欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

高中数学《离散型随机变量的期望》教案

时间:2023-09-20 08:58:55 其他范文 收藏本文 下载本文

下面是小编给大家带来关于高中数学《离散型随机变量的期望》教案,本文共14篇,一起来看看吧,希望对您有所帮助。

高中数学《离散型随机变量的期望》教案

篇1:《离散型随机变量的期望》说课稿

高中数学《离散型随机变量的期望》说课稿

一、说教材分析

本课是人教A版选修2―3第二章随机变量及其分布第一节离散型随机变量及其分布列第一课时。本章是学生学习概率统计内容后,进一步深入研究离散型随机变量及其分布列,均值,方差等内容,而离散型随机变量是本章第一课时,因此我认为本节是本章的基础,是后续内容研究的核心。

结合教材和大纲,我确定本课教学重点是:随机变量,离散型随机变量的理解及在实际问题中的应用;

结合学生对抽象概念理解较差的学情,我认为本课教学难点是对随机变量和离散型随机变量的认识和理解

本课教学将以学生为主,教师为辅,在教师的引导下学生自主归纳学习的模式完成。

二、说教学过程分析

预习题单阅读课本44―45页

结合课本,思考一下问题

问题1:掷一枚骰子的结果有哪些?

问题2:在含有10件次品的100件产品中,任意抽取4件,那么其中含有的次品数可能有哪些?

问题3:掷一枚硬币的结果有哪些?

问题4:你还能举出那些例子?

问题5:随机变量与函数有类似的地方吗?

总结问题,引出定义 随着试验结果变化而变化的变量称为随机变量。常用字母X,Y,ξ,η……表示。

(1)问题3还可以用其他的数来表示这两个试验的结果吗?

(2)问题1如果仅关心“掷出的点数是否为偶数”时,怎样构造随机变量?

(3)随机变量与函数都是一种映射,随机变量是把试验结果映为实数,函数是把实数映为实数,随机变量的试验结果范围相当于函数的定义域,随机变量的取值范围相当于函数的值域。

(4)把随机试验的结果数量化,用变量表示试验结果,就可以用数学工具来研究这些随机现象

【定义】所有取值可以一一列出的'随机变量,称为离散型随机变量

例1:下列实验结果能否用离散型随机变量表示?若能,写出随机变量的可能取值,并说出这些值所表示的随机实验的结果。

(1)某人出生的时间ξ;

(2)某人出生的月份X;

(3)某人出生的年份Y;

(4)某人射击一次可能命中的环数X;

(5)某网页在24小时内被浏览的次数Y、

完成课本45页练习1

补充:

问题:电灯泡的寿命X是离散型随机变量吗?

问题中规定寿命在1500小时以上的灯泡为一等品;寿命在1000到1500小时之间的为二等品;寿命为1000小时以下的为不及格。如果我们关心灯泡是否为合格品时,应该如何定义随机变量?如果我们关心灯泡是否为一等品或二等品时,又应该如何定义随机变量?

问题3中:用{X=0}表示抽出0件次品,{X=3}表示抽出3件次品,那么{X<3}表示什么事件?____________________________,抽出3件以上次品如何用X表示?____________________________

例2:下列随机试验的结果是否能用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果。

(1)抛掷两枚骰子,所得点数之和;

(2)某足球队在5次点球中射进的`球数;

【归纳总结】要做到“不漏不多”

【巩固练习】

1、将一颗骰子掷2次,随机变量为( )

A、第一次出现的点数

B、第二次出现的点数

C、两次出现的点数之和

D、两次出现相同的点数的种数

2、下列随机实验的结果能否用离散型随机变量表示?若能,则写出各随机变量可能的取值,并说明这些值所表示的随机试验的结果:

(1)从学校回家要经过5各红绿灯,可能遇到红灯的次数;

(2)在优、良、中、及格、不及格5个等级的测试中,某同学 可能取得的成绩。

3、在某项体能测试中,跑1km成绩在4min之内的为优秀。某同学跑1km所花费的时间X是离散型随机变量吗?如果我们只关心该同学是否能够取得优秀成绩,应该如何定义随机变量?

三、说教学反思

本课反应出学生有很好的自学能力,并取得了很好的教学效果,在今后的教学中要发挥学生的自主性,提高学习效率。

篇2:离散型随机变量的期望教学计划

一、教材分析

教材的地位和作用

期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。

教学重点与难点

重点:离散型随机变量期望的概念及其实际含义。

篇3:离散型随机变量的期望教学计划

[理论依据] 本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。

二、教学目标

[知识与技能目标]

通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。

会计算简单的.离散型随机变量的期望,并解决一些实际问题。

[过程与方法目标]

经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。

通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。

[情感与态度目标]

通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。

三、教法选择

引导发现法

四、学法指导

“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。

篇4:离散型随机变量的期望说案

一、教材分析

教材的地位和作用

期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。

教学重点与难点

重点:离散型随机变量期望的概念及其实际含义。

难点:离散型随机变量期望的实际应用。

[理论依据] 本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。

二、教学目标

[知识与技能目标]

通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。

会计算简单的离散型随机变量的期望,并解决一些实际问题。

[过程与方法目标]

经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。

通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。

[情感与态度目标]

