重视。做为未来高中教师的初等教育系的学生肩负着基础教育的重任,所以更应具有创新意识和创新能力。那么,应当如何认识数学思想方法?数学思想方法与初等数学又有什么样的关系?在初等数学的教学中又如何体现和渗透数学思想方法?
一、注重引导,抓住学习关键
数学关键就在一个悟字,所谓悟,就是开窍,如何开窍,就要求讲师不要只讲题目的做法,而是包括,是怎么想到要这么做的,以引导学生去理解,去悟,对于初等数学,本人的看法是随便怎么做,因为初等数学的试题必然有解,必然是可以通过所给条件经过N多步骤推出来,不信可以试试,拿一道,先什么都不要管,只管把已知条件以全排列方式组合,以推出新的条件,再将所得条件组合,再推,直到最后推无可推,你会发现题目所求就在其中,甚至简单的可能是离最终结论还有N步,复杂的估计也就是最终结论了,所以以高考为目的的初等数学题目是不经做的,因为只要你做,就一定能做出来,而之所以很多学生觉得难,没处着笔,不知道改该怎么做,很大一部分是因为懒,不愿动笔,而只是呆看,简单的能看出来,复杂的是很难看出来的,如果说那种直接推导的办法太耗时间,那么只能说是因为不熟练,一旦题目做多了,思维形成了,差不多就可以一眼看出来,顶多推两步,就知道后面的怎么推了,从而省略了N多的分支,古往今来的题海战术不是没有依据的,熟能生巧,见得多了,做的多了,自然可以找到某种规律
二、要正确处理本课程的自身逻辑系统与相关课程的关系
初数研究课在研究初等数学问题时,大多采用专题讨论的方法,都有一套完整的体系。如果过分强调自身完整的逻辑系统,容易导致不同学科、不同课程的内客及方法有很多重复和交叉。
如数与初等数论中的相关内容,解析式的恒等变形,方程、不等式的解法与证明,几何证题法与证题术排列、组合及数列的一些解题方法等。如果不处理好它们之间的关系,只是简单地追求各门课程自身体系的完整,既不利于学生整体数学思想的建立,又制约了他们数学综合运用能力的提高,同时占用了很多的课时,所以,对于相关课程中己作详尽讨论过的知识及理论,应作为工具来应用,避免一些不必要的重复。
三、变被动式学习为主动式学习
1.知识系统的探究
初数研究课涉及大量的理论,教师讲、学生听的传统教学模式既占用课时多,又难以体现学生的主体性。因此对理论性较强的内容,教师可以先提出一些切题的问题作为一堂课的锲子,留待后面逐个解决。这些问题将整个教学内容串起来,起到提纲挚领的作用,使学生明确学习目标,集中学习资源(如本课程及相关课程的教村及参考书)有针对性地去探究问题,然后教师组织学生对探究的结果进行归纳整理,形成较完整的知识体系。当然一个问题的解诀并非探究的终结,在探究过程中教师与学生都可以提出一些新问题,延续学生探究的热情,在合作交流的民主和谐的氛围里,尽可能地让学生走向自由探究。
2.解题方法的探究
从学生的认知角度未说,解题过程是独立的发现、探索与积极思考的过程,这种探索过程中所形成的意识和思维,就是真正的创造与发现。应该说,解题教学是中学数学教学的主要任务之一,设置初数研究课程的目的之一,就是结合中学实际对解题作专门的训练。
3.条件与结论的探究
对一个问题的条件或结论进行探究是对问题深入研究的重要组成部分,也是初数研究课程中具有挑战性的任务之一,引导学生从不同角度、不同层面来看问题,对学生的发散思维及创造思维的培养,都能起到良好的推动作用。
随着教学改革的深化,教学思想方法不仅要在理论上做研究探讨,更重要的是需要在实践中不断地创造与完善,才能使教学取得较好的效果。
[数学思想方法心得体会]
篇5:小学数学思想方法
一、集合的思想方法
把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。
如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。
二、对应的思想方法
对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。
如人教版一年级上册教材中,分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。
三、数形结合的思想方法
数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。
例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。
四、函数的思想方法
恩格斯说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。学生对函数概念的理解有一个过程。在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。
函数思想在人教版一年级上册教材中就有渗透。如让学生观察《20以内进位加法表》,发现加数的变化引起的和的变化的规律等,都较好的渗透了函数的思想,其目的都在于帮助学生形成初步的函数概念。
五、极限的思想方法
极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。
现行小学教材中有许多处注意了极限思想的渗透。在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1÷3=0.333…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。
六、化归的思想方法
化归是解决数学问题常用的思想方法。化归,是指将有待解决或未解决的的问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,以求得解决。客观事物是不
断发展变化的,事物之间的相互联系和转化,是现实世界的普遍规律。数学中充满了矛盾,如已知和未知、复杂和简单、熟悉和陌生、困难和容易等,实现这些矛盾的转化,化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易,都是化归的思想实质。任何数学问题的解决过程,都是一个未知向已知转化的过程,是一个等价转化的过程。化归是基本而典型的数学思想。我们实施教学时,也是经常用到它,如化生为熟、化难为易、化繁为简、化曲为直等。
如:小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等;在教学平面图形求积公式中,就以化归思想、转化思想等为理论武器,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生的认知结构。
七、归纳的思想方法
在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。
如:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度。这就运用归纳的思想方法。
八、符号化的思想方法
数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国著名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。
人教版教材从一年级就开始用“□”或“”代替变量x,让学生在其中填数。例如:1+2=□,6+()=8,7=□+□+□+□+□+□+□;再如:学校有7个球,又买来4个。现在有多少个?要学生填出□○□=□(个)。
符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。因此,教师在教学中要注意学生的可接受性。
九、统计的思想方法
在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法
篇6:小学数学教学渗透数学思想方法论文
摘要:学习数学的奥秘就是要掌握数学思想方法。学习数学要学会三方面内容:知识结构、精神、思想方法。一般小学数学中一般都会结合一些数学思想方法,帮助学生培养创造能力和活跃思维。小学阶段的主要数学思想方法有:类比、归纳、统计等,这些都给小学生数学课堂增添了活力,帮助小学生在学习数学的过程中能够得到一定的收获,并为未来的学习打下良好的基础。
关键词:数学思想方法;小学数学教学;渗透
引言:
数学思想是对数学内容和方法的一种总结,数学思想不仅可以用来解决数学活动的问题,还能给一些难以解决的问题提出合理的建议和解题方式。根据数学思想可以解答很多问题,并且可以找到解决难题的思路。数学方法是从数学的角度提出问题的方式并且根据这些方式来进行解决数学问题。数学思想和数学方法都是在数学概念的基础上建立的,但是二者有时候难以区分,但是二者都可以帮助学生提高数学理解能力,还能为以后学好数学打好基础,让学生在数学方法和数学思想的带领下获得更好的学习体验。
1数学思想方法
数学思想就是充分认识数学概念后,从中总结出的规律然后转化为解题的思路,在平时中经常被利用。数学理论中有很多概括性很强和非常抽象的概念,并且在解题的时候,有时候一个问题就会包含着很多种解题方式,也就是说蕴含着很多种数学思想。在我国的小学数学阶段的教学过程中,主要是几种比较简单的数学思想:类比、归纳、统计和假设等。我国的小学教学中主要是以“回答难题”为核心目标,但是如何把一个问题完美解答这是一个比较复杂的过程,小学生掌握的数学方法比较少,因此就要教会他们这几种常用的数学方法才能找到解决问题的最佳方法,并且还能塑造小学生独立思考和学习的能力[1]。
1.1类比法:
很多数学家在做了很多实验后发现,在数学中,用类比的方式可以发现很多平时不易得到的结论,很多真理都是通过这个方法得到的。并且在这个思想是一个很重要的数学思想,在很多难题中都能给人以解题的灵感和思路。类比通常都是用在两个有相似特点的事物之间,找出相抵之处,然后做出判断的`解题思想。一般小学阶段的类比方法会比较简单,常用于推导公式和发现新公式中。小学的习题比较简单,一般都会用类比的方式建立一个解题模式,然后帮助学生去解决难题或者是相似的问题。一般教师都会教会学生如何运用习题视力进行判断和推理,培养学生检测定义的能力[2]。
1.2归纳法:
归纳也就是总结。一般都是很多理论下,逐渐归纳出一些比较规矩的数学思想,一般都是要确立事物本身有的属性,然后在寻找出其中蕴含的普遍性规律。在小学阶段的教学中,一般都是通过对数字的观察和例子的分析,逐渐得到相关结论,让学生开动思维,变得富有创造力。
篇7:小学数学教学渗透数学思想方法论文
小学生年纪比较小,他们还不能专注于学习保持探索状态,所以小学数学阶段的教学一定要在进行渗透数学思想方法的时候注意结合一些有趣的案例,并采用一些巧妙的方式让学生接受。
2.1在课程中发掘数学思想:
很多数学思想都是存在于一些不太瞩目的章节中,因此教师在备课的时候一定要仔细阅读教材,将教材中隐藏的知识点挖掘出来进行排列组合,组成一个完整的知识点体系。在进行授课的过程中,教师要注意在提问、例题的讲解、习题训练和归纳总结,一定要注意教学方式,进行数学思想方法的渗透。比如在讲解3双球鞋和12双凉鞋的金额是相同的,买2双球鞋和8双凉鞋的价钱是900元,那么球鞋和凉鞋分别多少钱一双?就可以利用已知条件去推导出来买四双球鞋需要900元,然后就能用8双凉鞋代替两双球鞋,这样就能利用转化的思想得到问题的答案。
2.2举一反三的学习方式:
学生通过在学习的过程中,利用曾经解决问题的方法解决了一个新的问题,这就是举一反三的能力,也被称为是“逆向思维”。学生在进行逆向思维的过程中,会对自己曾经学过的知识进行一个捋顺,并且从中得到新的认识,可能会对所学的知识有新的灵感和理解,并且在解题过程中有新的方法,让学习变得更加轻松,所以培养学生“举一反三”的能力十分重要。在给小学生进行“逆向思维”的时候,一定要考虑小学生的认知特点,因为小学生年纪比较小,所以首先要培养学生的踏实性,踏实的回忆才能帮助学生在回想的时候产生新的解题灵感并且平心静气对小学生未来的性格养成也是有着长远的意义的;正确引导学生掌握如何学习数学的方法,要有记忆解题步骤的能力,并且从步骤中去发现问题的内涵,独立思考在解决问题的过程中用了什么方法和思路,这样就能让学生在遇到问题后可以明确的想到运用何种解题思维和路径,并且还能的得到进一步的感悟[3]。
2.3进行知识的归纳和汇总:
小学阶段的数学课程时开发小学生形象思维的重要节点,因此如何让小学生在脑海中架构一个完整的数学体系十分重要。经常进行知识的归纳和汇总对于学生的记忆是十分重要的,很多学生在学习一大块数学知识后,老师都会组织学生进行巩固训练,让学生可以巩固知识并且在大脑中形成知识结构。数学思想方法有时候会比数学成绩更重要,一种数学思想方法可能会解答不同种类的问题,蕴含着不同的数学思想方法;一种数学思想方法也可以解决不同的数学问题,这就体现了数学这一学科内在蕴含的逻辑关系。
3结语
总而言之,在小学数学中渗透数学思想方法是可以提高小学生数学能力的一个重要因素,教师一定要在熟读教材后一定要注意总结书中的数学知识,并且用一些有助于学生接受的教学方式,逐步渗透给学生归纳、类比等数学思想方法。小学阶段是学生培养形象思维和逻辑思维的重要节点,所以教师在小学教学中渗透数学思想方法十分重要。
参考文献
[1]姜嫦君,刘静霞.小学数学教学中数学思想方法的渗透[J].延边教育学院学报,2014,02:106-108.
[2]陈祥彬.在小学数学教学中渗透数学思想方法[J].课程教材教法,2015,07:37-41+36.
[3]王林.小学渗透数学思想方法的实践与思考[J].课程教材教法,2014,09:53-58.
