欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

有理数的教学课件

时间:2025-11-03 08:16:18 其他范文 收藏本文 下载本文

今天小编在这给大家整理了有理数的教学课件,本文共19篇,我们一起来阅读吧!

篇1:初中数学《有理数》课件

初中数学《有理数》课件

教学目标:

1、理解有理数的概念,懂得有理数的两种分类,及对一个有理数进行分类判别;

2、在数的分类中,应加强对负数的理解及对零在数分类中的特殊意义的理解。

重点:在引进负数后,能对已有的各种数进行概括,理解有理数的意义,及有理数的两种不同分类的重要意义。

难点:在对有理数的认识上,应加强对负数及零的重视,明确两者在有理数集的地位与作用。

教学过程:

一、知识导向:

通过上节课对“负数“概念的'引入,通过对数范围的补充及扩大,进一步引入了有理数的概念,并对扩大后的数的范围进行重新分类。

二、新课拆析:

1、引例:(1)请学生说出负数的特征,并指出实例说明。

(2)以第(1)题中,学生所回答的数进一步分析,不同数的不同特点。

2、通过对“负数”的引入,从我们所接触的数可发现有这样几类:

正整数:如1,2,34,…

零:0

负整数:如-1,-3,-5,…

正分数:如 …

负分数:如 -0.3,…

由此我们有:

概括:正整数、零和负整数统称为整数;

正分数、负分数统称为分数;

整数和分数统称为有理数。

然后根据我们的概括,我们可以对有理数进行如下的分类

分类一: 分类二:

正整数 正整数

整数 零 正有理数 正分数

有理数 负整数 有理数 零

分数 正分数 负有理数 负整数

负分数 负分数

3、有关集合的简单知识:

概括:把一些数放在一起,就组成一个数的集合,简称为数集;

所有的有理数组成的数集叫做有理数集;

所有的整数组成的数集叫做整数集;……

例:把下列各数填入表示它所在的数值的圈里:

-18,3.1416,0,,-0.142857,95%

正整数 负整数

整数集 有理数集

三、巩固训练: P20 ,练习:1,2,3

四、知识小结:

从有理数的分类入手,就着重于各类数的特点,特别是正,负及零的处理。

五、作业:

P20-21习题2.1:2,3,4

篇2:七年级上册数学有理数课件

七年级上册数学有理数课件

七年级上册数学有理数课件

1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;

2.培养学生观察、分析、归纳及运算能力。

有理数减法法则。

有理数的减法转化为加法时符号的改变。

电脑、投影仪

一、从学生原有认知结构提出问题

1.计算:(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

2.化简下列各式符号:(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3).

3.填空:(1)____+6=20;      (2)20+____=17;(3)____+(-2)=-20;           (4)(-20)+___=-6.

二、师生共同研究有理 数减法法则

问题1  (1)4-(-3)=______ ;(2)4+(+3)=______.

教师引导学生发现:两式的.结果相同,即4-(-3)= 4+(+3).

思考:减法可以转化成加法运算.但是,这是否具有一般性?

问题2  (1)(+10)-(-3)=______ ;(2)(+10)+(+3)=______.

对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?(2)的结果是多少?于是,(+10)-(-3)=(+10)+(+3).

归纳出有理数减法法则:减去一个数,等于加上这个数的相反数.

强调运用时注意“两变”:一是减法变为加法;二是减数变为其相反数.

三、运用举例 变式练习

例1  计算:(1)9 -(-5);  (2)0-8.(3)(-3)-1;(4)(-5)-0(5)(-3)-[6-(-2)];(6)15-(6-9)

例2  世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8848米,吐鲁番盆地的海拔高度大约是-155米.两处高度相差多少米?

例3  P63例3

例4  15℃比5℃高多少? 15℃比-5℃高多少?

练一练: P63. 1题  P64-65数学理解1、问题解决1、联系拓广1、2题.

补充:1.计算:(1)-8-8; (2)(-8)-(-8);(3)8-(-8);(4)8-8;

(5)0-6;  (6)6-0;    (7)0-(-6); (8)(-6)-0.

2.计算:(1)16-47;    (2)28-(-74);   (3)(-37)-(-85);    (4)(-54)-14;

(5)123-190;  (6)(-112)-98;  (7)(-131)-(-129);   (8)341-249.

3.计算:(1)(3-10)-2;  (2)3-(10-2); (3)(2-7)-(3-9);

4.当a=11,b=-5,c=-3时,求下列代数式的值:

(1)a-c; (2) b-c; (3)a-b-c ; (4)c-a-b.

四、反思小结

1.由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决。

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的。习题2.6知识技能1、3、4题。

本节课内容较为简单,学生掌握良好,课上反应热烈。

篇3:初一上册数学《 有理数》课件

初一上册数学《 有理数》课件

教学目标:

1、明白生活中存在着无数表示相反意义的量,能举例说明;

2、能体会引进负数的必要性和意义,建立正数和负数的数感。

重点:通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。

难点:对负数的意义的理解。

教学过程:

一、知识导向:

本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。

二、新课拆析:

1、回顾小学中有关数的范围及数的.分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。

如:0,1,2,3,…, ,

2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的对立面。

如:汽车向东行驶 3千米和向西行驶2千米;

温度是零上10°C和零下5°C;

收入500元和支出237元;

水位升高1.2米和下降0.7米;

3、上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的数很难区分具有相反意义的量。

一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“—”号来表示。

如:在表示温度时,通常规定零上为“正”,零下为“负”即零上10°C表示为10°C,零下5°C表示为-5°C

概括:我们把这一种新数,叫做负数, 如:-3,-45,…

过去学过的那些数(零除外)叫做正数,如:1,2.2…

零既不是正数,也不是负数

例:下面各数中,哪些数是正数,哪些数是负数,

1,2.3,-5.5,68,-,0,-11,+123,…

三、阶梯训练:

P18 练习:1,2,3,4。

四、知识小结:

从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。

五、作业巩固:

1、每个同学分别举出5个生活中表示相反意义量的的例子;并用正、负数来表示;

2、分别举出几个正数与负数(最少6个)。

3、P20习题2.1:1题。

篇4:七年级上册数学有理数课件

人教版七年级上册数学有理数课件

一、从学生原有认知结构提出问题

1.计算:(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

2.化简下列各式符号:(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3).

