欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

相似三角形的性质八年级数学教学设计

时间:2025-10-06 08:01:21 其他范文 收藏本文 下载本文

下面是小编精心整理的相似三角形的性质八年级数学教学设计,本文共20篇,仅供参考,大家一起来看看吧。

篇1:相似三角形的性质八年级数学教学设计

相似三角形的性质八年级数学教学设计

一、教学目标

1。掌握相似三角形的性质定理2、3。

2。学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题。

3。进一步培养学生类比的教学思想。

4。通过相似性质的学习,感受图形和语言的和谐美

二、教法引导

先学后教,达标导学

三、重点及难点

1。教学重点:是性质定理的应用。

2。教学难点:是相似三角形的判定与性质等有关知识的综合运用。

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具。

六、教学步骤

[复习提问]

叙述相似三角形的性质定理1。

[讲解新课]

让学生类比“全等三角形的周长相等”,得出性质定理2。

性质定理2:相似三角形周长的比等于相似比

同样,让学生类比“全等三角形的面积相等”,得出命题。

“相似三角形面积的.比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象。

性质定理3:相似三角形面积的比,等于相似比的平方。

注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习。

(2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是 ,它们的面积之经不一定是 ,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题。

例1 已知如图, ∽ ,它们的周长分别是60cm和72cm,且AB=15cm, ,求BC、AB、、。

此题学生一般不会感到有困难。

例2 有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比。

教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法。

解:设原地块为 ,地块在甲图上为 ,在乙图上为 。

学生在运用掌握了计算时,容易出现 的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如: ,而

[小结]

1。本节学习了相似三角形的性质定理2和定理3。

2。重点学习了两个性质定理的应用及注意的问题。

七、布置作业

教材P247中A组4、5、7。

八、板书设计

篇2:《相似三角形的性质》的数学教学反思

《相似三角形的性质》的数学教学反思

《相似三角形的性质》是几何内容,数形结合比较多。于是我借助于多媒体教学制作了课件,节约板书的作图时间。本节课先复习相似三角形的基本性质,即相似三角形的对应角相等,对应边成比例。通过从三个边长分别为1,2,3的等边三角形入手引导学生思考:相似三角形的周长比、面积比与相似比之间有什么关系?学生进行了大胆猜想:“相似三角形周长比等于相似比,面积比等于相似比的平方”。接下来进行逻辑推理,并让学生自己尝试类推相似多边形周长比、面积比与相似比的关系。最后指导学生运用这两个性质解决实际问题,效果非常好。

这节课让我感触很多:在已有知识的基础上用类比化归的思想去探究新知,让学生充分体会数学知识之间的内在联系,以此激发学生的学习兴趣,通过教师的点拨引导,学生积极开展小组合作学习,交流探索新知,并且在不断探索中学会创造性学习——由问题发散出新问题,培养学生的探索和创新能力。学生在得出相似三角形周长比等于相似比后,就及时提出由相似比如何求面积比,我让他们又讨论、探究,最后得出了结论。整个课堂气氛活跃。

归纳起来,这一节课从始到终,学生们都主动地参与了课堂活动,积极地交流探讨,发现的问题较多:相似三角形的周长比,面积比,相似比在书写时要注意对应关系,不对应时,计算结果正好相反;这两个性质使用的前提条件是相似三角形等等。同学们讨论非常激烈,充分体现本节课堂教学取得了明显的效果。此外,教师的肯定、表扬与鼓励,会使学生始终保持高昂的学习热情,感受在探究性学习,创造性劳动中获得成功的乐趣。

篇3:数学《相似三角形的性质》教案设计

数学《相似三角形的性质》教案设计

教学建议

知识结构

重点、难点分析

相似三角形的性质及应用是本节的重点也是难点.

它是本章的主要内容之一,是在学完相似三角形判断的基础上,进一步研究相似三角形的性质,以完成对相似三角形的定义、判定和性质的全面研究.相似三角形的性质还是研究相似多边形性质的基础,是今后研究圆中线段关系的工具.

它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的`直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大.

教法建议

1。教师在知识的引入中可考虑从生活实例引入,例如照片的放大、模型的设计等等

2。教师在知识的引入中还可以考虑问题式引入,设计一个具体问题由学生参与解答

3。在知识的巩固中要注意与全等三角形的对比

(第1课时)

一、教学目标

1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.

2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.

3.进一步培养学生类比的教学思想.

4.通过相似性质的学习,感受图形和语言的和谐美

二、教法引导

先学后教,达标导学

三、重点及难点

1.教学重点:是性质定理1的应用.

2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

[复习提问]

1.三角形中三种主要线段是什么?

2.到目前为止,我们学习了相似三角形的哪些性质?

3.什么叫相似比?

[讲解新课]

根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.

下面我们研究相似三角形的其他性质(见图).

建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.