篇8:小学常用几种常用数学思想方法
(一)小学常用几种常用数学思想整理方法
1、对应思想方法
对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。
5、类比思想方法
类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
6、转化思想方法
转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法
分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
8、集合思想方法
集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。
9、数形结合思想方法
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。
10、统计思想方法:
小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。
11、极限思想方法:
事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。
12、代换思想方法:
它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。
13、可逆思想方法:
它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。14、化归思维方法:
把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。化归的方向应该是化隐为显、化繁为简、化难为易、化未知为已知。
15、变中抓不变的思想方法:
在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。
16、数学模型思想方法:
所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
17、整体思想方法:
对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,往往不失为一种更便捷更省时的方法。
(二)小学数学常用公式整理
1、长方形的周长=(长+宽)2 C=(a+b)2
2、正方形的周长=边长4 C=4a
3、长方形的面积=长宽 S=ab
4、正方形的面积=边长边长 S=a.a= a
5、三角形的面积=底高2 S=ah2
6、平行四边形的面积=底高 S=ah
7、梯形的面积=(上底+下底)高2 S=(a+b)h2
8、直径=半径2 d=2r 半径=直径2 r= d2
9、圆的周长=圆周率直径=圆周率半径2 c=r
10、圆的面积=圆周率半径半径 ?=r
11、长方体的表面积=(长宽+长高+宽高)2
12、长方体的体积 =长宽高 V =abh
13、正方体的表面积=棱长棱长6 S =6a
14、正方体的体积=棱长棱长棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2rh=2(d2) +2(d2)h=2(C2) +Ch
17、圆柱的体积=底面积高 V=Sh
V=(d2) h=(C2) h
18、圆锥的体积=底面积高3
V=Sh3=r h3=(d2) h3=(C2) h3
19、长方体(正方体、圆柱体)的体
[小学常用几种常用数学思想整理方法]
篇9:小学数学思想方法及其教学研究
“通过义务教育阶段的数学学习,学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能。”这是我国的《义务教育数学课程标准》对于我国数学教学提出的要求,它明确指出了数学教学中思想方法在教学中的重要性。小学数学思想方法该以什么样的形式运用到具体的教学中是广大数学教师所关心的问题,也是一个值得人们探讨的数学课题。
一、数学思想方法在数学教学中运用的意义
学生在学习任何一门知识的时候,只要细心就会发现在学习过程中,不论自己学习的知识多么高深,在学习过程中,总是有一条线拉扯着自己将知识归结到一处。这条线就是学习思想方法的体现,它可以有效地指导学生的学习。在数学教学中,数学思想方法就具有这种作用。小学数学知识与生活的联系紧密,教师在教学时如果不运用一定的数学方法,只是生硬地将数学知识灌输到学生的大脑中,学生学习的数学知识很快就会被遗忘。但是在教学过程中教师如果能将数学思想运用到教学中,帮助学生树立正确的数学观,培养学生用数学思想思考问题,对于学生的学习将会有极其重要的意义。
二、小学数学教学中几种常见的数学思想方法
1.转化思想
转化思想是数学教学中常见的一种数学思想,即在教学过程中学生根据数学问题中提供的已知条件求出问题的答案,这种转化思想主要应用于几何题的求解,是当前小学数学教学中一种常用的思想方法。
2.类比思想
类比思想顾名思义就是在解决数学问题时将一个问题与另一个问题进行比较的解题方法,通过寻找两个问题所具有的相同点和不同点,将问题进行比较,最后找出正确答案。在教学中这种数学思想方法注重对知识的迁移运用,有利于学生在学习时巩固自己已经学过的一些数学知识,提升学生的数学综合应用能力。
3.建模思想
在解决数学问题时,许多时候一个问题的解决可以通过寻找事物的内在联系来解决,这种解决问题的方法被称为模型方法。在数学教学中建立数学模型,可以帮助学生探索数学知识,解决一些与生活联系较强的数学知识。
4.统计思想
统计学是学生在小学阶段学习的较为重要的数学知识,在初高中学生同样会接触到较多与统计相关的知识。它指的是学生在学习数学时学会运用统计学知识解决自己遇到的数学问题,进行数据收集和整理,不管是在数学学习上还是在生活中,这种思想方法运用得都十分广泛。
数学思想方法种类很多,如符号化思想、数形结合思想、函数思想等,不同的数学思想方法可以帮助学生解决不同的思想问题,在教学中,“授人以鱼,不如授人以渔”,教师要学会将思想方法传授给学生,而非只是简单地把知识灌输给学生,使他们对数学学习厌烦。
三、数学思想在数学教学中的具体运用
1.教师的教学目标清晰明确
教师在教学时应用数学思想方法进行教学并让小学生掌握这种数学思想方法不是一朝一夕的事情。首先在教学之前教师必须熟练掌握和运用各种思想方法,教学目标清晰明确,这样教师在教学时才可以将这些数学思想方法渗透给学生,让他们学会运用这种思想方法来解决数学问题。教师在教学中要学会针对不同的学生群体和教学内容选取不同的教学方法。小学生进入高年级之后,积累了一定的数学知识,也逐渐掌握了一定的数学思想方法,在这个阶段,教师就可以将其以形象直接的语言灌输给学生,让他们在平时学习中可以充分运用这种思想方法。
比如,在学习“长方体 正方体”时,教师就可以着重锻炼学生运用转化思想解决一些几何问题。把握教学难度,有意识地培养学生的数学思维。
2.在练习中巩固学生的数学思想
高年级的小学生经过低年级的学习已经掌握了一定的数学思想方法,但是部分学生在应用这些思想方法时还是有一定欠缺,数学学习不仅需要教师在课堂上讲解数学知识,还需要学生在课下积极去练习,在练习过程中学生可以将自己平时学过的一些数学思想方法运用到题目中,锻炼学生的数学学习能力。
例如,教师讲解了“折线统计图”后,就可以安排学生运用建模思想解决一些数学问题。小学数学与生活的联系较为紧密,教师在教学时也不能将学生练习的方式局限于枯燥的书本作业之上,如果学生平时练习只局限于书本知识,会极大降低学生学习积极性。小学生活泼好动,喜欢探索新鲜事物,教师在教学时可根据教学特点将数学知识与生活实际相结合,让小学生用数学思想解决自己在生活中遇到的一些问题,加强自己对数学思想方法的理解。
3.理解数学思想方法,学会运用数学思维
数学思想方法并非教师在教学中强硬灌输给学生的,所谓思想注重的是学生的理解,在理解中逐渐掌握,并建立一定的数学思维,运用这种思维解决学习中的数学问题。随着学生年龄增长,知识、学习能力、思维水平等也会有所提高。因此,在学生进入中高年级之后,教师可以尝试让学生自己感受数学思想方法,运用数学思维,解决自己遇到的'数学问题。