3.填空:(1)____+6=20;      (2)20+____=17;(3)____+(-2)=-20;           (4)(-20)+___=-6.

二、师生共同研究有理 数减法法则

问题1  (1)4-(-3)=______ ;(2)4+(+3)=______.

教师引导学生发现:两式的结果相同,即4-(-3)= 4+(+3).

思考:减法可以转化成加法运算.但是,这是否具有一般性?

问题2  (1)(+10)-(-3)=______ ;(2)(+10)+(+3)=______.

对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?(2)的结果是多少?于是,(+10)-(-3)=(+10)+(+3).

归纳出有理数减法法则:减去一个数,等于加上这个数的相反数.

强调运用时注意“两变”:一是减法变为加法;二是减数变为其相反数.

三、运用举例 变式练习

例1  计算:(1)9 -(-5);  (2)0-8.(3)(-3)-1;(4)(-5)-0(5)(-3)-[6-(-2)];(6)15-(6-9)

例2  世界上最高的'山峰是珠穆朗玛峰,其海拔高度大约是8848米,吐鲁番盆地的海拔高度大约是-155米.两处高度相差多少米?

例3  P63例3

例4  15℃比5℃高多少? 15℃比-5℃高多少?

练一练: P63. 1题  P64-65数学理解1、问题解决1、联系拓广1、2题.

补充:1.计算:(1)-8-8; (2)(-8)-(-8);(3)8-(-8);(4)8-8;

(5)0-6;  (6)6-0;    (7)0-(-6); (8)(-6)-0.

2.计算:(1)16-47;    (2)28-(-74);   (3)(-37)-(-85);    (4)(-54)-14;

(5)123-190;  (6)(-112)-98;  (7)(-131)-(-129);   (8)341-249.

3.计算:(1)(3-10)-2;  (2)3-(10-2); (3)(2-7)-(3-9);

4.当a=11,b=-5,c=-3时,求下列代数式的值:

(1)a-c; (2) b-c; (3)a-b-c ; (4)c-a-b.

四、反思小结

1.由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决。

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的。

习题2.6知识技能1、3、4题。

本节课内容较为简单,学生掌握良好,课上反应热烈。

篇5:《有理数》教学反思

最近一直在讲有理数的各种运算,加、减、乘、除、乘方,后面还有简单的混合运算,学生学起来比较吃力,因为数集范围扩大到了有理数,前生小学学过的一些基本的规律都被推翻了,多了一个小小的负号,却多了很多“大大的”麻烦,这是很多学生的切身体会。

其实总结起来,所有的新问题都是符号问题,其他的绝对值的加、减、乘、除运算都是在运用小学学过的知识解决。所有的运算我都给大家总结了七个字:一定二求三加减(相乘、相除)。这些运算的第一步都是定符号,定的是最终的结果的符号,对于加减运算来说,因为减法也要转化成加法去做,因此符号的确定就按照加法法则来,分为两种情况:同号与异号,同号和就取相同的符号,异号要由绝对值大的加数的符号确定。这是所有运算里定符号最为麻烦的一种,符号确定之后后面的绝对值的运算就没什么问题了,但是也要牢记八个字:同号相加、异号相减。这是所有运算里最为麻烦的加法运算。对于乘除运算,定符号就四个字:奇负偶正,除法运算也是最终转化成乘法运算去做,没有什么特殊的地方。乘方运算是一种特殊的乘法运算,要先理解乘方运算的意义,找准底数和指数,再去计算,最后仍是回到有理数乘法的计算法则中来,不过要注意负数的乘方运算结果有所不同,仍是四个字:奇负偶正,这里的奇、偶指的是指数为奇数还是偶数。

记住法则不是目的,而是要熟练运用法则去解决问题,这里也不仅仅是一些计算问题,还有灵活运用法则确定符号的问题,因此要求学生一定要活学活用,杜绝死记硬背。

篇6:《有理数》教学反思

本节课,从学生熟悉的生活情境出发,激发学生的学习积极性和课堂趣味性,让学生感悟数学在生活中的应用。然后在让老师的引导,小组交流和讨论中总结归纳减法法则,提高学生的分析问题,解决问题和有条理的表达能力。学生在小组活动中,主动参与,积极思考发言,课堂氛围活跃有序,这是非常值得高兴的地方,对于学生积极的表现老师给与肯定和鼓励,更能促进学生的学习积极性。在法则的贵南过程中,学生通过两组式子的计算,通过观察对比让学生感悟有理数减法法则最终是转化为了加法进行计算的过程,体会这种思想方法的应用。接着在课堂练习中,通过学生板演,学生自评,互评,老师点评的过程,熟悉减法的法则,绝大多数学生对于法则的应用有了很好的掌握,学生在你编我答得活动中的积极性最高,因为他们觉得这样可以像老师一样,觉得很权威,对于学习的积极性的提高促进很大,同时也使一节课的达到了最高潮。最后在学生谈论自己的收获与疑惑中结束本节课,大家积极发言,畅所欲言,觉得课堂意犹未尽!

然而本节课在授课的过程中又存在以下几方面的问题:

1、对于学生的答案预设不够。开始讨论问题1:你能从温度计上看出4℃比-3℃高多少摄氏度吗?学生说的答案和我的问题不一致,他们直接给出了4-(-3)=4+3=7.自己对于这样全班一致的答案,一时之间蒙了不知如何去引导到加法运算上来,还是为题设置不够精细,连续性和铺垫没有做好。

2、学生板演之后学生自评和互评过程用的时间太多,是的整个课堂的节奏忽快忽慢,节奏把握不紧凑。

3、自己对于课堂活动没有做充分准备和考虑,学生本身就好动,自制力不够强,活动安排上没有将学生的问题更加细化,活动的步骤不明确,很多学生开始不知发你怎么办,借着活动开始了自我活动,后来才回归课堂,这一环节又浪费了时间,还使得很多学生没有任何的收获!