性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比

∽ ,

教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.

分析示意图:结论→∽(欠缺条件)→∽(已知)

∽ ,

BM=MC,

∽ ,

以上两种情况的证明可由学生完成.

[小结]

本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.

七、布置作业

教材P241中3、教材P247中A组3.

八、板书设计

篇4:数学相似三角形的性质教学计划

教学目标:

1、探索相似三角形的性质,会运用相似三角形的性质解决有关的问题;

2、发展学生合情推理,和有条理的表达能力

教学重点:

篇5:数学相似三角形的性质教学计划

教学难点:

有条理的表达与推理

教学设计:

一、情境创设

(1)前面学习了相似三角形、相似多边形的概念,知道如果两个三角形或两个多边形相似,那么它们的对应角、对应边成比例。相似三角形、相似多边形是否还有其他的一些性质呢?

(2)所有的正方形都是相似形(它们的对应角相等,对应边成比例)。

若正方形的边长为1,则周长为4,面积是1;若正方形的边长为2,则周长为8,面积是4;

若正方形的边长为3,则周长为12,面积是9;若正方形的边长为a,则周长为4a,面积是a2。

这些正方形间周长的比,面积的比与其边长的比之间有怎样的`关系呢?

二、探索活动

1、若△ABC∽△A′B′C′,那么△ABC与△A′B′C′的周长比等于相似比吗?

问题1. 为了解决这个问题,不妨设这个相似比为k,只要考虑什么就可以了?

问题2. 相似比为k,那么哪些线段的比也等于k?

问题3. 这两个三角形的周长又分别与哪些线段有关?

问题4. 如何得出这两个三角形的周长比与相似比k的关系?

得出:相似三角形的周长的比等于相似比

问题5. 你能运用类似的方法说明“相似多边形的周长等于相似比吗?”

得出:相似多边形的周长等于相似比

2、问题1.若△ABC∽△A′B′C′,那么△ABC与△A′B′C′的面积比与相似比又有什么关系呢?

已知△ABC∽△A′B′C′,相似比是k,AD和A′D′分别是△ABC和△A′B′C′的高。

因为∠B=∠B′,∠ADB=∠A′D′B′=90°所以△ABD∽△A′B′D′

所以 ,即AD=kA′D′,

所以

得出:相似三角形的面积比等于相似比的平方

问题2.你能类似地得出相似多边形的面积比与相似比的关系吗?

得出:相似多边形的面积比等于相似比的平方。

三、例题讲解

例1、(P106例1)在比例尺为1:500的地图上,测得一个三角形地块ABC的周长为12cm,面积为6cm2,求这个地块的实际周长和实际面积。

2、若△ABC∽△DEF,△ABC的面积为81cm2,△DEF的面积为36cm2,且AB=12cm,则DE= cm

3、在△ABC中,F、G分别是AB、AC的中点,那么△AFG与四边形FBCG的面积之比是

4、如图,ΔABC中,DE∥FG∥BC,AD:DF:FB=1:2:3,则S四边形DFGE:S四边形FBCG=_________.

5、如图,在△ABC中,DE//BC,若 ,试求△DOE与△BOC的周长比与面积比。

6、如图,梯形DBCE中,DE∥BC,若S△EOD:S△BOC =1:9,求DE:BC的值.

添加:S1=2,求梯形DBCE的面积。

练习:如图,把△ABC沿AB边平移到△DEF的位置,它们重叠部分(即图中阴影部分)的面积是△ABC的面积的一半,若AB=2,求此三角形移动的距离BE的长。

7、如图,在△ABC中,D是BC边的中点,且AD=AC,DE⊥BC交AB于E,EC交AD于F

(1)说明:△ABC∽△FCD

(2)若S△FCD=5,BC=10,求DE的长。

篇6:八年级数学《全等三角形性质》教学反思

这节课根据学生现有的认知水平和能力水平,首先,展示教材上的图案以及制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。再让学生找出生活中具有类似特点的图形,激发学生的学习积极性,让学生体会数学来源于生活,生活中存在数学美。

第二,让学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。然后,通过阅读的方法让学生找出全等形和全等三角形的概念。

第三,教师演示一个三角形经过平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式练指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置上,然后再给出用全等符号,表示全等三角形并加以练习,加强对知识的巩固。

第四,通过学生对全等三角形纸板的观察,小组讨论,合作交流,观察对应边、对应角有何关系,从而得出全等三角形的性质。并通过练习来理解全等三角形的性质并渗透符号语言推理。最后师生共同小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。

通过这节课的学习,学生能找出图形中的全等图形,多数学生对本节课的知识掌握较好,但是个别学生在用符号标记全等三角形时对应点还是有部分学生没有写对,还有的学生把“全等于”的符号写错了,对这些学生还要多作指导,以巩固基础知识,为后续的学习做好准备。