通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。

三、教法选择

引导发现法

四、学法指导

“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。

篇5:离散型随机变量的说课稿

离散型随机变量的说课稿

各位评委,各位老师下午好,我的说课内容是人教A版选修2-3第二章随机变量及其分布第一节离散型随机变量及其分布列第一课时,下面我就以下几个方面完成我的说课内容。

一.教材分析

本课是人教A版选修2-3第二章随机变量及其分布第一节离散型随机变量及其分布列第一课时。本章是学生学习概率统计内容后,进一步深入研究离散型随机变量及其分布列,均值,方差等内容,而离散型随机变量是本章第一课时,因此我认为本节是本章的基础,是后续内容研究的核心。

结合教材和大纲,我确定本课教学重点是:随机变量,离散型随机变量的理解及在实际问题中的应用;

结合学生对抽象概念理解较差的学情,我认为本课教学难点是对随机变量和离散型随机变量的认识和理解

本课教学将以学生为主,教师为辅,在教师的引导下学生自主归纳学习的模式完成。

二.教学过程分析

预习题单阅读课本44-45页

结合课本,思考一下问题

问题1:掷一枚骰子的结果有哪些?

问题2:在含有10件次品的100件产品中,任意抽取4件,那么其中含有的次品数可能有哪些?

问题3:掷一枚硬币的'结果有哪些?

问题4:你还能举出那些例子?

问题5:随机变量与函数有类似的地方吗?

总结问题,引出定义 随着试验结果变化而变化的变量称为随机变量。常用字母X,Y,ξ,η……表示。

1)问题3还可以用其他的数来表示这两个试验的结果吗?

(2)问题1如果仅关心“掷出的点数是否为偶数”时,怎样构造随机变量?

(1)随机变量与函数都是一种映射,随机变量是把试验结果映为实数,函数是把实数映为实数,随机变量的试验结果范围相当于函数的定义域,随机变量的取值范围相当于函数的值域。

(2)把随机试验的结果数量化,用变量表示试验结果,就可以用数学工具来研究这些随机现象

【定义】所有取值可以一一列出的随机变量,称为离散型随机变量

例1:下列实验结果能否用离散型随机变量表示?若能,

写出随机变量的可能取值,并说出这些值所表示的随机

实验的结果。

(1)某人出生的时间ξ;

(2)某人出生的月份X;

(3)某人出生的年份Y;

(4)某人射击一次可能命中的环数X;

(5)某网页在24小时内被浏览的次数Y.

完成课本45页练习1

补充:

问题:电灯泡的寿命X是离散型随机变量吗?

问题中规定寿命在1500小时以上的灯泡为一等品;寿命在1000到1500小时之间的为二等品;寿命为1000小时以下的为不及格。如果我们关心灯泡是否为合格品时,应该如何定义随机变量?如果我们关心灯泡是否为一等品或二等品时,又应该如何定义随机变量?

问题3中:

用{X=0}表示抽出0件次品,{X=3}表示抽出3件次品,那么

{X<3}表示什么事件?____________________________

抽出3件以上次品如何用X表示?____________________________

例2:下列随机试验的结果是否能用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果。

(1)抛掷两枚骰子,所得点数之和;

(2)某足球队在5次点球中射进的球数;

【归纳总结】要做到“不漏不多”

【巩固练习】

1.将一颗骰子掷2次,随机变量为( )

A.第一次出现的点数B.第二次出现的点数

C.两次出现的点数之和D.两次出现相同的点数的种数

2.下列随机实验的结果能否用离散型随机变量表示?若能,则写出各随机变量可能的取值,并说明这些值所表示的随机试验的结果:

(1)从学校回家要经过5各红绿灯,可能遇到红灯的次数;

(2)在优、良、中、及格、不及格5个等级的测试中,某同学 可能取得的成绩。

3.在某项体能测试中,跑1km成绩在4min之内的为优秀。某同学跑1km所花费的时间X是离散型随机变量吗?如果我们只关心该同学是否能够取得优秀成绩,应该如何定义随机变量?

【课堂小结】

三.教学反思

本课反应出学生有很好的自学能力,并取得了很好的教学效果,在今后的教学中要发挥学生的自主性,提高学习效率。

篇6:《离散型随机变量及其分布列》教学反思

《离散型随机变量及其分布列》教学反思

一、教学内容、要求以及完成情况的再认识

《离散型随机变量的分布列》在近几年高考的推波助澜下愈发突显出其应用性和问题设计的新颖和创造性,如火如荼的新课改时时刻刻在提醒我们“思路决定出路”,们明确教学设计应是为了“学生的学而设计教”,不是为了“老师的教而设计学”。

1.学的重点应是离散型随机变量的分布列的含义与性质而非如何求概率

2.数学概念的教学应是从创设概念的生长点的问题情境切入探究而不是抛给学生

3.数学概念的含义和性质是剥洋葱皮式的探究而不是变式训练的强化

学生对数学概念的理解出现偏差,往往是学生站的认识问题的角度不合理、维度不全面,所以我借助于问题串、采用“剥洋葱皮”的方式从数学概念的外延出发探寻概念的内涵。问是深入思考的开始、是质疑探究的延续。

离散型随机变量的分布列的性质是概念的外延,而离散型随机变量的概率分布列的内涵是一个必然事件分解成有限个互斥事件的概率的另一种表示形式,更主要的是应在概念的生成中形成解决问题的思维方法。

这样设计的`目的是想避免学生在没有对数学概念和思想方法有基本了解的情况下就盲目进行大运动量的变式解题操练,导致教学缺乏必要的根基,是要培养学生数学用数学思维来解决问题。