最后,希望自己多看看别人的教学视频教学设计,不断的自我提升,提高教学研究能力,教学管理能力,对于课堂以及学生做更加充分的思考,打有把握的仗!

篇7:《有理数》教学反思

有理数的乘法是有理数运算的一个非常重要的内容,“有理数乘法”的教学,在性质上属于定义教学,历来是一个难点内容,教师难教,学生难理解。有一个比较省事的做法是,略举简单的事例,尽早出现法则,然后用较多的时间去练法则,背法则。但新课程提倡让学生体验知识的形成过程。本节课尽量考虑在有利于基础知识、基础技能的掌握和学生的创新能力的培养,能最大限度地使教学的设计过程面向全体学生,充分照顾不同层次的学生,使设计的思路符合新课程倡导的理念。

反思这节课,较好的地方在于:

1、创设情境,引入课题,体现了数学来源于生活又服务于生活的理念。首先,由温度的变化问题,引导学生自己列出乘法算式,使学生体会到当数的范围扩充到有理数后,学习有理数的乘法运算是解决实际问题的需要,进而体会到数学知识与实际生活的密切联系。

2、整个探究新知的过程,体现了以学生为主体的理念。首先,引导学生根据有理数的分类,考虑有理数的乘法可能出现的情况,适当的向学生渗透了分类讨论的思想;接着对于学生归纳总结的六种情况,逐一的进行了讨论、研究,让学生自己探究每种情况如何进行运算,并用自己的语言进行归纳总结;最后,再现学生叙述的每种情况,进而将六种情况归结为三种:即同号、异号及与零相乘,放手让学生自己总结有理数的乘法法则,培养了学生的归纳、总结及语言的表达能力。

3、练习设计,让学生体验到成功的乐趣。整节课内容安排紧凑,由浅入深,循序渐进地突破难点。根据初一学生的思维特点和年龄特征,设计了“创设情境,引入新课”、“新知探究”、“巩固新知”、“总结归纳”、等环节,激发学生的好奇心,并在教学中尽量用激励性和导向性的语言来鼓励学生大胆发言,面向全体学生,让学生在比较轻松和谐的课堂氛围中较好地完成了学习任务。

尽管最初的设计能体现一些新的理念,但经过课堂实践后,仍感到有许多不足。

1、课堂引入花时间太多。对于正数乘负数、负数乘负数、负数乘正数三种情况的探究,太浪费时间,直接从温度变化的实例引出可以节省一些时间用于合作学习的环节。

2、课堂时间分配的不合理,因为导入新知的过程太过详细,从而没有了练习的时间,整个教学过程显得不完整。

3、整堂课感觉教师启发引导的较多,给学生自主探索思考的空间较少,不利于学生思维的发展,不利于学生主体作用的发挥。

在今后的教学中,自己会克服不足,发扬优点,使自己的教学逐渐趋于完善。

篇8:《有理数》教学反思

我今年任教的班级是七年级(7)和(8)班,共有110名学生,这届学生普遍数学基础差,对小学数学知识掌握不扎实,计算能力和理解能力都一般,而且缺乏数学语言,表达和交流的能力,他们学习数学的兴趣也不浓厚。本节课主要学习有理数的乘法运算,我采用了自主学习,合作交流的方式,共同找出有理数乘法的规律,并学会如何利用乘法法则正确进行有理数乘法运算。在教学实施中我比较注重过程教学,引导学生探索、归纳,真正体现以学生为主体的教学理念;也注意到培养学生分析归纳能力和团结协作能力。

在教学过程中,我首先结合小学乘法的意义引入新课,然后根据负有理数的意义,以复习数轴巩固旧知识,为新知识作铺垫,利用动画《蜗牛爬行》和学生配合表演的形式进行情景引入,激发学生的学习兴趣,使学生迅速进入角色,提高本节课的教学效率;结合故事中的.小动物的位置及在一条直线上运动的实例,得出不同情况下两个有理数相乘的结果,进而由学生观察、思考、讨论、归纳出两个有理数相乘的乘法法则;以小组竞赛的形式,活跃课堂气氛,巩固知识点并突破积的符号的确定这个难点,让学生牢记同号得正、异号得负的规律,特别是两负数相乘,积为正;通过自主学习和具体例子学会如何正确运用法则进行计算,利用课堂检测当堂反馈学习效果,以课堂小结和适当的课后作业,强化学生对知识的理解和记忆,初步培养学生的自我评价能力。

通过学生课上的表现和课堂作业的反馈,这一节课所学的概念和有理数的乘法法则基本上掌握了,但是在运用法则上还存在着符号差错,不熟练。从课堂教学的参与度来看,在故事和学生配合表演的情境下,学生积极性还是很高的,学生的学习兴趣被调动起来了,在观察思考、交流讨论、探索归纳环节中,学生表现的有些束手无策,虽然得出了有理数乘法的法则,但是个别学生还存在着一些困惑;其次,课堂气氛活跃,在小组比赛的过程中,同学们团结协作,很顺利的学会了如何去确定两数相乘的符号,突破了难点;再次,很好的培养了学生的自主学习能力,学生基本上在理解了有理数乘法法则的基础上能正确利用法则解决问题,掌握了本节课的重点。

不足之处,课堂环节安排的还不够紧凑,小组讨论有些学生不专注,在时间的把握上不够好,课本上的例题在学生自学之后,没有再重复讲解以加深学生的印象。不过,在点评课堂作业的时候,规范了计算题的解题步骤,让学生理解和掌握了准确的解题格式。