例如,教师在讲解了“面积单位的换算”之后,教??可以让学生回忆一下自己在生活中有没有遇到过与计算面积、单位换算等有关的生活问题,在当时自己是通过什么方法解决这个问题的。在学习“单位换算”之后,自己是不是又掌握了一种更为简短的方法,在下次再遇到类似数学问题时,自己是不是可以更好地解决。通过学生已有的生活经历,回忆对比,将类比思想渗透到学生大脑之中,初步学会应用这种思想方法。
4.运用数学思想方法,体验数学知识
思想方法在学习过程中属于指导思想,学生在学习任何知识时,掌握了一定的思想方法,都可以较快地掌握知识,事半功倍。在小学数学教学中,数学思想方法应贯穿于教学始终,这样学生在潜移默化中掌握数学思想方法,慢慢地就可以运用这些思想方法,有效提升自己的数学成绩,而不是将灵活的数学变成一堆数字,变成“死知识”,可以在学习中收获到快乐。
例如,教师在讲解《简单的统计活动》时,就可以从生活实际出发,让学生感受数学知识。教师可以将学生常见的硬币拿到讲台上投掷,分六次投掷,让学生记录投掷结果,在记录时,学生可能会发现这几次结果是不对等的、不平均的,有时反面次数多,有时正面次数多,教师可以让学生针对硬币事件进行讨论,分析出现这种情况的原因,有的学生认为是随机的,有的则认为下一次可能会是正面的,还有的可能会认为是由于硬币质量的问题。教师在这时就可以顺势引出统计思想,让学生学会运用这些思想方法来体验数学知识。
在数学教学过程中,教师注重挖掘和应用潜藏在数学教学中的数学思想方法,有意识地向小学生渗透形式多样的数学思想方法,使他们在学习数学时学会通过运用特定的数学思想方法解决数学问题,这样可以有效提升学生应用数学知识的综合能力,从根本上提升学生的数学成绩,为学生将来进入更高阶段的数学学习奠定良好基础。
篇10:数学思想方法的总结
数学思想方法的总结
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题中的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还通过函数与方程的.互相转化、接轨,达到解决问题的目的。函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y=f(x)的图象与x轴的交点的横坐标。
函数是高中数学的重要内容之一,其理论和应用涉及各个方面,是贯穿整个高中数学的一条主线。这里所说的函数思想具体表现为:运用函数的有关性质,解决函数的某些问题;以运动和变化的观点分析和研究具体问题中的数学关系,通过函数的形式把这种关系表示出来并加以研究,从而使问题获得解决;对于一些从形式上看是非函数的问题,经过适当的数学变换或构造,使这一非函数的问题转化为函数的形式,并运用函数的有关概念和性质来处理这一问题,进而使原数学问题得到顺利地解决。尤其是一些方程和不等式方面的问题,可通过构造函数很好的处理。
方程思想就是分析数学问题中的变量间的等量关系,从而建立方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。尤其是对于一些从形式上看是非方程的问题,经过一定的数学变换或构造,使这一非方程的问题转化为方程的形式,并运用方程的有关性质来处理这一问题,进而使原数学问题得到解决。
篇11:小学数学化归思想方法教学研究论文
小学数学化归思想方法教学研究论文
摘要:在小学数学教学过程中,教师不仅要注重学生基础知识的提升,还应该注重数学思想的培养。化归思想是一种很重要的数学思想,较好地契合了小学生发展和学习的规律,能促使小学生从已有知识中建立起对未知概念、原理等的认识,提高他们分析和解决实际问题的能力。教师可从概念教学、计算教学、几何教学和应用题教学四个方面,就化归思想方法的探究进行简要分析。
关键词:小学数学;化归思想;教学策略
在传统的小学数学教学中,教师倾向于把知识直接传授给学生,注重的是题海战术。这就使得小学生对抽象概念、原理的理解不够深入,做题效率低下,甚至随着教学难度的加深,而对数学课程产生畏惧心理。而化归思想方法的运用,注重的是学生发散思维和创新思维的培养,注重形成科学的数学知识体系,把复杂的问题简单化,以提升小学生的数学成绩和素养。为此,教师在教学的过程中,应该善于运用化归思想,提升课堂教学效率,活跃课堂气氛。
一、在概念教学中应用化归思想
纵观小学数学教材,很多概念都有一个有效的推导和演绎过程,以帮助小学生认识到概念的实质。而在传统的教学过程中,教师往往借助口头讲述,学生理解起来有一定的难度,课堂教学效率较低。为此,教师应在概念教学中应用化归思想,使小学生将陌生的知识和自己已有的知识连接起来,利用已有知识来了解新的概念,真正理解和掌握所学概念,从而打下坚实的`基础。例如,在学习“百分数”这个概念时,教师就可先让学生思考如下问题:冰箱里有一个45立方厘米的容器盛满了水,当水结成冰之后,体积发生膨胀,变成了50立方厘米,试问冰的体积与原来相比增加了百分之几?而小学生之前已经学习了分数,能根据题意快速列出计算过程,得出1/9的答案,但是分数和百分数之间可以相互转化吗?又有什么联系和区别呢?教师就可进一步引导小学生求算出百分数,整个概念教学过程效果会更好。总之,教师在进行概念教学时,应该注重小学生已有知识的渗透,注重对概念的拓展,避免单纯为了概念而讲述概念,从而偏离教学大纲的基本要求。
二、在计算教学中应用化归思想
计算能力的培养是小学数学教学的核心目标之一,也是小学生应该具有的基本能力。但是在目前的教学中,小学生计算耗费时间太长,而且正确率并不高。为此,教师就应该在计算教学中应用化归思想,从而快速解答问题。例如,在学习除法运算时,教师就可先提出问题:除法运算是乘法运算的逆运算,那么根据所学的乘法知识,大家思考应该如何做好除法计算题呢?这样就把学生不熟悉的、无法解决的问题进行了转化,与他们已有的知识产生了联系,能促使问题有效解决。而且随着除法计算的深入,学生很容易因为计算不熟练或者粗心大意而得出错误答案,而根据除法与乘法之间的联系,教师就可帮助小学生培养验算的良好习惯,提高计算的准确率。
三、在几何教学中应用化归思想
小学生正处于人生发展的初级阶段,抽象逻辑思维尚未形成,这样在几何教学的过程中,教师就可由几何直观引入课题,激发小学生的学习兴趣,提高他们的自学能力。例如,在学习习近平行四边形面积的计算时,小学生已经掌握了矩形和正方形面积的计算公式,那么教师就可提出如下问题:平行四边形和之前所学的矩形、正方形有何相同点和不同点呢?在计算面积的时候,能否把平行四边形的面积问题转化为矩形的面积问题呢?而为了进一步激发小学生探究的兴趣,教师还可在化归思想的基础上,组织小组讨论,并借助硬纸板进行平行四边形和矩形之间的拼接,得出所求面积公式。当然,教师在教学的过程中,并不应该局限于化归思想一种教学模式,而是应该注重化归思想与其他教学思想和方法的有效衔接,以达到事半功倍的效果。
四、在应用题教学中应用化归思想
教学大纲对应用题部分的要求是学生不仅要掌握解题思路和方法,还应该具备解决生活实际问题的能力,毕竟很多应用题都是与生活实际密切相关的。但是就目前的情况来看,小学生解答应用题的能力并不高,甚至潜意识里惧怕应用题,不知道如何下手。为此,教师应该注重在应用题教学中应用化归思想,为学生解答该类题目提供一个明确的方向。例如,应用题“某学校六年级有三个班,一共有102名学生,一班学生人数比二班少4人,二班人数比三班多2人,试求一、二、三这三个班各有多少名学生呢?”,小学生很容易被题目已知条件所迷惑,耗费大量时间。这样教师就可引导学生对题目进行深入思考,能不能把已知条件中各班级人数均与二班人数做比较呢?二班人数比三班人数多2人,是不是可以改写成三班人数比二班人数少2人,继而先求出二班人数,再求得一班和三班人数。当然教师还可鼓励学生说出其他思路,例如以三班人数为基准。在这里化归思想的应用就比较创新,是将已知条件列出来,将未知条件向已知条件靠拢,从而给学生一个新角度去思考问题,排除一些迷惑项,继而顺利将应用题解答出来。另外,教师要注意这种化归思想的运用需要学生能够转换思维,因此教师可以将不同类型和角度的应用题给学生,引导学生习惯这种思维的转换,从而提高学生的解题能力。
五、结语
综上所述,随着新课改的不断实施,对小学数学教学提出了更高的要求,这样教师在教学的过程中,就应该注重化归思想的有效运用,注重转化过程中的每一个细节和转化思路,逐步渗透化归思想,从而有效发展小学生的学习能力和智力,为他们的后续学习做好铺垫。
参考文献:
[1]丁伟.小学数学化归思想方法的教学策略分析[J].读与写(教育教学刊),(12).