在教学设计上要做整体的把握,应该从基本点出发,形成交汇点,进而达到制高点。教学的基本点就是“双基”:数学基础知识和基本技能。从双基出发,使得基础知识形成网络、基本技能形成规律。教学的交汇点就是数学活动,在数学活动中形成基本思想方法和基本活动经验。

数学思维的培养成长于每一节课堂、成败于每一点基础、影响于每一个细节,让每一节数学课堂都真正在有利于学生发展为本的道路上改革,牢牢把握这个制高点,成功就水到渠成了。

二,值得注意的地方

在教学过程中要充分发挥学生的主体地位。在课堂上,无论是新教师还是老教师,通常会把自己当做课堂上的主人而过多的会忽略学生的主体地位;或者学生会因为长时间的习惯于听老师来讲解而忘记自己是课堂的主人。在建立新知的过程中,教师力求引导、启发,让学生逐步应用所学的知识来分析问题、解决问题,以形成比较系统和完整的知识结构。每个问题在设计时,充分考虑了学生的具体情况,力争提问准确到位,便于学生思考和回答。使思考和提问持续在学生的最近发展区内,学生的思考有价值,对知识的理解和掌握在不断的思考和讨论中完善和加深。但由于时间的把握,以及对学生的放手程度上‘实施落实的可能还不到位,有待改进。

总之,在今后的教学工作中,需不断总结、反思。作为数学教师,一方面要激发学生学习数学的兴趣,让学生感觉到每解决一个数学问题,就有一种成就感;另一方面,更重要的是教师本人要不断提高自己的专业水平。在总结、反思中不断提升自己的教学水平,做一名真正合格的人民教师。

篇7:常用离散型随机变量的高阶原点矩

常用离散型随机变量的高阶原点矩

对离散型随机变量的高阶矩进行了研究,给出了几类离散型随机变量的高阶原点矩的'统一递推公式,得到了离散型随机变量的高阶原点矩的形式特征.

作 者:何梅 朱成莲 HE Mei ZHU Cheng-lian  作者单位:淮阴师范学院,数学系,江苏,淮安,223300 刊 名:大学数学  PKU英文刊名:COLLEGE MATHEMATICS 年,卷(期): 25(2) 分类号:O211.1 关键词:离散型随机变量   矩   特征  

篇8: 《离散型随机变量及其分布列》数学教学反思

《离散型随机变量及其分布列》数学教学反思

一、教学内容、要求以及完成情况的再认识

《离散型随机变量的分布列》在近几年高考的推波助澜下愈发突显出其应用性和问题设计的新颖和创造性,如火如荼的新课改时时刻刻在提醒我们“思路决定出路”,们明确教学设计应是为了“学生的学而设计教”,不是为了“老师的教而设计学”。

1、学的重点应是离散型随机变量的分布列的含义与性质而非如何求概率

看过《离散型随机变量的分布列》的几个视频,大多采用“一个定义、三项注意、变式训练”的传授型数学概念教学模式,定义匆匆过,训练变式多,学生表示随机变量的分布列时错误不断。这些错误集中指向是某些事件的概率求错,从而导致分布列的表示错误,老师又纠错,学生还犯错。整堂课反映出的教学重点是求随机事件的概率。孰不知学生出错的根本原因是在思维的过程中没有有意识的将分布列问题转化为求互斥事件的概率。历经离散型随机变量的分布列的概念的教学过程并形成解题时将分布列问题转化为求互斥事件的概率的意识理应成为教学的重点。

2、数学概念的教学应是从创设概念的生长点的问题情境切入探究而不是抛给学生

“一个定义、三项注意、变式训练”的“抛式”数学概念教学模式,犹如过眼云烟,未建立在学生已有的认知基础上的数学概念的理解犹如空中楼阁,未建立在思维的最近发展区内进行的类比归纳的正迁移思维犹如断了翅膀的鸟,未历经数学概念的探究而进行的变式训练亦不过是模仿解题。“问题是数学的心脏”,数学活动是由“情景问题”驱动的,“问题解决”是其主要的活动形式,创设可以连续变式的正多面体的问题情境,提出从低纬度向高纬度发展的问题是历经数学概念再创造的好的开始。

引例1:某人抛一颗骰子,出现的点数有几种情况?如何表示?各种结果出现的概率分别是多少?

引例2:100件产品中有10件次品,任取其中的4件,出现次品的情况有几种?如何表示?各种结果出现的概率分别是多少?

引例3:扔一枚硬币,出现的结果有几种?能用数表示吗?如果可以,如何表示?各种结果出现的概率分别是多少?

以上三个问题,集中指向了先是随机变量取不同值时对应概率的表示,更加如何简洁的表示,而离散型随机变量的分布列也是概率的一种表示形式,古典概率就是离散型随机变量的分布列的知识生长点。这就是将数学概念的引入情境化、顺其自然、不强加于人,是要合乎学生的认知规律、不苛求与形式。

3、数学概念的含义和性质是剥洋葱皮式的探究而不是变式训练的强化

学生对数学概念的理解出现偏差,往往是学生站的认识问题的角度不合理、维度不全面,所以我借助于问题串、采用“剥洋葱皮”的方式从数学概念的外延出发探寻概念的内涵。问是深入思考的开始、是质疑探究的延续。

离散型随机变量的分布列的性质是概念的外延,而离散型随机变量的概率分布列的内涵是一个必然事件分解成有限个互斥事件的概率的另一种表示形式,更主要的是应在概念的生成中形成解决问题的思维方法。

问题1、通过以上简单的离散型随机变量的分布列,归纳出离散型随机变量的分布列具有哪些性质?(学生发现性质)

性质2的理解是本节课的一个难点,设置如下问题串:

问题2、性质2的含义是什么?