这节课我总体感觉还是一节比较成功的课,教学过程设计比较合乎这些学生的实际情况,坡度小,贴近实际,易于学生接受,情景设计也很有趣,能很好的激发学生的学习兴趣,能尽快的投入到学习中来,学生学习积极性强,整节课课堂气氛活跃,我非常注重适时鼓励和表扬学生,教师语言丰富,课堂气氛生动、活泼;课堂上讲、练、演、思、算结合,形式多样;遗憾的是节奏不够快,容量比较少,练习的题目有些简单,同时上黑板演算的同学太多,显得乱;画数轴用的时间太长,可以再抓紧些,还能节省一些时间在安排一点训练。在今后的备课准备、教学设计和教法运用上加强,我会特别注意时间的分配和练习题的设计,

让优生和后进生都能得到很好的训练和发展,使我的课堂教学更加精彩。

篇9: 有理数教学反思

1、以问题为出发点,唤起学生对知识的回忆虽然这节课是设置一定的教学情景,但是唤起学生对知识的回忆的深度、挖掘度不同:这一节课是从学生的生活实际中引出话题,进而进行问题设置,学生有切身的体验――从而让学生产生情绪高昂和智力振奋的内心状态。因此在课堂教学中,不仅要确立问题为新课服务的意识,而且应始终关注学生对问题的不同认识,根据课堂上的具体情况,根据学生上课反映上做出相应的变动,而不是演事先准备好的教案剧。

2、以新课程理念为指导,创造性地使用教材新课程标准指出:教师可以不必拘泥于教材形式,可以不完全按教材教学,只要以新课程为依据,达到新课程规定的整体性理论和目标就可以了。同时指出教师要有独立性,要能根据自己教学实际情况去创造性地运用教材。特别是这一节课的整个教学引入与教材都有明显的差异,这样开放性的处理使学生思维始终处于积极思考之中,更能激发学生的学习积极性,学习效果必然更好!

从教学效果看,在教学过程中,能够贯彻以学生为主体,充分调动学生的积极性,引导学生思考、探索并以自己的语言概括出有理数的减法法则。为初中数学学习方法的逐渐形成奠定了基础。

然而也存在了以下的不足:

1、教学时间上把握不准,出现虎头蛇尾的情况,计划中的小结部分未能体现。

2、应该根据学生不同的层次设计例题和练习。所以感觉部分学生反响不强烈。没有很投入到练习中去。

篇10:《有理数》教学反思

20xx年9月19日,我上了第一节进入中学后的汇报课,虽然完成的不够好,但是我还是比较满意的。本节课是从以下几个方面完成的:

1、利用多媒体演示水位的变化,引出有理数的乘法。

2、学生分组活动探究有理数乘法法则,并进行简单的应用

3、由列举的例子得出有理数乘法的符号法则及时地进行简单的应用。并把所学的知识进行适当的拓展。

4、在例题、习题的选择上,兼顾不同层次的同学,力求使每个学生在数学课上都能学到有价值的数学。

成功:

1、在教学设计中教学目标明确,重点突出。认真钻研教材与大纲,掌握教材的基本要求,从学生的认知水平和知识基础出发,利用多媒体演示动画引出课题,使学生在观察、体验中学习数学,激发学生学习数学的兴趣。

2、通过对特里的归纳,鼓励学生自己总结有理数的乘法法则,并用自己的预言家一描述。

3、鼓励学生通过观察,用自己的语言表达所发现的规律并学会与他人交流。

4、在结果符号的确定上,教会学生根据具体问题,首先确定积的符号,然后进行计算。让学生明确有关有理是乘法的问题,记得符号一旦确定,其他的运算与小学乘法相同。

5、以小组为单位,分组练习。各组展开评比,不仅给更多同学展示的机会,还激发了学生的热情。让学生最大限度地暴露出在计算过程中出现的问题,及时纠正,为每一位同学着想。

不足:

1、学生在灵活应用方面欠佳。在以后的教学中加强学生能力培养。

2、在分组活动中,学生互相把存在的问题解决,即采用“兵教兵”方法,培养学生的讲解能力。

3、应根据学生的个体差异,有效地进行分层次训练和技能培养。

篇11:《有理数》教学反思

有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。所以我在教这一节课的教学中要从有理数乘方的意义、有理数乘方的符号法则、有理数乘方运算顺序、有理数乘方书写格式、有理数乘方常见错误等五个方面来教学。

一、要求学生深刻理解有理数乘方的意义。即求n个相同的因数相乘的简便记法。在教学上应该抓住以下几点:乘方是一种运算。相当于“+、-、×、÷”。教师在教学时要让学生明白这一点,同时要求学生掌握其书写方法,及格式。强调幂的意义,幂的意义与“和、差、积、商”一样。如2的3次方的结果是8。所以说2的3次方的幂是8。与2×4一样,2×4=8.所以不能说8是幂,说成2的3次方的幂是8。同时强调a的n次方具有两个意义,它既表示n个a相乘。又表示乘方的运算结果

二、在有理数乘方的教学中主要强调它的运算,所以特别注意有理数乘方符号法则的教学。法则是:正数的任何次幂是正数,0的任何正整数次幂是0,负数的正数次幂是负数,负数的偶数次幂是正数,教师在教学时强调做乘方时先确定符号再计算,如(-2)的平方等于+2的平方等于4.