[2]梁海红.化归思想在小学数学教学中的应用分析[J].读与写(教育教学刊),2017(9).
篇12:初中数学应重视数学思想方法的教学
初中数学应重视数学思想方法的教学
数学试题千千万万,要使数学学习取得好的效果,除了要有强烈的.学习愿望、学习热情,还要遵循解题的方法与技巧.在解题过程中,如果方法使用得当,就可以少走弯路,常常起到事半功倍的作用.
作 者:冯永忠 作者单位:陕西省洋县江坝中学 刊 名:教育界 英文刊名:JIAOYUJIE 年,卷(期): “”(7) 分类号: 关键词:篇13:浅谈初中数学教学中思想方法的渗透
数学思想方法是初中数学教学的重要组成部分,是比数学知识传授更为重要的教学内容. 有人把数学思想方法称之为数学教学中的一颗明珠,因为知识的作用是有限的,而方法的作用往往能够涉及整个数学领域. 正是因为其有着广泛的普遍适用性,有着超越知识层面,并且能够让人们在数学探究的征途上从未知到已知的可能性,因此在新课程改革中被赋予了相当的重要性.
事实上,新颁布的《义务教育数学课程标准》,再一次将基本思想写入其中. 当然,令人注目的是我们初中数学还进一步提出了“基本数学活动经验”——其与数学思想方法也有着密切的关系. 这样就将传统上的“双基”扩展为了“四基”,使得初中数学教学的内涵与外延都得到了进一步的丰富.
随着新一轮课程改革的开展与推进,人们越来越重视数学思想方法的渗透. 那么,在初中数学教学中有哪些思想方法需要我们去重视呢?
其一是数学方法. 顾名思义,这一类的思想方法与数学内容有着密切的关系,也可以认为是离开了数学知识就谈不上这些方法的运用. 比如解方程中常常用到的配方法,其是通过将一元二次方程配成完全平方式,以得到一元二次方程的根的方法,其经典运用是一元二次方程求根公式的得出;再如换元法、消元法,前者是指把方程中的某个因式看成一个整体,然后用另一个变量去代替它,从而使问题得到解决. 后者是指通过加减、代入等方法,使得方程中的未知数变少的方法. 在复杂方程中运用这些方法可以化难为易. 再如几何中的辅助线方法也是解决许多几何难题的灵丹妙药.
其二是普遍适用性的科学方法. 例如我们数学中常用的归纳法,就有完全归纳法和不完全归纳法两种,数学上的很多规律其实最初都来自于不完全归纳法,因此在探究类的知识发生过程中,都可以用不完全归纳法来进行一些规律的猜想. 再如类比、反证等方法,也是初中数学常用的方法,运用这些方法的最大好处是,可以让学生领略到在初中数学中进行逻辑推理的力量与美感. 根据笔者的不完全调查,学生在进行推理后如果能够成功地解决一个数学难题,其心情是十分喜悦的,而最大的感受就是通过一环套一环的推理,能够顺利地由已知抵达未知.
其三就是我们常说的数学思想. 我国当代数学教育专家郑毓信、张奠宙等人特别注重数学思想在初中教学中的渗透,多次著文要加强数学思想方法的教学. 众所周知,数学思想与数学哲学有着密不可分的关系,很多数学家本身也是哲学家. 因此,学好数学思想可以有效地培养哲学意识,从而让学生变得更为聪明.
例如典型的建模思想,其是用数学的符号和语言,将遇到的问题表达成数学表达式,于是就建成了一个数学模型,再通过对模型的分析与计算得到相应的结果,并用结果来解释实际问题,并接受实际的检验. 一旦学生熟悉了这种数学思想并能熟练运用,将是初中数学教学的一个重大成功.