问题3、每一个分布列有多少个随机事件?

问题4、随机事件之间是什么关系?

问题5、这些随机事件构成的复杂事件又表示什么事件?

通过以上问题串的探究,就是要学生历经离散型随机变量分布列的本质的认识过程,从而形成求解离散型随机变量的分布列的方法和步骤:

①明确随机变量的含义、确定随机变量的取值

②判定随机事件的关系、计算随机事件的概率

③列表表示分布列、检验是否构成必然事件

这样设计的目的`是想避免学生在没有对数学概念和思想方法有基本了解的情况下就盲目进行大运动量的变式解题操练,导致教学缺乏必要的根基,是要培养学生数学用数学思维来解决问题。

在教学设计上要做整体的把握,应该从基本点出发,形成交汇点,进而达到制高点。教学的基本点就是“双基”:数学基础知识和基本技能。从双基出发,使得基础知识形成网络、基本技能形成规律。教学的交汇点就是数学活动,在数学活动中形成基本思想方法和基本活动经验。

制高点是什么?制高点是重点,是可以达到必要深度的部分,但又不仅仅是重点。重点只是数学的结果,不指向如何应对;而制高点致力于探寻问题解决的基本思路,形成解决问题的方法和规律。站在制高点上进行教学设计,就是首先要准备贯彻什么样的教学理念、采用什么样的教学方法为支撑下的教学设计。所以我在教学设计时重视情境预设、更重视思维的发展历程,关注知识的内化、更关注形成知识的方法的理性建构。

数学思维的培养成长于每一节课堂、成败于每一点基础、影响于每一个细节,让每一节数学课堂都真正在有利于学生发展为本的道路上改革,牢牢把握这个制高点,成功就水到渠成了。

二、值得注意的地方

在教学过程中要充分发挥学生的主体地位。在课堂上,无论是新教师还是老教师,通常会把自己当做课堂上的主人而过多的会忽略学生的主体地位;或者学生会因为长时间的习惯于听老师来讲解而忘记自己是课堂的主人。在建立新知的过程中,教师力求引导、启发,让学生逐步应用所学的知识来分析问题、解决问题,以形成比较系统和完整的知识结构。每个问题在设计时,充分考虑了学生的具体情况,力争提问准确到位,便于学生思考和回答。使思考和提问持续在学生的最近发展区内,学生的思考有价值,对知识的理解和掌握在不断的思考和讨论中完善和加深。但由于时间的把握,以及对学生的放手程度上‘实施落实的可能还不到位,有待改进。

总之,在今后的教学工作中,需不断总结、反思。作为数学教师,一方面要激发学生学习数学的兴趣,让学生感觉到每解决一个数学问题,就有一种成就感;另一方面,更重要的是教师本人要不断提高自己的专业水平。在总结、反思中不断提升自己的教学水平。

篇9:高中数学古典概型教案

古典概型

一、目标引领

1.理解随机事件和古典概率的概念?.

2.会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.

?重点及难点

重点是求随机事件的概率,难点是如何判断一个随机事件是否是古典概型,搞清随机事件所包含的基本事件的个数及其总数.

?二、自学探究

在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验,

试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成30次(最好是整十数),最后由课代表汇总.

试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成30次,最后由课代表汇总.

三、合作交流

在我们所做的每个实验中,有几个结果,每个结果出现的概率是多少?

学生回答:

在试验一中结果只有两个,即“正面朝上”和“反面朝上”,并且他们都是相互独立的,由于硬币质地是均匀的,因此出现两种结果的可能性相等,即它们的概率都是 .

在试验二中结果有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,并且他们都是相互独立的,由于骰子质地是均匀的,因此出现六种结果可能性相等,即它们的概率都是 .

引入新的概念:

基本事件:我们把试验可能出现的结果叫做基本事件.

古典概率:把具有以下两个特点的概率模型叫做古典概率.

(1)一次试验所有的基本事件只有有限个.

例如试验一中只有“正面朝上”和“反面朝上”两种结果,即有两个基本事件.试验二中结果有六个,即有六个基本事件.

(2)每个基本事件出现的可能性相等.

试验一和试验二其基本事件出现的可能性均相同.

随机现象:对于在一定条件下可能出现也可能不能出现,且有统计规律性的现象叫做随机现象.试验一抛掷硬币的游戏中,可能出现“正面朝上”也可能出现“反面朝上”,这就是随机现象.

随机事件:在概率论中,掷骰子、转硬币……都叫做试验,试验的结果叫做随机事件.例如掷骰子的结果中“是偶数”、“是奇数”、“大于2”等等都是随机事件.随机事件“是偶数”就是由基本事件“2点”、“4点”、“6点”构成.随机事件一般用大写英文字母A、B等来表示.

必然事件:试验后必定出现的事件叫做必然事件,记作 .例如掷骰子的结果中“都是整数”、“都大于0”等都是必然事件.