篇7:八年级数学《全等三角形性质》教学反思

几何知识对健听学生来说学得都是比较困难、也是不容易理解和掌握的,更何况是我们这些听障孩子。几何有很多概念用手语也是不容易与学生讲得很透彻的,而且,几何它又枯燥无味,所以,要学好,不容易。但我还是从学生的特点和认知能力出发,做好每一堂课的教学工作。

以《全等三角形》第一课时为例,这节课主要是学习全等形和全等三角形的概念,从中得出全等三角形的性质。我首先拿出两张一模一样的钞票,提问学生思考两张钞票是否一样,为什么一样?(学生还真的很感兴趣)再拿出两本学生数学课本,提问学生思考两本数学课本是否一样,又为什么一样?再拿出两个一模一样的用纸片自制的三角形图形,提问学生思考这两个三角形是否一样,又为什么一样?让学生自主发言,有说这的,有说那的,老师启发学生从形状和大小上去思考,是否一样。

多数学生可以回答。老师再展示教材上的图案以及制作的。一些三角形、四边形等图案,引导学生观察,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。老师适时点拨,然后让学生自己动手做或随意去寻找两个形状与大小完全相同的图形,通过学生自己动手实践,直观感知全等形和全等三角形的概念。老师点拨帮助学生归纳出全等形和全等三角形的概念。形状、大小完全相同(能够完全重合)的两个图形叫做全等形;形状、大小完全相同(能够完全重合)的两个三角形叫做全等三角形。接着,老师随即在黑板上分别演示一个三角形经平移,翻折,旋转后,它所构成的两个三角形是全等的。

再通过教具演示让学生体会对应顶点、对应边、对应角的概念(强调对应),并以找朋友的形式进行练习,指出它们的对应顶点、对应边和对应角,以求得学生对对应元素的理解。此时给出全等三角形的表示方法;再提示学生对应顶点要写在对应的位置上,然后再给出用全等符号来表示全等三角形的练习,加强对所学知识的巩固,再出示练习,判断哪一种表示全等三角形的方法是正确的。

再次,老师引导学生通过对全等三角形纸板的观察,观察对应边、对应角有何关系,从而得出全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。并通过练习来理解全等三角形的性质。最后老师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。

篇8:八年级数学《全等三角形性质》教学反思

根据学生的认知能力本节课的教学过程设计:首先,展示教材上的图案以及制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。然后教师安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念,其次,通过阅读法让学生找出全等形和全等三角形的概念,并且通过让学生找出生活种的全等图形让学生体会数学来源于生活,生活中存在数学美。

然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式练指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。

再次,通过学生对全等三角形纸板的观察,小组讨论,合作交流,观察对应边、对应角有何关系,从而得出全等三角形的性质。并通过练习来理解全等三角形的性质并渗透符号语言推理。最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。

通过这节课的学习,学生能找出图形中的全等图形,但是再用符号标记全等三角形时对应点还是有部分学生没有写对,对这些学生还要多作指导。

这节课改变了传统的“传递——接受”式模式,尝试采用“问题——探究”型的教学模式,教学过程注重学习方法,注重思维方法,注重探索方法,让学生尽可能地经历合作和交流,感受不同的思维方式,思维过程,通过互动体验认和思想,培养与他人合作的意识和态度。产生学的兴趣和自信心。让学生在互动的过程中学的知识与经验,思想与方法,体现了“方法比知识更重要”这一新的教学价值观。

篇9:八年级数学《全等三角形性质》教学反思

本节课教学让学生通过观察和动手操作获取知识,激发学生的学习兴趣。改变了传统的“传递—接受”式教学,尝试用“问题—探究”的教学方法,教学过程中注重学习方法、思维方法、探索方法,让学生尽可能的经历交流与合作,通过互动体验认识数学和数学思想,培养与他人合作的意识和态度。产生学习数学的兴趣和自信心,让学生在互动中学到数学的知识和经验、思想和方法。

一、设计有趣的图形和动画激发学生的兴趣。

在介绍全等形和全等三角形对应元素的概念时,我设计不同的图形变换使它们完全重合,如:孙悟空飞奔接着翻跟头等。旨在学生直观感受概念的内涵。

二、引导学生动手操作,获取知识。

在学习全等三角形相关概念、探索全等三角形性质以及运用符号表示全等三角形时,通过学生动手操作学具来获取这些知识,加深对“全等三角形”“对应元素”“对应顶点写在对应的位置上”含义的'理解。在这里使我意外的是,很多学生采用多种图形变换使两个全等三角形完全重合并找出对应元素。

三、学生存在的问题。

在找全等三角形的对应元素时部分学生还没找对,是因为这部分学生对“对应元素”的概念不清,在操作的过程中观察不仔细。针对这部分学生教师应该带着他们一起操作两个全等三角形重合的过程,使他们深刻体会“对应元素”。