篇14:转化农村初中学困生的思想方法论文
转化农村初中学困生的思想方法论文
素质教育,面向全体学生,让学生全面发展,是当前教育改革的主要任务,世界上的一切事物,都有对立面,如好与坏,前进与后退等,而且对立的双方可以互相转化。学生的学习也是如此,同是一个班,有尖子生,也有学困生。俗话说:“十个手指都有长短”。提起学困生,每位班主任老师都会感到头痛,转化学困生是班主任老师最经常,最棘手的一项工作。
学困生是学校领导的一块心病,也是班主任最感到头痛的事,同时也成为当今教育领域的一大社会问题。学困生的存在是不可避免的,我们教育工作者应该积极去面对,帮助每一个学生成功是教育工作者的根本目的,也是广大教育工作者的共同愿望。由于各种因素,在我们学校的各个班级中,不同程度地存在着学习困难生,他们有的由于学习基础较差,有的由于学习态度不端正或学习习惯较差等,表现出对学习不感兴趣,缺乏信心等不良特征。学困生的存在成为困扰每个教师的一大难题,也制约了学校教育教学质量的提高。特别是农村学校,由于农村学生家长教育不当,留守儿童多,缺乏家长教育,农村学困生比例相对较大。
农村学困生主要有以下几点特征:
一、具有明显的自卑感,失落感。
由于学困生学习成绩差,一时无法弥补他们在群体中落后的位置,家长埋怨,老师指责,同学歧视,导致他们自暴自弃,不思进取,形成一种心理定势“我不如人”,长期生活在一种颓丧抑郁的氛围中,对学习丧失信心。
二、具有胆怯心理。
学习上遇到困难不敢向老师或同学请教,不愿意暴露自己的弱点,怕别人讥笑,结果一连串的问题得不到解决,形成恶性循环。
三、具有压抑心理。
多数学困生也想学好,家长也很希望他们成才。但由于基础差总是学不好,于是得不到老师的重视、同学的帮助和家庭的温暖,常常陷于痛苦忧伤难以自拔的心境之中,情绪波动,性格浮躁,导致悲观消极的压抑心理。
四、具有惰性心理。
学习上不肯用功,思想上不求进步。只图安逸自在,玩字当头,混字领先,怕动脑子,缺乏吃苦精神,不愿意在困苦中学习。
五、具有逆反心理。
由于学困生得到的常常是批评,指责和嘲讽,因此,对老师的教育产生反感,形成逆反心理。
六、普遍的学困生都缺乏远大的理想和抱负,对自己的学习目的不明确。
不知道一天该做什么,对什么都不感兴趣,结果什么都做不好。
七、注意力不集中,记忆速度慢,遗忘快。
90%的学困生课堂注意力不集中。他们心里想集中但集中不起来。所学的知识记不住,记住的也很快就忘。
八、学困生由于对知识掌握差,遇到过去的已有的知识不能很好的回忆、再认,使知识不连贯,无法跟上教师上课进度。
九、迁移能力差。
对照例题能完成部分作业,但对变形的题就不知所措。举一反三的能力差。
十、归纳概括能力差。
学困生的学习停留在识记阶段,对事物共性的认识并进行归纳的'能力较差。在学习中基本上无法归纳、总结。
大多数班主任都认为对品学兼优学生的管理比较轻松,而对学困生的教育,不少教师感到很棘手。曾几何时,做教师尤其是当班主任的我们,经常抱怨这样的学生如何如何地难教,学生是如何如何地没有感情,甚至责骂学生蠢笨不可教……。没有不好的孩子,只有不好的教育。因此,如何教育学困生是老师特别是我们班主任一项值得深究的课题。学困生通常是指那些在学习或品行方面暂时落后的学生。这类学生给班级工作的正常开展带来负面影响,特别是学习、品德都很差的学生。我从事班主任工作已有二十多年,转化学困生的工作,不论从学校角度来讲,还是从学生成长来讲,都十分重要,那么,如何转化农村学困生呢?我觉得可以从以下几个方面入手:
一、对他们要充满爱心和信任
日本教育家池田大作说过:“伸出充满热爱的双手,这就是英才教育。”爱,可以激发学生的兴趣,反之,则可能泯灭学生的天才。我们要坚持多表扬、公开场合少点名批评、正面疏导的工作方法。对后进生要从生活上给予关心,让他感到温暖。实践证明:这样做效果往往较好。从学生的心理需要上讲,爱和信任是他们最渴望得到的东西。学生渴望在充满爱心和信任的环境中成长。作家冰心说过,爱是教育的前提,爱是教育的基础,没有爱就没有教育。教师的亲切感能引起学生的接近感。教师要满腔热情、诚心诚意地关怀爱护学困生,每当他们有困难时,教师要及时帮助他们。通过集体活动,培养互助友爱精神,使他们感到集体的温暖,安心学习。
我们教师爱护差生要像救火救灾似的,刻不容缓地去抢救他们,光停留在咬牙切齿地去咒骂、去怨恨,是达不到转化他们思想这一目的的。如果班主任能以发自内心的爱和信任对待学困生,善于发现学困生的长处,看到他们的闪光点,尤其是当他们有了进步,那怕是一点进步,都要及时给予表扬和肯定,比如,本班的周富枝同学,在学习上较差,上课不安分,但他在校运会上取得好成绩,我及时表扬他,并说如果学习也有这样好,你就是一个非常优秀的学生,后来他学习比以前自觉多了。多施雨露,少下风霜,激发他们的上进心,从而促使后进生在思想觉悟上提高,养成良好的学习习惯。
二、要与学困生交心,做他们的知心朋友
情感是打开学生心灵的一把钥匙。“教育没有情爱,就成了无水之池。”必须经常要抽出一定的时间深入到学困生的学习、生活中去,与学困生广泛地接触,给予百倍的耐心和无微不至的关怀,了解他们的内心世界、思想动态,做他们的知心朋友。
帮助学困生克服学习生活中的困难,多同他们进行情感性交谈。这种谈话方式往往话题自由,态度随和,可在学生心中激起强烈的情感波澜,使学生对老师产生亲近感,从而消除了畏惧心理,撤掉了心理防线,进一步融洽了师生关系,那么学生就会把你当做为知心朋友,有什么心事就会向你诉说,让你帮他出主意、想办法,你也会从中了解他们的性格特点以及在日常学习、生活中的兴趣、爱好等,从而寻找出最佳的教育方法。
三、教师和家长的配合要紧密。
学困生的转化工作主要靠学校,但也需要家庭支持,社会配合,在学校里,我们应提倡素质教育,促使学生德、智、体、美、劳全面发展,变教书为“铸魂”,使学生在学习过程中不仅仅接受知识,还要有愉快的情绪和积极的情感体验,如今新教材改革,要求学校把更多的时间还给学生,丰富他们的业余生活,注重他们的均衡发展,这是我们减少学困生的有效途径。学生的家庭我们要常去走走,适当的家访,面对面的交流能拉近我们与学生和家长的距离,还能更好地了解学困生的成因所在。例如本班的李献云同学,学习成绩优秀,但近来上课精神不够集中,情绪低落,通过家访,了解到她父母闹离婚,我及时疏通父母及学生的思想,使她重新集中精力在学习上。通过家长、学校,培训和教育家长如何教育子女,通过家长会进行互相交流,让我们与家长齐抓共管,形成合力,共同转化学生的思想。