不可能事件:实验中不可能出现的事件叫做不可能事件,

基本事件有如下的两个特点:

(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.

四、精讲点拨

例1:从字母a、b、c、d任意取出两个不同字母的试验中,有哪些基本事件?

解:有ab,ac,ad,bc,bd,cd.

例2:(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概率吗?为什么?

答:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概率的第一个条件.

篇10:高中数学古典概型教案

课 题 古典概型 课 型 高一新授课 教学目标 理解古典概型及其概率计算公式,并能计算有关随机事件的概率 教学重点 理解古典概型的概念及利用古典概型求解随机事件的概率。 教学难点 如何判断一个试验是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。 教学方法 导学式、启发式教学 教 具 多媒体辅助 教学过程 教学内容与教师活动 学生活动 设计意图

创设情境引出课题

问题1:考察两个试验:

(1)抛掷一枚质地均匀的硬币的试验;

(2)掷一颗质地均匀的骰子的试验。

问:在这两个试验中,可能的结果分别有哪些?

教师引导学生思考 问题1:学生思考结果且给出基本事件的特点1

问题1设计意图:通过掷硬币与掷骰子两个接近于生活的试验的设计。先激发学生的学习兴趣,然后引导学生观察试验,分析结果,找出共性。

问题2:在掷骰子试验中,随机试验“出现偶数点”可以由哪些事件组成?教师引导学生思考 问题2:学生归纳与总结, 问题2设计意图:通过举例,引出基本事件的特点2。 问题3:基本事件有什么特点?

教师加以引导与启发,利用基本事件的关系发现基本事件的特点 问题3:学生口答 问题3设计意图:提高学生概括总结能力 问题4:例1、从字母a,b,c,d中任意取出两个不同字母的实验中,有那些基本事件?教师引导学生列举时做到不重复、不遗漏,教师指出画树状图是列举法的基本方法。

问题4:学生列举出基本事件。 问题4引导学生用列举法列举基本事件的个数,不仅能让学生直观的感受到研究对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点

通过设疑引出概念

问题1:(1)请问掷一枚均匀硬币出现正面朝上的概率是多少?

(2)掷一枚均匀的骰子各种点数向上的概率是多少?其中出现偶数点向上的概率是多少?让学生带着好奇心去观察数学模型,老师启发引导学生推导公式。

问题1学生得到答案且深层次的考虑问题

问题1设计意图:学生根据已有的知识,已经可以独立得出概率,通过教师的步步追问,引导学生深层次的考虑问题,看到问题的本质,得出概率公式。让学生带着思考问题观察试验,使其有目的的去寻找答案,有效的利用课堂时间,达到教学目标。

问题2:上述概率公式的推导过程中基本事件有什么特点?教师引导学生找出共性。具有下列两个特点的概率模型才能运用上述公式,我们称为古典概率模型,简称古典概型。

(1)试验中所有可能出现的基本事件只有有限个;(有限性)

(2)每个基本事件出现的可能性相等。(等可能性) 问题2学生观察和初步概括归纳古典概率模型及特征

问题2设计意图培养运用从特殊到一般,从具体到抽象数学思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过问题的解决引出古典概型的概念。

问题3:(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?

(2)某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环。你认为这是古典概型吗?为什么? 问题3学生互相交流,回答补充得到的答案 问题3设计意图:两个问题的设计是为了让学生更加准确的把握古典概型的两个特点。突破了如何判断一个试验是否是古典概型这一教学难点。

例题分析加深理例题分析加深理

例2、在数学考试中单选题是常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

教师引导学生思考是否满足古典概型的特征?教师对学生的回答进行归纳与总结

例2学生思考、讨论、交流,说出看法

例2设计意图:通过例题的学习让学生学会对古典概型的判断,就是看是否满足古典概型的两个基本特征:有限性与等可能性,由此掌握求此类题目的方法,让学生进一步理解古典概型的概率计算公式。

变式:假设我们现在将单选题改为不定项选择题,不定项选择题从A、B、C、D四个选项中选出所有正确答案,假设还是这名考生,他随机的选择一个答案,他猜对的概率是多少

教师引导学生列举15种可能出现的答案,判断是否满足古典概型的特征,利用概率公式求值。 变式:学生在老师的引导下列举15种可能出现的答案,并且判断是否满足古典概型的特征,利用概率公式求值。 变式设计意图:让学生感受到数学模型的生活化,能用所学知识解决新问题是数学学习的主旨。当学生用自己的知识解决问题后,会有极大的成就感,提高了学习兴趣。

例3、同时掷两个骰子,计算:(1)一共有多少种不同的结果?

(2)其中向上的点数之和是5的结果有多少种?

(3)向上的点数之和是5的概率是多少?