篇10:八年级数学《全等三角形性质》教学反思

教师的成长在于不断地总结教学经验和进行教学反思,下面就是我对我的这一节课的得失分析。

本课为本章的起始课,主要是一些基础的概念和性质,本节课的设计注重学生的直观感知和情感体验,从学生熟悉的生活中的全等现象和全等图形引入,借助直观、形象、生动的多媒体课件演示,激发学生兴趣,充分调动学生的学习积极性。在教学过程中,增添了许多教材中没有的一些常见图形和课例,由易到难充分展示,给学生提供一个观察、思考的平台。

通过学生的观察、思考、交流、总结归纳出概念和性质,培养了学生初步的识图能力。在整个教学过程中,学生在自主探索和合作交流中,经历了观察、操作、思考等思维过程,而这样的过程能够促进学生对数学的真正理解和把握,符合学生思维发展,培养了学生分析、解决问题的能力和逻辑思维能力。通过图形的变换,让学生在不同的图形中寻找对应元素,突破本节的重、难点。

在教学过程中,真正做到以生为本。让学生积极参与课堂活动之中,成为课堂的主体,而教师则适时点拨,及时引导。让学生体验到数学的乐趣,让学生从中不仅获得了知识,提高了技能,经历了数学活动,同时在情感、态度、价值观等方面也都得到了很好的发展。

不足之处:由于准备时间不够充分,在一些例子的设置上没有完全注意到学生的差异。如问题三,找全等三角形的对应边和对应角时,设计的图形较为复杂,致使一些基础较弱的同学解决此题较为吃力。

篇11:八年级数学《全等三角形性质》教学反思

本节课教学,主要是让学生在回顾全等三角形判定(除了定义外,已经学了四种方法:SASASAAASSSS)的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解。在教学过程中,我让学生充分体验到动手操作、剪拼、翻折平移、推理证明的数学方法,一步步培养他们的逻辑推理能力。整节课让学生从画几何图形,剪拼,翻折平移,起到了较好的作用,学生更加清楚直观,以及学习推理证明的方法。

本节课的主要内容是直角三角形全等的判定方法HL,这是仅适用于直角三角形的判定方法。

通过HL得出角平分线性质定理的逆定理,是本节课的所得出的重要结论。

教学设计中的不足

1、学生在复习“SSS”的时候已经提出对于直角三角形我只需补充两条边的条件即可。而我在课堂上,没有重视学生的生成,可以顺着学生的思路,补充两个条件:①两条直角边;②一条直角边和斜边。若补充①,可根据SAS直接证明两个三角形全等。若补充②,引导学生思考,如何证明两个直角三角形全等,直接引出HL。

2、在【应用实践】环节,还是给出较多的两个三角形全等的辨析,有些重复,并且没有突出重点,还容易让学生混乱。因此,可将其中的某些练习删除,保留更多HL的应用证明。

3、课本例题经过分析之后,没有在黑板上板书完整的证明过程,没有突出板书的示范作用。同时,对于学生书写的落实不够,学生缺少独立书写的时间和机会,也导致了学生作业完成格式不规范的原因。因此,在今后的教学中,对例题分析完成之后,应给予学生一定时间书写证明过程。

4、在课堂的整体教学中,太过心急。学生没有及时反应时,就急忙对学生进行引导,给予学生思考时间不足。并且,在课堂上总是抢学生的话,嗦嗦讲个不停,不但没有对学生进行需要的引导作用,还扰乱学生读题的注意力和思考的思路。

5、启发性、激趣性不足,导致学生的学习兴趣不易集中,课堂气氛不能很快达到高潮,延误了学生学习的最佳时机;

6、在学生的自主探究与合作交流中,时机控制不好,导致部分学生不能有所收获;

7、在评价学生表现时,不够及时,没有让他们获得成功的体验,丧失激起学生继续学习的很多机会。

三、对课堂教学的改进

1、在今后的教学中,对于课堂教学过程的设计还需多多向前辈讨教学生,碰到比较难处理的地方也可向周边老师学校讨论,设计更清晰的教学流程,不能含糊,生硬的压给学生。

2、关于课堂板书,分析过程写明之后,还应该书写完成的证明过程,示范给学生。因此,可以在分析完成之后,请学生打开随堂练习本,与老师一起书写证明过程,最后展示书写规范并美观的学生作品。

3、在日常教学中应注意自己的提问有效性,尽可能减少课堂中不必要的话,精炼并简洁课堂教学语言,避免习惯的养成。

篇12:八年级数学《全等三角形性质》教学反思

全等三角形第一课时,这节课比较简单,我采用了先学后教的教学策略。

教学过程大致是:

首先,学生自学。

其次,教师多媒体展示教材上的图案以及制作的一些图案,引导学生识图,检测学生自我建构全等三角形概念的情况。

再次,教师演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的`形式练指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。