三、注意教学生的书写格式。注意负数与分数作底数都要加括号。

四、注意讲清有理数乘方中的常见错误。如2的平方前面带负号,表示2的平方的相反数,-2加括号后再平方是表示–2的平方,写法不同计算的结果不同。有理数乘方是在乘法的基础之上的一种运算,要结合乘法来教乘方。同时讲清楚区别与联系。

篇12:《有理数》教学反思

七年级新生一开始面对的就是有理数的认识与有理数的运算。有理数的认识,只需通过例举生活中相反意义的量,便可以很快认识负数,进而较为全面认识有理数。而有理数的运算却不是一蹴而就的,其中包括五种运算:加、减、乘、除、乘方。这几种运算中,又以加减法最为基础,最难掌握。

首先,有理数的加减法,是建立在一定法则之上,但仅靠盲目的背法则来应对加减法,是不可取的。数学的学习不是文史类的机械背诵,应是在法则制约下,依靠灵动思维解决问题。

因此,个人认为,在学习加减法之前,就应顾及到将来加减法这一拦路虎来势之凶猛,为扫除这一路障先做好充分准备。这个准备就是:

一:让学生深刻认识正数、负数、零。长期以来,学生局限于正有理数的运算,对负数的参与会很不适,对负数认知的程度直接影响以后学习有理数的加减法。

二:数轴的教学。数轴是新生面临的又一新概念。它是许多解决数学问题赖以依靠的工具,也是数形结合思维的最初体现。有了数轴,有理数的加减变得“可视化”。

三:相反数、绝对值、两个重要概念的掌握。尤其是绝对值,相对较难理解,却是做加减法的重要理论。

有了以上知识的准备,在套用加减法法则时,不再是简单条文的背诵,学生对枯燥的数学语言和记忆有关法则不再缺乏兴趣,学习便变得是件非常惬意的事情。

当然,我不主张只要学生生硬依照法则行事,在法则熟透余心后,更应启发学生用自己的思维方法理解加减法法则的内在意义。比如:3+(-5)的值可理解为3与-5正负抵消后的结果,甚至3-5的值也可以理解为3与-5正负抵消的结果。其实掌握了加减中的本质意义,于自然而然当中便得到了结果,至于用了哪条法则,不必去管了!

篇13:《有理数》教学反思

七年级数学的学习成效对整个初中阶段数学学习有至关重要的作用。在某种意义上甚至可以说,七年级数学的好坏就决定了学生初中学习生活中数学的将来。扎实的基础、能学会的信念会让学生在以后的学习中越来越有劲头,从而能逐步进步,完成自己的学习任务。

七年级数学在学习了正数、负数、有理数的概念后,教材引人了有理数的加减法。第一课时我组织学生学习了有理数的加法法则,第二课时,就是提高学生计算能力的准确性,进一步熟练加法法则的使用方法。我第二课时的教学过程如下。首先组织学生说出有理数的加法法则,然后展示设计好的几组练习题让学生练习、演板,练习题涉及到了多种情况,有整数、小数、分数的加法;正数大、负数小;正数小、负数大;有零参与的等类型。在订正时,让学生说出自己的思考依据,运用的哪条法则,再针对问题出错较多的符号辨别不清的,选择几道正分数小、负分数大的计算题要求学生练习,说出思路。最后解决例题2,让学生体会数学与实际生活中的紧密联系。

教学后,对学生的计算和数学的实际运用想了很多。学生升入初中后,都抱着努力学好的想法,学习劲头都很足,可是,由于小学的基础不同,在计算上,在理解上,在问题思考上确实存在着比较大的差异。迈入初一的第一步一定让他们成功,给他们成功的感觉、信念,所以,教学进度要缓慢,要达到相当的学生都掌握学习的知识、技能为止,这里有个度的把握。一般来说开始接触到新知,要求大部分、至少百分之八十的学生掌握,后面再通过其他的形式带动更多的学生全部学会。学生学习是螺旋形的,不会一直学会,就再也不忘记了。你就是下大工夫把有理数的加法全部学会,还有有理数的乘除、混合运算等,依然是这部分学生的拦路虎。在学习了有理数的加法法则后,知道有哪些学生的哪一方面有问题,在以后的教学中,有的放矢,针对学生的问题进行练习,拉他们上来。教学是有序的,不能偏,不能就某个别的学生的问题浪费大部分学生的时间;教学是流动的,在持续的教学中,不能丢掉一个学生;教学是有方的,你总能在教学中找到适合每一个学生的方法。

学生对生活中数学兴趣极大。平时,不容易发现数学,就是教学中缺失了给孩子一双数学的眼睛。我们平时观看的比赛,我们走路,用的时间等等每一件事都离不开数学,要鼓励学生发现生活中的数学,发动他们说出自己的身边的数学,对锻炼他们的数学思考思想、提高他们学习数学的兴趣有极大的作用。

在第一单元的教学中,每星期都设计至少一课时的计算练习,用同组或同班同学共同参与的形式,带动少部分学生的计算能力的提高。不去想一口吃成胖子的事,就在每次的练习中,看学生的一步步的能力提高。这一步的巩固提高,对学生以后的提高学习期望和信心,对以后的学习态度的端正都是一个好的开始。

篇14: 有理数教学反思

在具体的实施过程中还是暴露出了很多问题,有事先没预计到的,也有想体现但没体现完整的。经过课后反思及同年组教师的指点,主要表现在:

(1)较多的着眼于课堂形式的多样化及学生能力(如:合作、探究、交流等)的培养,而忽视了教学中最重要的知识点的落实。综合应用部分的练习题处理得很仓促,例题学生讲解的机会不多,教师在课前可鼓励学生大胆发表自己的意见和看法。

(2)小组讨论可以说是新教材框架中的一个重要部分,教师事先一定要有详细的计划。这也是本堂课暴露缺陷较多的环节。比如:组员的设置,以4、5人为一组较为合适,且要分工明确,如谁记录,谁发言等等,避免某些小组成员流离于合作之外。教师还应精心策划:讨论如何有效地开展;时间多长;采取何种讨论方法;教师在讨论过程中又该担当何种角色等。

(3)在小组交流过程中学生的发言过分地注重于探索的结果,而忽视了学生探索过程的展示。同时教师有些总结性的话,限制了学生的思维,不能最大限度的发挥学生自主探究的能力。