教师将学生的结果汇总展示,学生给出的答案可能会有多种,然后引导学生分析原因,寻找解答中存在的问题。其中这两种答案分别对应了解题中的两种处理方法:把骰子标号进行解题和不标号进行解题,可以提示学生先把这两种方法下的基本事件全部列出来,然后验证是否为古典概型。

教师分析两种方式中每个基本事件的等可能性,引导学生发现在第二种情况下每个基本事件不是等可能的,不是古典概型,因此不能用古典概型计算公式。

例3学生思考、讨论,列出两种方法下的基本事件,发现基本事件的总数不相等,学生发现在第二种情况下每个基本事件不是等可能的,不是古典概型,因此不能用古典概型计算公式

例3设计意图:引导学生根据古典概型的特征,用列举法解决概率问题。深化巩固对古典概型及其概率计算公式的理解,和用列举法来计算一些随机事件所含基本事件的个数及事件发生的概率。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

篇11:高中数学古典概型教案

一、教材分析

1、教材的地位和作用

本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在学习随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的 。古典概型是一种特殊的、最基本的概率模型,它的引入避免了大量的重复试验,而且得到的是概率的精确值,有利于学生理解概率的概念和概率值的存在,也为后面学习几何概型作铺垫。同时学习了本节内容,能够帮助学生解决生活中的一些问题,激发学生的学习兴趣,因此本节知识在高中概率中占有相当重要的地位。

2、教学目标

知识与技能

(1)理解古典概型及其概率计算公式,

(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

过程与方法

根据本节课的内容和学生的实际水平,通过试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用分类讨论的思想解决概率的计算问题。

情感、态度与价值观

树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性的理解世界, 使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神。鼓励学生通过观察类比提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

3、教学重点与难点

重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

难点:如何判断一个试验是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

二、教法与学法分析

1、教法分析

为突出重点,突破难点,使学生能达到本节课设定的目标,根据本节课的内容特点,我采取了引导探究,讨论交流的教学模式,即通过再次考察前面做过的实验引入课题,根据学习情况,在合适的时机提出问题,设置合理有效的教学情境,让每一位学生都参与课堂讨论,提供学生思考讨论的时间与空间,师生一起探讨古典概型的特点以及概率值的求法。在教学过程中,利用多媒体等手段构建数学模型,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来,并利用了情感暗示以及恰当的评价等教学方法。

2、学法分析

学生在教师创设的问题情景中,通过观察类比、思考探究、概括归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

三、教学过程分析

(一)创设情境,引出课题

通过设置问题情境,激发学生的学习兴趣,同时设置问题:在不用做模拟试验的情况下,如何求解随机事件A、B发生的概率呢?从而引入新课。

(二)新知探究

1、考察两个试验:

①掷一枚质地均匀的硬币的试验;

②掷一枚质地均匀的骰子的试验。

这两个试验出现的结果分别有几个?(2个,6个)

2、思考:在试验二中,出现偶数点包含哪些基本事件?点数大于4可有哪些基本事件构成?

在试验一及二中,必然事件可以表示成基本事件的和吗?不可能事件呢?

提出问题:上述两个试验的每个结果之间都有什么特点?

3、基本事件的特点:

(1) 任何两个基本事件是互斥的;

(2) 任何事件(除不可能事件)都可以表示成基本事件的和

学生——思考、讨论

老师——利用试验给出所有可能出现的结果即基本事件。

老师——加以引导与启发,利用基本事件的关系发现基本事件的特点。

学生——归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力

这节课的重点是理解古典概型,通过掷硬币与掷骰子两个接近于生活的试验的设计。先激发学生的学习兴趣,然后引导学生观察试验,分析结果,找出共性。最后,总结归纳出基本事件的特点。然后再通过举例,进一步加深对基本事件的理解,从而为引出古典概型的定义做好铺垫。

?二、通过类比,引出概念

例1 从字母a,b,c,d中任意取出两个不同字母的实验中,有那些基本事件?(6个)

?设计意图:使学生掌握基本事件,学会用列举法列出所有的基本事件,为归纳出古典概型的特征提供了素材。

问题:上述试验和例1的共同特点是什么?

试验中所有可能出现的基本事件只有有限个;

每个基本事件出现的可能性相等。

老师——引导学生列举时做到不重复、不遗漏

学生——列举出基本事件

老师——引导学生找出共性。我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。

为了引出古典概型的概念,设计了例1。通过列举法列举基本事件,进一步理解与巩固基本事件的概念;然后设疑:“类比试验与例1中基本事件有什么共同点?”,通过问题的解决让学生体验由特殊到一般的数学思想方法的应用,从而引出古典概型的概念。

?三、观察类比,推导公式

思考:古典概型下,基本事件出现的概率是多少?随机事件按出现的概率又该如何计算?

篇12:高中数学古典概型教学教案

古典概型

学情分析

(二)教学目标

1. 知识与技能:

(1) 通过试验理解基本事件的概念和特点;

(2) 通过具体实例分析,抽离出古典概型的两个基本特征,并推导出古典概型下的概率计算公式;

(3) 会求一些简单的古典概率问题。

2. 过程与方法:经历探究古典概型的过程,体验由特殊到一般的数学思想方法。

3. 情感与价值:用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。

(三)教学重、难点

重点:理解古典概型的概念,利用古典概型求解随机事件的概率。

难点:如何判断一个试验是否为古典概型,弄清在一个古典概型中基本事件的总数和某随机事件包含的基本事件的个数。

(四) 教学用具

多媒体课件,投影仪,硬币,骰子。

(五)教学过程

[情景设置]

[温故知新]

(1)回顾前几节课对概率求取的方法:大量重复试验。

(2)由随机试验方法的不足之处引发矛盾冲突:我们需要寻求另外一种更为简单易行的方式,提出建立概率模型的必要性。

[探究新知]

一、基本事件

思考:试验1:掷一枚质地均匀的硬币,观察可能出现哪几种结果?

试验2:掷一枚质地均匀的骰子,观察可能出现的点数有哪几种结果?