接下来,通过学生对全等三角形观察,得出全等三角形的性质。并通过练习来理解全等三角形的性质并渗透符号语言推理。

最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。

这节课有几点不足:

1、学生动手活动少,应该在课前就要求学生自制一对全等三角形。这样课堂上好操作,学生体验也深刻了,活而不乱,时间上也是可控的。

2、题目变形应该突出全等三角形的性质这一重点,所练习题的综合度和变化还是不够多。

3、多媒体演示如能配合学生手工制作的三角板同时进行,效果会更好。但是要安排好观察次序和图形的变化次序。

篇13:八年级数学《全等三角形性质》教学反思

本节课的情境导入是从我们身边的实例出发引入全等形的概念,学生较容易理解,较难做的是从不同的图形中去识别两个全等三角形的对应边,对应角。因此在教学过程中设计了几个活动,让学生通过动手,画图去感知图形的全等,并认识全等的有关概念。

一、教材选择

“全等三角形、”是学平面图形关系的引言课。内容涉及的知识点不多,知识的切入点比较低。而人教版将其建立在已学内容“图形的变化”基础上,加强与前面的知识点的联系。

八年级学生有一定的自学、探索能力,求知欲强。借助于学案的优势,能使脑、手充分动起来,学生间相互探讨,积极性也被充分调动起来。

二、教法和学法

让学生通过折叠、作图,观察体会全等图形的定义,自学全等图形的特征,通过练习总结和强化对应边、对应角的寻找方法。

三、教学过程设计

首先,本节课我本着创设情境,以学生为主,突出重点的意图,结合学案使之得到充分的诠释。我让学生自己动手,通过平移、翻折和旋转的作图,为体会重合的图形全等这一定义提供了分析、思考、发现的依据,把抽象问题转化为具体问题,总结出概念。我通过具体练习让学生总结,并带领学生寻找快速寻找对应的方法,练习的设计采用由易到难的手法,符合学生的认知规律,突破了本节课的重点和难点。真正做到以生为本,抓住课堂45分钟,突出效率教学。

其次,我在结尾总结全等三角形时让学生在生活中寻找实例,体现了数学与生活的联系,培养数学兴趣。

四、本节课的不足

1、没有充分利用已有资源调动学生。我在设计中让学生自己看书得到全等的特征,没有调动学生,让他们自己去发现少。

2、要关注学生的差异。学生的层次不同,本学案对基础较好的学生来说有吃不饱的感觉,应增加拓展提高练习,来满足这些学生的需求。

篇14:八年级数学《全等三角形性质》教学反思

本节课先复习旧知识,再提问学生两个三角形全等是否要六个元素分别相等式入手。在每个环节的安排中,突出了问题的设计,教师通过一个个的问题,把学生的思维激发起来,从而使学生主动、有效地参与到学习中来。

1、猜想入手,激发学习兴趣。猜想是学生感知事物而获取知识过程中的重要环节。因此,在教学中老师鼓励学生大胆猜想:从满足一个条件相等是否可保证两三角形全等,满足两个条件相等是否可以保证两三角形全等,满足三个条件是否可保证两个三角形全等一系列的猜想中,引导学生一个个落实,进而得出三边分别相等可保证两个三角形全等的结论。在操作过程中,教师较好地激发了学习的兴趣。大部分学生做出猜测后,把自己的思维与所学的知识连在一起,主动参与,激发了学生的兴趣。

2、操作验证,培养探索能力。在探究SSS定理时,教师展现的猜想过程清楚明白,给学生今后的探索方向提供了模式。

3、得出SSS定理之后,例1的分析比较到位,特别是多媒体展示了思考方向,注意了数学语言的表述,给学生起到了示范作用。

4、在学习和探索的过程中,注意培养学生独立思考的能力,团队合作能力、有层次地安排了学生思考,同桌交流,小组合作;

5、重视了教师的示范作用。用SSS定理证明几何题,教师首先做出准确的示范,让学生一开始就掌握正确的书写格式。

6、练一练部分部分学生看不出由BD=CE证明BE=CD的必要性,下次宜将两个三角形撤开展示,从而理解证明这一步骤的理由。

篇15:八年级数学全等三角形及其性质教学计划

八年级数学全等三角形及其性质教学计划

教学目标:

1.(1)掌握角平分线的尺规作图方法;理解过直线上一点作这条直线的垂线的尺规作图原理;(2)理解并掌握角的平分线的性质定理。(3) 会运用角平分线的性质进行推理论证,解决相关的几何问题;(4)进行数学活动的过程中,能进行有条理地思考,形成简单的推理能力; (5)使学生经历探索角平分线的性质的过程,领会用操作、归纳、推理论证得出数学结论的思想方法。

教学重点:角平分线的尺规作图及角平分线的性质及其应用。

教学难点:角平分线的尺规作图方法的提炼与角平分线性质的灵活应用。

教学过程:

活动一、知识回顾

1、不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?再打开纸片 ,看看折痕与这个角有何关系?