(4)教师在教学过程中对学生的评价较为单一,肯定不够及时,表扬不够热情,比如当最后一个平常表现较为一般的学生有此创意时,教师就应大加赞扬,从而也能激发课堂气氛。

篇15:七年级数学有理数的除法课件

七年级数学有理数的除法课件

一、目的要求

1.使学生了解有理数除法的意义,掌握有理数除法法则,会进行有理数的除法运算。

2.使学生理解有理数倒数的意义,能熟练地进行有理数乘除混合运算。

二、内容分析

有理数除法的学习是学生在小学已掌握了倒数的意义,除法的意义和运算法则,乘除的混合运算法则,知道0不能作除数的规定和在中学已学过有理数乘法的基础上进行的。因而教材首先根据除法的意义计算一个具体的有理数除法的实例,得出有理数除法可以利用乘法来进行的结论,进而指出有理数范围内倒数的定义不变,这样,就得出了有理数除法法则。接下来,通过几个实例说明有理数除法法则,并根据除法与乘法的关系,进一步得到了与乘法类似的法则。最后,通过几个例题的教学,既说明了有理数除法的另一种形式,也指出了除法与分数互化的关系,同时,还指出有理数的除法化成有理数的乘法以后,可以利用有理数乘法的运算性质简化运算,这样,就说明了有理数乘除的混合运算法则。

本节课的重点是除法法则和倒数概念;难点是对零不能作除数与零没有倒数的理解以及乘法与除法的互化,关键是,实际运算时,先确定商的符号,然后再根据不同情况采取适当的方法求商的绝对值,因而教学时,要让学生通过实例理解有理数除法与小学除法法则基本相同,只是增加了符号的'变化。

三、教学过程

复习提问:

1.小学学过的倒数意义是什么?4和的倒数分别是什么?0为什么没有倒数。

答:乘积是1的两个数互为倒数,4的倒数是,的倒数是,0没有倒数是因为没有一个数与0相乘等于1等于。

2.小学学过的除法的意义是什么?10÷5是什么意思?商是几?0÷5呢?

答:除法是已知两个因数的积与其中一个因数,求另一个因数的运算,15÷5表示一个数与5的积是15,商是3,0÷5表示一个数与5的积是0,商是0。

3.小学学过的除法和乘法的关系是什么?

答:除以一个数等于乘上这个数的倒数。

4.5÷0=?0÷0=?

答:0不能作除数,这两个除式没有意义。

新课讲解:

与小学学过的一样,除法是乘法的逆运算,这里与小学不同的是,被除数和除数可以是任意有理数(零作除数除外)。

引例:计算:8×(-)和8÷(-4)

8×(-)=-2,

8÷(-4),由除法的意义,就是要求一个数,使它与-4相乘,积为8,

∵(-4)×(-2)=8,

∴8÷(-4)=-2。

从而,8÷(-4)=8×(-),

同样,有(-8)÷4=(-8)×,

(-8)÷(-4)=(-8)×(-),

这说明,有理数除法可以利用乘法来进行。

又(-4)×=-1,4×=1,

由4和互为倒数,说明(-4)和(-)也互为倒数。

从而对于有理数仍然有:乘积为1的两个数互为倒数。

提问:-2,-,-1的倒数各是什么?为什么?

注意:求一个整数的倒数,直接写成这个数的数分之一即可,求一个分数的倒数,只要把分子分母颠倒一下即可,一般地,a(a≠0)的倒数是,0没有倒数。

由上面的引例和倒数的意义,可得到与小学一样的有理数除法法则,则教科书第101页方框里的黑体字,用式子表示,就是a÷b=a·(b≠0)。

注意:有理数除法法则也表示了有理数除法和有理数乘法可以互相转化的关系,与小学一样,也规定:0不能作除数。

例1计算。(见教科书第103页例1)

解答过程见教科书第103页例1。

阅读教科书第102页至第103页。

课堂练习:教科书第104页练习第l,2,3题。

提问:l.正数的倒数是正数,负数的倒数是负数,零的倒数是零,这句话正确吗?

(答:略)

2.两数相除,商的符号如何确定?为什么?商的绝对值呢?

答:商的符号由两个数的符号确定,因为除以一个数等于乘以这个数的倒数,当两个不等于零的数互为倒数时,它们的符号相同。故两数相除,仍是同号得正,异号得负,商的绝对值则可由两数的绝对值相除而得到。

从上所述,可得到有理数除法与乘法类似的法则,见教科书第102页上的黑体字。

在进行有理数除法运算时,既可以利用乘法(把除数化为它的倒数),也可以直接(特别是在能整除时)进行,具体利用哪种方式,根据情况灵活选用。

例2见教科书第104页例2。

解答过程见教科书第104页例2。

注意:除法可以表示成分数和比的形式。如84÷(-7)可以写成或84:(-7);反过来,分数和比也可以化为除法,如可以写成(-12)÷3,15:6可以写成15÷6。这说明,除法、分数和比相互可以互相转化,并且通过这种转化,常常可以简化计算。

例3见教科书第105页例3。

分析:(l)有两种算法,一是将写成,然后用除法法则或利用乘法进行计算;二是将写成24+,然后利用分配律进行计算。

对于(2),是乘除混合运算,可以接从左到右的顺序依次计算,也可以把除法化为乘法,按乘法法则运算。

解答过程见教科书第105页例3。

讲解教科书例3后的两个注意点。

课堂练习:见教科书第105页练习。

第1题可直接约分,也可化为除法。

第2题可先化成乘法,并利用乘法的运算律简化运算。

课堂小结:

阅读教科书第102页至第105页上的内容,理解倒数的意义,除法法则的两种形式及教材上的注意点。

提问:(l)倒数的意义是什么?有理数除法法则是什么?如何进行有理数的除法运算?(两种形式)如何进行有理数乘除混合运算?