四、要尊重学困生,平等相处。
学困生与优秀的学生也一样,他们也希望得到老师的尊重。前苏联教育家苏霍姆林斯基说:“自尊心是青少年心理最敏感的角落,是学生前进的潜在力量,是前进的动力,是向上的能源,它是高尚纯洁的心理品质。”这说明维护学生的自尊心是做好学困生工作的前提。后进生的自尊心时强时弱,教师应根据这一点,保护他们“极其脆弱的自尊心”。对他们提出的合理要求,要给予满腔热情的支持,对他们的点滴进步更应该给予肯定。教师不但自己要尊重学困生,保护他们的自尊,还要教育其他同学也要尊重学困生,平等对待学困生,切不可挖苦、讽刺、打击他们,要与学困生保持良好的同学关系,相互帮助,共同进步。
教师在教育教学活动中,如果发现学生做错了事,就会恨铁不成钢,不去积极引导他们,而是一味地训斥、指责、向家长告状等,既伤害了学生的自尊心,又容易使人产生逆反心理,乃至对抗情绪,所以在与学生交谈时要注意引导。其实许多学困生和大多数同学一样,内心里非常希望得到家长、老师、同学和社会的安慰、保护、理解和尊重。尽快地加倍努力、迎头赶上,甩掉后进生的帽子。然而,由于他们学习成绩不理想或屡犯错误,往往会受到老师、家长的批评、讥讽、挖苦、训斥、打骂、体罚,时常受到冷遇,使他们人格、自尊受到极大损害,与学校、家庭、教师、家长间滋生对立情绪,认为反正被人瞧不起,破罐子破摔、拉倒。由此他们失去前进动力,形成自卑心态。
学困生的自卑心态是希望改变现状,求得尊重。可以说,没有自尊心就没有自卑感,要上进,必须付出艰辛的努力和痛苦的抉择,而他们长期形成的松散、懒惰的坏习惯,害怕艰苦的脑力劳动,缺乏毅力,造成了意志薄弱的心理缺陷。因此在发展过程中上进心与惰性一对矛盾交织存在。一旦遇到难以逾越的困难,就会退缩不前,打退堂鼓,丧失前进的勇气和信心,往往容易旧“病”复发。表现不良行为习性的反复。班主任一定要耐心把握时机,耐心进行思想教育,抓住学生的闪光点,及时表扬、不断给学生鼓士气。
五、以宽容之心对待他们
宽容不是忍让,更不是纵容。只是当我们发现学困生做错事时,我们首先要以宽容的态度来对待他们的不是,从不同角度谈问题,换位思考,让他们明白什么可以做,什么不能做。当然,凡事都有一个过程。我们应该给学困生一个学好、变好的过程。一个人要学好不是一件容易的事。因调皮而致后进的学生,他们的行为不受常规约束,顽皮、淘气,不接受师道尊严,有时甚至顶撞老师,这些正是他们个性的反映,其中,很可能蕴藏着创造潜能。要容忍爱护,耐心指教,并发掘他们的闪光点。
六、以身示教,树立榜样
榜样的力量是无穷的,它是无声的召唤,前进的灯塔,它也是学困生前进的目标,它能激励学困生天天向上。榜样可以是领袖将帅,英雄模范,名人贤达,师长父母,也可以是同学、伙伴,最好是和学困生各方面基础差不多,但成绩进步很大的同学。比如你作为班主任要求男学生不留长发,自己首先要理好自己的头发,要给学生做个榜样,这样做起学生的工作就容易多了。通过这些活动,就使学困生有样可学,并使其明白,只要经过努力,就会有进步,就会成功,从而产生一种后进赶先进,后进超先进的念头,树立开拓进取心,摒弃不良倾向,于无声处达到成功教育的目的。
全面正确的看待学困生是教育工作的起点。学困生的缺点和不足是显而易见的,但学困生身上也有金子般的闪光点,教师就应该更好地去发现学困生身上容易被忽视、掩盖的可贵之处,开发学生心灵深处的精神宝藏。比如,自尊心强渴望得到信任,重友谊讲感情,生活知识较多,实践能力强,精力充沛,兴趣广泛等。只有全面正确地认识学困生,采取针对性的教育,才可收到良好效果。我尝试运用学生管理学生的办法,有意识让部分学困生参与班级管理,如有的学生管理纪律、有的学生管理劳动、有的学生管理卫生。让他们当室长,一个学期下来,发现这些学生有很大的进步,自我约束能力、社会责任心、工作能力等进一步增强,通过班主任的肯定和同学们的相信,学习兴趣明显增加,他们的思想有了很大的转变。
大量的教育实践证明,只要教育教学得法,没有一个学困生可以被认为是不可救药的,教育的艺术就在于善于拨开学生眼前的迷雾,点燃学生心中的希望之火,帮助学生体会到上进及学习成功的快乐,诱发学生的责任心和荣誉感。
总之,对学困生,我们只要给他们多一点关怀,多一些耐心,多一些细心,多一些时间,多给他们创设一个宽松、民主的学习情境,他们一定会成为一个自尊、自重、自强、自立的好学生,将来也同样成为社会主义现代化建设的有用人才。
篇15:高职数学教学必须加强数学思想方法的教学教育论文
高职数学教学必须加强数学思想方法的教学教育论文
摘 要:
数学思想方法是数学知识的核心,是数学的精髓和灵魂,是研究数学理论和运用数学解决实际问题的指导思想。本文针对目前高职数学教学中存在的数学思想方法教学重视不够以及教法上随意性的现状,提出通过加强数学史和基本数学思想方法的介绍,以及倡导“问题解决”的教学模式来提高学生的数学素养。
关键词:
数学教学;数学思想;数学教学改革
数学思想是人脑对现实世界的空间形式和数量关系的本质反映,是思维加工的产物,是人们对现实世界空间形式和数量关系的本质认识。它隐藏在数学概念、公式、定理、方法的背后,反映了这些知识的共同本质。它比一般的数学概念和数学方法具有更高的概括性和抽象性,因而更深刻、更本质。数学思想方法是数学课程的重要目的,是发展学生智力和能力的关键所在,是培养学生数学创新意识的基础,也是一个人数学素养的重要组成部分。
1 目前数学思想方法教学的现状
1.1 思想上不重视
高职教育更加强调“专业教育”,对高职数学教育提出了“必须、够用”的原则,这直接导致数学课时减少,内容不得不被压缩。这使得一些数学教师片面理解“为专业服务”的真实含义,教学中采用以知识为本位的教学,只关注知识的教授本身,学生只是学到了各种题目的具体解法,并没有掌握数学思想方法,解决问题的水平并没有得到提高。在后续学习中,导致学生数学知识面偏窄,数学思想苍白,眼界不广,缺乏创造力,“后劲”不足。
1.2 教法上的随意性