2、请叙述角平分线的定义。

活动二、情景引入

如图,是一个角平分仪,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗?

证明:在△ACD和△ACB中

AD=AB(已知)

∵ DC=BC(已知)

CA=CA(公共边)

∴ △ACD≌△ACB(SSS)

∴∠CAD=∠CAB(全等三角形的对应角相等)

∴AC平分∠DAB(角平分线的定义)

活动三、新知探究

一、根据角平分仪的制作原理怎样作一个角的平分线?(不用角平分仪或量角器,要求尺规作图)

二、怎样用尺规作图方法作已知直线的垂线?(过这条直线上一点)

(1)平分平角∠AOB(如下图所示)

(2)通过上面的步骤,得到射线OC以后,把它反向延长得到直线CD,直线CD与直线AB是什么关系?

(3)结论:作平角的平分线即可平分平角,由此也得到过直线上一点作这条直线的垂线的方法。

三、探究角平分线的性质

1、已知:如图,OC平分∠AOB,点P在OC上,PD⊥OA于点D,PE⊥OB于点E,PD与PE有何关系?并证明。

解:PD与PE相等。证明如下:

∵OC平分∠AOB(已知)

∴∠1=∠2 (角平分线的定义)

∵PD⊥OA,PE⊥OB (已知)

∴∠PDO=∠PEO (垂直的定义)

在△PDO和△PEO中

∠PDO=∠PEO (已证)

∵ ∠1=∠2 (已证)

OP=OP (公共边)

∴△PDO≌△PEO (AAS)

∴PD=PE (全等三角形的对应边相等)

2、由此得到角平分线的性质:角的平分线上的点到角两边的'距离相等。

3、利用此性质怎样书写推理过程?

∵OC平分∠AOB,点P在OC上,且 PD⊥OA于D,PE⊥OB于E

∴PD=PE(角的平分线上的点到角两边的距离相等)

活动四、例题讲解

例。已知:如图,△ABC的角平分线BM、CN相交于点P.

求证:点P到三边AB、BC、CA的距离相等

证明:过点P作PD 、PE、PF分别垂直于AB、BC、CA,

垂足为D、E、F

∵BM是△ABC的角平分线,点P在BM上

∴PD=PE (角平分线上的点到角的两边的距离相等)

同理:PE=PF.∴ PD=PE=PF.

即点P到边AB、BC、CA的距离相等

活动五、实践应用

1.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.求证:CF=EB

分析:要证CF=EB,首先我们想到的是要证它们所在的两个三角形全等,即Rt△CDF≌Rt△EDB.

现已有一个条件BD=DF,还需要我们找什么条件?

注意到题设条件:AD是∠BAC的平分线,DE⊥AB于E, ∠C=90°故有:DC=DE (角平分线的性质)

进而可用HL证明上述两个直角三角形全等

证明:∵∠C=90°∴DC⊥AC

又∵AD是∠BAC的平分线,DE⊥AB于E

∴∠DEB=90°,DC=DE(角平分线的性质)

在Rt△CDF和Rt△EDB中

DF=DB(已知)

DC=DE(已证)

∴ Rt△CDF≌Rt△EDB(HL)

∴ CF=EB(全等三角形的对应边相等)

2、已知:如右下图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别是E,F.

求证:EB=FC.

证明:∵AD是△ABC的角平分线,且DE⊥AB于E,DF⊥AC于F

∴∠DEB=∠DFC=90°(垂直的定义)

DE=DF(角平分线的性质)

在Rt△DEB和Rt△DFC中

BD=CD

DE=DF

∴Rt△DEB≌Rt△DFC(HL)

∴EB=FC(全等三角形的对应边相等)

3.已知:如图,△ABC的两个外角的平分线BD与CE相交于点P.

求证:点P到三边AB,BC,CA所在直线的距离相等。

证明:作PF⊥BC于F,PG⊥AB于G,PH⊥AC于H.

又∵△ABC的两个外角的平分线BD与CE相交于点P

∴PG=PF , PF=PH(角平分线的性质)

即PG=PF=PH

∴点P到三边AB,BC,CA所在直线的距离相等。

活动六、归纳总结

1、定理:角平分线上的点到这个角的两边距离相等。

2、定理的使用形式:

∵OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别是D,E(已知)