(2)0能作除数吗?什么数的倒数是它本身?的倒数是什么?(a≠0)

四、课外作业

习题2.9A组第1,2,3,4,5题的双数小题,第6题。

选作题:习题2.9B组第1,2,3题双数小题。

篇16:七年级数学有理数的加减法课件

七年级数学有理数的加减法课件

一、学生起点分析

学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。

学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。

学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。

二、教学任务分析

对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。教学方法是“引导——分类——归纳”。本课时的教学目标如下:

1.经历探索有理数加法法则的过程,理解有理数的加法法则;

2.能熟练进行整数加法运算;

3.培养学生的数学交流和归纳猜想的能力;

4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。

三、教学过程设计

本课时设计了六个教学环节:第一环节:复习引入,提出问题;第二环节:活动探究,猜想结论;第三环节:验证明确结论;第四环节:运用巩固;第五环节:课堂小结;第六环节:布置作业。

(一)复习引入,提出问题

活动内容:

1.复习提问:

(1)下列各组数中,哪一个较大?

(2)一位同学在一条东西方向的跑道上,先向东走了20米,又向西走了30米,能否确定他现在的位置位于出发点的哪个方向,与原来出发的位置相距多少米?若向东记为正,向西记为负,该问题用算式表示为 。

活动目的:我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。这里先让学生回顾在具体问题中感受正数和负数的加法运算。

2.提出问题:

某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分.

如果我们用1个 表示+1,用1个 ,那么 就表示0,同样 也表示0.

(1)计算(-2)+(-3).

在方框中放进2个 和3个 :

因此,(-2)+(-3)= -5.

用类似的方法计算(2)(-3)+ 2

(3) 3 +(-2)

(4) 4+(-4)

思考: 两个有理数相加,还有哪些不同的情形?举例说明。

引导学生列举两个正数相加,如3 + 2,一个数和零相加,如0+(-4),4 + 0。

活动目的:通过实际问题情境类比列出两个有理数相加的7种不同情形,两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0。进而讨论如何进行一般的有理数加法的运算。

活动的实际效果: 实际问题情境为学生营造了良好的学习氛围,利于他们积极探究.

(二)活动探究,猜想结论:

上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?

学生分组进行活动,教师关注学生在活动中的表现,可以根据学生的实际情况给予适当点拨和引导,鼓励学生大胆发表自己的意见,最后形成统一的认识。

对“一起探究”,教师可引导学生按以下步骤思考:

1、观察列出的具体算式,根据两个加数的符号分类:两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0。

2、同号两数相加时,和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎样的关系?异号两数相加时和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎么样的关系?有一个加数为0时,和是什么?

3、从中归纳概括出规律

在学生探究的基础上,教师引出规定的加法法则。

在活动中,尽可能让学生独立完成,必要时可以交流,教师只在适当的时候给予帮助。

同号两数相加,取相同的'符号,并把绝对值相加。

异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

活动目的:利用分组讨论、分类归纳帮助学生理解加法运算过程,同时有利于加法运算法则的归纳。

活动的实际效果:由于采用了图示的教学手段,在教师的引导下让学生分类观察,发现规律,用自己的语言表达规律,最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则.通过实际问题情境,让学生亲身参加了探索发现,获取知识和技能的全过程。理解有理数加法法则规定的合理性,培养了学生的分类和归纳概括的能力。

(三)验证明确结论:

例1 计算下列算式的结果,并说明理由:

(1) 180 +(-10) (2) (-10)+(-1);

(3)5+(-5); (4) 0+(-2)

活动目的:给学生提供示范,进行有理数加法,可以按照“一观察,二确定,三求和”的步骤进行,一观察是指观察两个加数是同号还是异号,二确定是指确定“和”的符号,三求和是指计算“和”的绝对值.

活动的实际效果:通过习题,加深了学生对有理数加法法则的理解。

(四)运用巩固:

活动内容:

1. 口答下列算式的结果

(1) (+4)+(+3); (2) (-4)+(-3);

(3)(+4)+(-3); (4) (+3)+(-4);

(5)(+4)+(-4); (6) (-3)+0

(7) 0+(+2); (8) 0+0.

活动目的:通过这组练习,让学生进一步巩固有理数加法的法则,达到熟练程度。

2.请同学们完成书上的随堂练习:

(1)(-25)+(-7); (2)(-13)+5;

(3)(-23)+0; (4)45+(-45)

全班学生书面练习,四位学生板演,教师对学生板演进行讲评.

活动目的:习题的配备上,注意到学生的思维是一个循序渐进的过程,所以由易到难,使学生在练习的过程中能够逐步地提高能力,得到发展。

活动的实际效果: 通过练习进一步熟悉有理数的加法法则。通过口答、演排纠错,活跃课堂气氛,充分调动学生的积极性,学生在一种比较活跃的氛围中,解决各种(五)课堂小结:

活动内容:师生共同总结。

1. 两个有理数相加,“一观察,二确定,三求和”,即首先判断加法类型,再确定和的符号,最后确定和的绝对值

2. 有理数加法法则及其应用。

3. 注意异号的情况。

活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的。

活动的实际效果: 学生对“一观察,二确定,三求和”的步骤印象较深,达到了本节课的教学目标。

篇17:有理数章节教学总结

一、教学目标

知识与技能:学习正数、负数、有理数的概念,会用正、负数表示具有相反意义的量,能正确地将有理数进行分类、过程与方法:通过观察节前图,分析、讨论出用正、负数表示具有相反意义的量的方法,了解有理数的产生的必要性、合理性、情感与态度:要求学生树立勇于探索、积极实践的学习态度,通过合作交流培养协作精神,撰写小论文进一步了解数的发展历史。

二、教学重点和难点

教学重点:正数、负数的概念对有理数的建立起关键性的作用,是本节课重点、教学难点:正数、负数的概念的建立是学生从来未经历过的数学的抽象过程,是本节的难点。

三、教学过程

1、创设情景,引入新课

同学们你们还记不记上一节课老师请你们举了一些生活当中的例子,这些例子用自然数,分数,小数是不能解决的,当时我们都举了哪些例子啊?