现行教材主要以知识结构作为编写体系,数学思想散见于教材之中,这就决定了数学思想教学的主观随意性很大,其教学效果主要依赖于教师对数学思想的理解程度。虽然在目前的数学教学中非常强调能力的培养,但在实际教学中往往只注重运算能力和逻辑推理能力的训练,一些重要的数学思想被淹没在大量的计算、证明题之中,失去了应有的魅力和价值。例如,导数思想是高等数学中的重要思想,但导数部分的内容常被当作求导的技能技巧来训练,成为一种机械操作,使学生在专业工程技术、经济、电工学习中对影子价格、边际函数、瞬时电流强度等感到困惑。
2 加强数学思想方法教学的意义
2.1 加强数学思想方法
教学是素质教育的需要高职数学教学的根本目的,就是提高学生的数学素质,使学生形成良好的数学观念和数学意识,善于用数学思想方法去观察、解释、表述现实事物的数量关系、变化趋势、空间形式和数据信息。可见,加强数学思想的教学是对学生进行素质教育,全面培养新世纪合格人才的需要。
2.2 加强数学思想方法
教学是教学改革的新视角从教材的构成体系来看,高职数学教材所涉及的数学知识点和数学思想汇成了数学结构系统的两条“河流”。一条是由具体的知识构成的易于被发现的“明河流”,它是构成数学教材的“骨架”;另一条是由数学思想方法构成的具有潜在价值的“暗河流”,它是构成数学教材的“血脉”。有了数学思想,数学知识点才不再是孤立的、零散的东西,而是数学的内在本质,是获取数学知识、发展思维能力的动力工具。因此,我们的数学教学改革可以从这条“暗河流”入手,对学生进行思想观念层次上的数学教育,这将是进行数学素质教育的有效突破口。
2.3 加强数学思想方法
教学是学生可持续发展的需要数学思想越来越多地被应用于环境科学、自然科学、经济学、社会学、心理学和认知科学之中,加强数学思想的教学,可以影响学生的整体素质,为学生今后的工作和学习奠定基础。如定积分的思想广泛地被应用于自然科学和社会科学中。
因此,21世纪的数学课程必须突破原有的结构,从旧的框架中走出来,突出数学思想这条主线,才有可能使学生知其然,更知其所以然,提高学生学习数学的主动性和积极性,使之学到的知识“充满活力”。
3 实施数学思想方法
教学的对策数学思想方法蕴含于数学基础知识中,相对来说,它是隐性的、抽象的。为了更好地完成数学思想方法的教学,数学教师要具备较高的数学思想方法素养。认真学习、掌握数学思想方法的内容和实质,明确数学思想方法在整个数学发展中的地位,努力把初等数学、高等数学和现代数学的基本思想方法有机地联系起来。笔者认为可从以下三个方面入手,进行数学思想方法的教学。
3.1 要重视数学史和数学思想史的介绍
数学史是一部追求真理的历史,在追求真理的征途中,前人不断探索、不断完善,最终形成高度抽象严谨的数学概念,其中所蕴涵的数学思想和数学方法是绝好实例。在教学中应交代清楚数学知识的背景和出处,使学生感受和了解原始创新过程。
例如,在极限的概念教学中,通过介绍历史上刘徽为求圆周率而产生的“割圆术”、阿基米德用“穷竭法”求出抛物线弓形的面积等数学问题引入概念,学生一般都能认识到极限是一种研究变量的变化趋势的数学方法,它产生于求实际问题的精确解。这不仅激发了学生的学习兴趣,而且对于随后介绍数列极限的定义也大有益处。教师还可以由此给出悬念:同学们在学了定积分的应用之后,可以证明阿基米德所作解答是正确的。
3.2 要倡导“问题解决”的教学模式
数学中的概念、法则、性质、公式、公理、定理通常称为数学表层知识。数学教材主要记述的就是数学表层知识,深入分析这些表层知识,便可以发现蕴涵在其中的极为丰富的深层知识,这就是贯穿于其中的数学思想方法和模式等。数学深层知识是数学的本质和精髓,掌握基本的数学思想方法能使数学更易于理解和记忆,是学会学习、发展创新的'前提。作为数学教师,在教学时不能就知识论知识,就书本论书本,应引导学生去领悟内容中蕴含的深邃思想和巧妙方法。
3.2.1 重视论证的结论
从应用的角度讲,对于高职学生而言需要的往往不是论证的过程,而是它的结论。因此我们主张,在高等数学教学中,应淡化严格的数学论证,强化几何说明,重视直观、形象的理解,但这并非是将定理的推证与公式的推导全盘舍弃。若是推证、推导中包含重要的数学思想和方法,教师应引导学生大胆猜想,运用归纳法和类比的思想积极探索,力求形成“问题情境―建立模型―解释、应用与拓展”的基本教学模式,以大众化、生活化的方式反映重要的现代数学观念和数学思想方法。
3.2.2 展示思维的过程
学生的思维往往是通过模仿教师的思路逐渐形成的,“让学生看到思维的过程”是提高学生学习积极性、促进学生思维能力发展的有效措施。让学生看到思维的过程,意在使学生能从教师的分析中懂得怎样去变更问题、怎样引入辅助问题、怎样进行联想类比、怎样迂回障碍,使之柳暗花明,得到成功的喜悦,从而逐渐养成自觉思维的习惯。
3.3 要重点突出基本数学思想方法的介绍和传授
数学思想方法主要包括:化归思想方法、数形结合思想方法、构造思想方法、类比思想方法、极限的思想方法、积分的思想方法、归纳与猜想、函数与方程思想方法等等。高职数学教学中应重点渗透以下两种类型的数学思想方法:3.3.1 宏观型的数学思想方法如抽象概括、化归、数学模型、数形结合,方程与函数,积分等等。
3.3.2 逻辑型的数学思想方法
如分类、类比,归纳,演绎,等等。
4 结论
数学思想方法对数学的认识结构起着重要的导向作用,是将知识转化为能力的杠杆,由于数学思想方法比其它数学知识更抽象、更概括,学生一般难以在教材中独立获得,只有通过教师在教学中的引导和点拨,才能使学生真正感受到数学思想方法俯瞰全局、举一反三、事半功倍的作用。
总之,“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身。
参考文献
[1]贺定修.在高等数学教学中实施研究型教学,培养学生的创新能力[J].教育探索,2003(11):7~9
[2]朱若松.高等数学教学质量的探讨与思考[J].数学理论与应用,2003(12):82~84
[3]周敏.关于在高等数学教学中改进教学方法、培养创新型人才的一些思考[J].数学理论与应用,2003(12):84~85
[4]孙凤琪.关于高等数学教学改革的某些探讨[J].吉林师范大学学报(自然科学版),2005(1):112~113
[5]袁中许.高职数学的现状与思考[J].中国科技信息,2005(15):91~93
★思想方法
文档为doc格式