定义:一次试验中可能出现的每一个结果称为一个基本事件。

思考:掷一枚质地均匀的骰子

(1)在一次试验中,会同时出现“1点”和“2点”这两个基本事件吗

(2)随机事件“出现点数小于3”与“出现点数大于3”包含哪几个基本事件?

掷一枚质地均匀的硬币

(1)在一次试验中,会同时出现“正面向上”和“反面向上”这两个基本事件吗

(2)“必然事件”包含哪几个基本事件?

基本事件的特点:(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

二、古典概型

思考:从基本事件角度来看,上述两个试验有何共同特征?

古典概型的特征:(1)试验中所有可能出现的基本事件的个数有限;

(2)每个基本事件出现的可能性相等。

师生互动:由学生和老师各自举出一些生活实例并分析是否具备古典概型的两个特征。

向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这一试验能用古典概型来描述吗?为什么?

(2)北京奥运会上我国选手张娟娟以出色的成绩为我国赢得了射箭项目的第一枚奥运金牌。你认为打靶这一试验能用古典概型来描述吗?为什么?

三、求解古典概型

思考:古典概型下,每个基本事件出现的概率是多少?随机事件出现的概率又如何计算?

(1) 基本事件的概率

试验1:掷硬币

P (“正面向上”)= P (“反面向上”)=

试验2:掷骰子

P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=

结论:古典概型中,若基本事件总数有n个,则每一个基本事件出现的概率为

(2)随机事件的概率

掷骰子试验中,记事件A为“出现点数小于3” ,事件B为“出现点数大于3”,如何求解P(A)与P(B)?

结论:古典概型中,若基本事件总数有n个,A事件所包含的基本事件个数为m,则

P(A)=

古典概型的概率计算公式:

[实战演练]

例1.标准化考试的选择题有单选和不定项选择两种类型。假设考生不会做,随机从A、B、C、D四个选项中选择正确的答案,请问哪种类型的选择题更容易答对?

分析:解决这个问题的关键在于本题什么情况下可以看成古典概型。如果考生掌握了所考察的部分或全部知识,这都不满足古典概型的第2个条件—等可能性,因此,只有在假定考生不会做,随机地选择了一个答案的情况下,才为古典概型。

篇13:高中数学古典概型教学教案

教材分析

(一) 教材地位、作用

《古典概型》是高中数学人教A版必修3第三章概率3.2的内容,教学安排是2课时,本节是第一课时。是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,它的引入避免了大量的重复试验,而且得到的是概率精确值,同时古典概型

也是后面学习条件概率的基础,它有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题,起到承前启后的作用,所以在概率论中占有相当重要的地位。

(二)教材处理:

学情分析:学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。

教学内容组织和安排:根据上面的学情分析,学生思维不严密,意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。通过对问题情境的分析,引出基本事件的概念,古典概型中基本事件的特点,以及古典概型的计算公式。对典型例题进行分析,以巩固概念,掌握解题方法。

二、三维目标

知识与技能目标:

(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;

(2)理解古典概型的概率计算公式 :P(A)=

(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

过程与方法目标:根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用分类讨论的思想解决概率的计算问题。

情感态度与价值观目标:通过各种有趣的,贴近学生生活的素材,激发学生学习数学的热情和兴趣,培养学生勇于探索,善于发现的创新思想;通过参与探究活动,领会理论与实践对立统一的辨证思想;结合问题的现实意义,培养学生的合作精神.

三、教学重点与难点

1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

2、难点:如何判断一个试验是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数

四、教法与学法分析

教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

五、教学基本流程

六、教学设计

教学设计 设计意图 师生互动 1 课前模拟试验:

①掷一枚质地均匀的硬币的试验;

②掷一枚质地均匀的骰子的试验。

问题1 用模拟试验的方法来求某一随机事件的概率好不好?为什么?

问题2 分别说出上述两试验的所有可能的实验结果是什么?每个结果之间都有什么关系? 模拟实验的目的是创建与新课内容相关的实验模型,把问题具体化,过渡到新课时自然有序,同时也培养了学生的动手能力和与人合作的能力。

问题1的引出,激发学生的求知欲望和学习兴趣

让学生思考讨论问题2,直接进入新课,把课堂交给学生。

学生——实验、思考、讨论

老师——利用试验给出所有可能出现的结果即基本事件。

老师——加以引导与启发,利用基本事件的关系发现基本事件的特点。

学生——归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力 2 问题一:什么是基本事件?基本事件有什么特征?

例从字母a,b,c,d中任意选出两个不同字母的试验中,有哪些基本事件?

练习(1)在掷骰子的试验中,事件“出现偶数点 ”是哪些基本事件的并事件?

(2)先后抛掷两枚均匀的硬币的试验中,有哪些基本事件?

问题二:上述试验和练习的共同特点是什么?

(1)试验中所有可能出现的基本事件只有有限个;

(2)每个基本事件出现的可能性相等 为了引出古典概型的概念,设计了练习。通过列举法列举基本事件,进一步理解与巩固基本事件的概念;然后设疑:“类比试验与练习中基本事件有什么共同点?”,通过问题的解决让学生体验由特殊到一般的数学思想方法的应用,从而引出古典概型的概念。 老师——引导学生列举时做到不重复、不遗漏

学生——列举出基本事件

老师——引导学生找出共性。我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。 3 思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率又如何计算?