∴PD=PE(角平分线上的点到这个角的两边距离相等)。

尺规作图:①作已知角的平分线;②过直线上一点作这条直线的垂线。

作业布置: 1.预习课本P21~P23

2.完成课本P22T2,P23T4,5

篇16:八年级数学上册《相似三角形判定定理》教学反思

八年级数学上册《相似三角形判定定理》教学反思

这节课是在学习完“相似三角形判定定理一”后的一节习题课,相似三角形是初中数学学习的重点内容,对学生的能力培养与训练,有着重要的地位,而“相似三角形判定定理一”又是相似三角形这章内容的重点与难点所在,“难”的不是定理的本身,而是要跟以前学过的“角的等量关系”证明联系紧密,综合性比较强,因此对定理的运用也带来的障碍。

我选择的`内容是“相似三角形判定定理一”应用的一个方面,这是根据对最近几年中考、各区县模拟考的压轴题的研究,发现全等三角形证明当中,我们可以找到“一条直线上有三个相等的角”这样的条件原型,所以在这节课就是基于这样的原型,选择了相关内容,试图从一个侧面突破这章教学的难点。

通过建立数学模型,引导学生使用化归思想。要让学生善于学习,促进他们通法的掌握是重要途径之一。化归思想与转化思想不同,主要是化归思想必须有一归结的目标,也就是老经验。因此,在教学实践中,我采用了下列两个做法:一是建立“一线三等角”的数学模型,让学生在实验操作中探寻出折纸问题中的数学问题本质特征。并把它上升为一种理论,指导其他问题的解决。二是采用探究条件的转化,使问题表象发生变化,引导学生去伪存真,还原出数学问题的本质。

篇17: 相似三角形性质教学反思

本章学习的重点,是相似三角形的概念、性质与判定定理,还有三角形一边的平行线的性质与判定定理,以及向量的线性运算。

上相似三角形的性质,先复习全等三角形的性质:全等三角形的对应角相等;对应边相等;对应中线、对应角平分线、对应高线相等;周长相等;面积相等。根据全等三角形是特殊的相似三角形,诱导学生们在类比中,猜想相似三角形的性质,同学们积极性很高,抢着猜,大多数同学猜对了相似三角形的对应角相等;对应边成比例;对应中线、角平分线、高线的比等于相似比;周长的比等于相似比;可对面积的比有争议,有的说等于相似比,有的说等于相似比的平方。我又及时诱导:猜想并不能代替证明,它只是一个推理,一个假设,你们应该再进一步深入,把你们的猜想结果去证明,看到底是谁的对,让它更有说服力,同学们为了证明自己的猜想是正确的,马上开始证明,这一节课掌握的很好。而且对相似三角形面积的比等于相似比的平方印象非常深刻。因为那是在有争议的情况下,得到的正确结论。

在具体教学过程中,由于自己没有放得开,搞的学生也被带得紧张兮兮的,课堂气氛有点沉闷,与我的初衷相悖。可能如果在平时,气氛会更加自然轻松点。在今后的教育教学中,要多下点工夫在如何调动课堂气氛,使语言和教态更加生动上。初中学生的注意力还是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。如何找到适合自己适合学生的教学风格?或严谨有序,或生动活泼,或诙谐幽默,或诗情画意,或春风细雨润物细无声,或激情飞扬,每一种都是教学魅力和人格魅力的展现。我将不断摸索,不断实践。

篇18: 相似三角形性质教学反思

今天我们开始学习九年级下册的相似三角形的第二课时的相似三角形性质>,本节主要内容是推导出相似三角形的性质定理,并且会利用相似三角形性质>进行初步推理和计算,让学生们通过相似三角形性质探索的过程,认识并且提高数学思考、分析、论证和探究活动能力,体会到相似三角形中角与边之间的关系,从中体验到各类不同的数学思想和教学方法。

本节课本我从复习全等三角形的性质入手,对应角相等,对应边相等来联想相似三角形性质:相似三角形对应的特殊线段的比与相似比有什么关系呢????有的同学可能预习了,回答到“相似三角形对应角相等,对应边成比例”。但是大部分同学一脸茫然,看到同学们带着茫然和疑问,我就让六人小组进行测量探索,交流汇报。并引导同学们发现的结论共同证明:一组相似三角形中对应角平分线的比等于相似比,再类比到对应高,对应中线的比也等于相似比。接着让每组选一名同学说明,对四种“比”间的相互关系。通过同学们的动手练习,和小组合作。不难看出他们已经理解并掌握今天所学的知识。揭示了一组相似三角形中对应边的长度、对应特殊线段的长度都发生变化,但其对应角不变,对应特殊线段的比也不变。使学生把握数学的实质――“一组相似三角形对应高,对应角平分,对应中线的比都等于相似比。

通过本节课的教学,我感到比较顺利完成教学任务。教学设计环环紧扣,提高了学生思维兴趣,达到课前预设的的效果。在操作、猜想、证明、运用各阶段,提高了学生的参与性,师生配合默契。同时也看到自己的不足,本节课在定理的证明阶段,板书不够工整,过程不够严谨,由于时间关系,对学生还是放不开。今后应该更大胆一些,更放开一些,让学生有更多的时间和更大的思维空间。达到“授之以渔”的目的。