我记得同学们好象讲到了温度计当中零下的`温度,还有地下室,还有欠银行的钱如何表示,还有路标向东向西,扣分如何表示等等等等。那么温度的零上、零下,路程的向东、向西,钱的收入和支出,得分和扣分这些量是不是相互对立的?因此我们称它们为具有相反意义的量,那么如何把这些具有相反意义的量表示出来呢?

2、合作探索,寻求新知

师:为了表示具有相反意义的量,我们把一种意义的量规定为正,比如我们会把零上的温度规定为正,路程当中会把向东方向规定为正方向,钱的收入规定为正,把另一种与之意义相反的量规定为负,而这些规定为正的量一般比较容易表示,比如规定向东为正,则向东22千米,记作22千米,而与之相反的量就不好表示,如果也记作22千米,别人一看就分不清是向东还是向西,所以我们必须引进新的数来表示这些相反意义的量。

师:把过去学过的数(除零外)规定为正数,如123,15,2/3等,正数前面有时也可以放上+(读做正号);在这些数的前面放上—(读做负号)就表示负数,如—123,—15,—2/3等。负数是在正数的前面加上得到的,大家现在来举一队正数和负数?那下面老师来举一个例子:0是正数,—1是负数,对吗?那么1是正数,0是负数。正数里有没有包括0,负数会不会包括0,所以零既不是正数,也不是负数。(强调)有了负数,相反意义的量就好表示了,规定向东为正,则向东22千米,记作22千米,向西走50米,就记作—50米。那现在我来问大家:如果上升8米,记作+8,那么下降5米,应该怎么记呢?

做一做:第二题

这样我们学过的数中,又增加了新的数,我们以前学的整数如1,2,3,4,更准确地说是正整数,那么—1,—2,—3,—4应该称为什么?

1/2,3/2,5。4为正分数,则—1/2,—3/2,—5。4为。

(这里老师要提示一下:凡是能化为分数的小数都算做是分数)

3、练习反馈,巩固新知

例:下列给出的各数中哪些是正数、负数?哪些是整数、分数?哪些是有理数—8。4,22,+17/6,0。33,0,—3/5,—9。

先让学生做,总结学生出现的一些问题

分析:同学们我们在分类的时候,只要根据前面这个分类图来分就会很简单。再提一下正有理数。由教师来演示。本例主要考察学生对于数的不同分类,加强学生的分类意识。

4、回顾小结

强调负数的由来,及有理数的分类。

5、布置作业

四、教学反思

昨天的作业情况很不理想,特别是12班,还有今天上课12、13班的纪律情况还是不行,今天在这个班级上课的教学任务完成的不好,我甚至抓不住教学时间,我得好好反思一下。有些同学喜欢跟老师抬杠,这让我非常苦恼,还有上课随意插话,如李正一,许小斌,周贤达,还有同学上课说话如王翔。17,18班的情况比12,13班好,但也有一些同学上课讲话。

篇18:有理数乘法教学设计

有理数乘法教学设计

设计理念

1、注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。教学中要注重让学生通过自己的活动来获取、理解和掌握这些知识。

2、本课注意降低了对运算的要求,尤其是删去了繁难的运算。注重使学生理解运算的意义,掌握必要的基本的运算技能。

3、数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。

教学目标1、知识与技能:使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性。

2、过程与方法:培养学生观察、归纳、概括及运算能力。

3、情感态度与价值观:让学生感知数学来源于生活,培养学生学习数学的兴趣。

重点有理数乘法的.运算。

难点有理数乘法中的符号法则。

方法合作交流课型

教学过程

教学环节教学内容

一、复习引入1.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)

2.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)

3.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?

(负数问题,符号的确定)

篇19:有理数减法教学设计

有理数减法教学设计

一、成功学习

1、成功目标(学习要高效,目标不可少)

①理解并掌握有理数减法法则,能熟练的进行有理数的减法运算。

②探索把减法运算转化为加法运算的过程,进一步体会转化思想。

2、成功自学(目标已明确,高效来自学)

自学教材第21~22页,完成下列内容

(1)通过21页的小云朵里的内容你知道如何列式吗?

(2)观察课本22页“探究”的内容,你能从中有什么新发现?请同学们换几个数再试一试。

(3)有理数的减法法则是

(4)通过自学课本第22页例4,你认为有理数减法计算的具体步骤是什么呢?

(5)大数减小数结果是数,小数减大数结果是

数,两个相等的数相减差是你能举出一些例子吗?

3、成功合作(小组面对面,交流更方便)

自学课本后,组长带领小组成员,核对(1)(2)(3)(4)(5)题,讨论交流,集思广益,相信你们会学有所获。

4、成功量学( 收获有多少, 量学见分晓)

(1) 列式计算

①比3℃低20℃的`温度是多少?

②比-10℃低31.5℃的温度是多少?

(2) 计算(过程要完整)

①0-(-52) ②(+2)-(-8)③(4/3)-(4/3) ④(4.6)-7.8

二、成功展示(展示风采,相信自己)

1、学生展示自学部分(可分组回答)

2、学生展示量学部分(可黑板展示)

三、成功测学(冲刺检测,相信我最棒!)

1、基础题:比-2小1的数是。

2、计算:

①|-3|-7?? ②7.3-(-6.8)? ③(-2.5)-0.5? ④0-(-2012)

3、综合题:下列结论正确的个数是()

①如果两个数的差是正数,那么这个数都是正数;②两个数的差不一定小于这两个数的和;③两个数的差一定小于被减数;④零减去任何数都等于这个数的相反数。

A、1? B、2? C、3 D、4

四、成功思学

————————————————————————————

有理数课件

七年级上册数学有理数课件

《有理数》教学反思

初中生有理数教学设计

有理数乘法教学反思

《有理数乘法》教学反思

教学课件

有理数的乘法教学设计

新人教版有理数教学设计

有理数的乘法教学设计

《有理数的教学课件(推荐19篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档