观察:掷硬币与掷骰子的试验完成 例1 .(1)求在抛掷一枚硬币观察哪个面向上的试 验中“正面朝上”和“反面朝上”这2个基本事件的概率?

(2)在抛掷一枚骰子的试验中,出现“1点”、“2点”、“3点”、“4点”、“5点”、“6点”这6个基本事件的概率?

(3)在掷骰子的试验中,事件“出现偶数点”发生的概率是多少?

总结:你能从这些试验中找出规律,总结出公式吗?

了解古典概型的概念之后,就要引领学生探究概率公式。为了突破这个重点我设计了3个环节

首先,让学生带着思考问题观察试验,使其有目的的去寻找答案,有效的利用课堂时间,达到教学目标。

其次,公式的推导是在老师的启发引导下,让学生带着好奇心去观察数学模型。(模型演示)多媒体引入课堂为学生提供了广阔的空间,通过直观感受,使学生对规律的总结快速而准确。

最后,学生在回答例1问题的过程中,逐步感受由特殊性演变到一般性,最终得出结论。过程自然而有序,让学生体验到认知的自然升华,感受数学美妙的意境。 老师——提出问题

篇14:高中数学古典概型教学教案

教材分析

? 教材地位及作用 本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。

学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。 ? 教学重点 理解古典概型的概念及利用古典概型求解随机事件的概率。 根据本节课的地位和作用以及新课程标准的具体要求,制订教学重点。 教学难点 如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。 根据本节课的内容,即尚未学习排列组合,以及学生的心理特点和认知水平,制定了教学难点。 教

目标 1.知识与技能

(1)理解古典概型及其概率计算公式,

(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

2.过程与方法

根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。

3.情感态度与价值观

概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。 根据新课程标准,并结合学生心理发展的需求,以及人格、情感、价值观的具体要求制订而成。这对激发学生学好数学概念,养成数学习惯,感受数学思想,提高数学能力起到了积极的作用。 ?

项 目 内 容 师生活动 理论依据或意图

过程分析 一

提出问题引入新课 在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验:

试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由科代表汇总;

试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由科代表汇总。

在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受。

教师最后汇总方法、结果和感受,并提出问题?

1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?

不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。

2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点? 学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出问题。 通过课前的模拟实验的展示,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。

二思考交流形成概念

在试验一中随机事件只有两个,即“正面朝上”和“反面朝上”,并且他们都是互斥的,由于硬币质地是均匀的,因此出现两种随机事件的可能性相等,即它们的概率都是 ;

在试验二中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,并且他们都是互斥的,由于骰子质地是均匀的,因此出现六种随机事件的可能性相等,即它们的概率都是 。

我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

基本事件有如下的两个特点:

(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

特点(2)的理解:在试验一中,必然事件由基本事件“正面朝上”和“反面朝上”组成;在试验二中,随机事件“出现偶数点”可以由基本事件“2点”、“4点”和“6点”共同组成。 学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深新概念的理解。 让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运 用对立统一的辩证唯物主义观点来分析问题的一种方法。

教师的注解可以使学生更好的把握问题的关键。 项 目 内 ?容 师生活动 理论依据或意图 教

过程分析

二思考交流形成概念 例1 从字母 中任意取出两个不同字母的试验中,有哪些基本事件?

分析:为了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来。利用树状图可以将它们之间的关系列出来。

我们一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法,一般分布完成的结果(两步以上)可以用树状图进行列举。

(树状图)

解:所求的基本事件共有6个:

, , ,

, ,

观察对比,发现两个模拟试验和例1的共同特点:

试验一中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是 ;

试验二中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是 ;

例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是 ;

经概括总结后得到:

(1)试验中所有可能出现的基本事件只有有限个;(有限性)

(2)每个基本事件出现的可能性相等。(等可能性)

我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。

思考交流:

(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?

先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。

让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。

学生互相交流,回答补充,教师归纳。 将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点。

培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过用表格列出相同和不同点,能让学生很好的理解古典概型。从而突出了古典概型这一重点。

两个问题的设计是为了让学生更加准确的把握古典概型的两个特点。突破了如何判断一个试验是否是古典概型这一教学难点。 项 目 内 容 师生活动 理论依据或意图 教

过程分析 思考交流形成概念 答:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。

(2)如图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环。你认为这是古典概型吗?为什么?

答:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。 ? ? 三

观察分析推导方程 问题思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?

分析:

实验一中,出现正面朝上的概率与反面朝上的概率相等,即

P(“正面朝上”)=P(“反面朝上”)

由概率的加法公式,得

P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1

因此 P(“正面朝上”)=P(“反面朝上”)=

即 试验二中,出现各个点的概率相等,即

P(“1点”)=P(“2点”)=P(“3点”)

=P(“4点”)=P(“5点”)=P(“6点”)

反复利用概率的加法公式,我们有

P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1

所以P(“1点”)=P(“2点”)=P(“3点”)

=P(“4点”)=P(“5点”)=P(“6点”)=

进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,

P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)= + + = =

即 根据上述两则模拟试验,可以概括总结出,古典概型计算任何事件的概率计算公式为:

教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系。 鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。

《离散型随机变量期望》说课稿

高中数学古典概型教案

离散数学论文

离散数学试卷

高中数学教学教案

高中数学对数函数教案

高中数学备课教案

高中数学优秀教案

高中数学必修1教案

高中数学必修四教案

《高中数学《离散型随机变量的期望》教案(通用14篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档