篇19:《相似三角形性质》教学反思

我在上《相似三角形的性质》这节课时,先复习全等三角形的性质:全等三角形的对应角相等;对应边相等;对应中线、对应角平分线、对应高线相等;周长相等;面积相等。根据全等三角形是特殊的`相似三角形,诱导学生们在类比中,猜想相似三角形的性质,同学们积极性很高,抢着猜,大多数同学猜对了相似三角形的对应角相等;对应边成比例;对应中线、角平分线、高线的比等于相似比;周长的比等于相似比;

可对面积的比有争议,有的说等于相似比,有的说等于相似比的平方。我又及时诱导:猜想并不能代替证明,它只是一个推理,一个假设,你们应该再进一步深入,把你们的猜想结果去证明,看到底是谁的对,让它更有说服力,同学们为了证明自己的猜想是正确的,马上开始证明,这一节课掌握的很好。而且对相似三角形面积的比等于相似比的平方印象非常深刻。因为那是在有争议的情况下,得到的正确结论。这一节课中,引导学生复习全等三角形的性质是“诱”的过程,让学生利用这个思维惯性去“猜想”相似三角形的性质,就是“思”的过程。

这个“猜想”不是凭空瞎猜,而是在原有知识的基础上的一种思维的延伸、拓展,能够培养学生良好的思维习惯。

篇20:相似三角形的性质教学反思

相似三角形的性质教学反思

本章学习的重点,是相似三角形的概念、性质与判定定理,还有三角形一边的平行线的性质与判定定理,以及向量的线性运算。

先通过对实物图形的放大与缩小的直观认识逐步形成相似形的概念,先定性描述再揭示其本质特征.由于图形的相似与比例线段密不可分,因此在形成相似形的概念之后,安排学习比例线段,进而讨论三角形一边的平行线的性质与判定以及平行线分线段成比例定理,

为研究相似三角形提供了必要的知识准备。

而后给出相似三角形的定义,说明了有关概念,明确了相似三角形的符号表示和相似比的意义.然后,通过对三角形一边的平行线问题的进一步思考,得到相似三角形的预备定理.再通过对判定全等三角形所需条件进行分析,类比全等三角形的判定方法,提出了关于相似三角形判定的四个问题;通过对四个问题的探究,得到三个一般三角形相似的判定定理和一个直角三角形相似的判定定理.

上相似三角形的性质,先复习全等三角形的性质:全等三角形的对应角相等;对应边相等;对应中线、对应角平分线、对应高线相等;周长相等;面积相等。根据全等三角形是特殊的相似三角形,诱导学生们在类比中,猜想相似三角形的性质,同学们积极性很高,抢着猜,大多数同学猜对了相似三角形的对应角相等;对应边成比例;对应中线、角平分线、高线的比等于相似比;周长的比等于相似比;可对面积的比有争议,有的说等于相似比,有的说等于相似比的平方。我又及时诱导:猜想并不能代替证明,它只是一个推理,一个假设,你们应该再进一步深入,把你们的猜想结果去证明,看到底是谁的对,让它更有说服力,同学们为了证明自己的`猜想是正确的,马上开始证明,这一节课掌握的很好。而且对相似三角形面积的比等于相似比的平方印象非常深刻。因为那是在有争议的情况下,得到的正确结论。

在学习判定时就有了一些判定与性质综合运用的题目,学生感到有一定的难度,所以只实际应用时,尽量开阔学生的思维方法。

一节几何课,如果只是简单的出示定理、证明定理、讲例题、做练习,学生被动的听讲、单纯地记忆、模仿地做练习,这样不利于培养学生的创造性思维,而且影响学生数学能力的提高。如果时常诱导学生积极探索、思考,达到既能掌握知识,又能提高能力,才能使学生学会学习。

在具体教学过程中,由于自己没有放得开,搞的学生也被带得紧张兮兮的,课堂气氛有点沉闷,与我的初衷相悖。可能如果在平时,气氛会更加自然轻松点。在今后的教育教学中,要多下点工夫在如何调动课堂气氛,使语言和教态更加生动上。初中学生的注意力还是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。如何找到适合自己适合学生的教学风格?或严谨有序,或生动活泼,或诙谐幽默,或诗情画意,或春风细雨润物细无声,或激情飞扬,每一种都是教学魅力和人格魅力的展现。我将不断摸索,不断实践。

相似三角形的性质

相似三角形的性质教案设计讲解

相似三角形人教版的教学设计

初中数学《相似三角形》说课稿

相似三角形的判定和性质教案设计

相似三角形的性质 第2课时

相似三角形练习题

数学教案-相似三角形的性质 第2课时

初中相似三角形教案

八年级数学教学设计

《相似三角形的性质八年级数学教学设计(精选20篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档