欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

时间与位移测试题

时间:2022-05-24 03:06:32 其他范文 收藏本文 下载本文

【导语】下面是小编为大家整理的时间与位移测试题(共11篇),以供大家参考借鉴!

时间与位移测试题

篇1:时间与位移测试题

关于时间与位移测试题

一、 选择题

1、关于时刻和时间,下列说法正确的是

A、时刻表示时间极短,时间表示时刻较长

B、在时间轴上时刻对应点,时间对应线段

C、作息时间表上的数字均表示时间

D、1min只能分成60个时刻

2、以下说法正确的是()

A、两个物体通过的路程相同,则他们通过的位移也一定相同

B、两个物体通过的位移相同,则他们通过的`路程也一定相同

C、一个物体在某一方向上运动中,其位移大小可能大于所通过的路程

D、如物体做单方向的直线运动,位移的大小就等于路程

3、有一个小球从空中的10m处落下,遇到地面反弹在离地2m的地方被接住,那么小球的位移大小和路程是()

A、10m、8m B、8m、12m C、10m、12mD、8m、8m

4、一个质点沿半径为R的圆周运动一周,回到出发点,在此过程中,路程和位移大小出现的最大值是()

A、2πR,2πR B、0,2πR C、2R,2R D、2πR,2R

5、如图所示,物体沿半径为R的半圆弧线由A运动到C,则它的位移和路程分别为()

A、0,0

B、4R 由A→C,4R

C、4R由A→C,2?R

D、4?R,由A→C,4R

二、 填空题

6、时间与时刻是不同的概念。区分第一秒初,第一秒末,第五秒内,五秒内,前五秒内,后五秒初等概念中,其中为时刻的是_____________________,为时间的是_________________________________

7、小球从A点出发,沿半径为r的圆周转动。则当小球转过1.25周时所发生的位移的大小是_________,小球所通过的路程_________。

三、计算题

8、一辆汽车从A点出发,向东行驶了40km,到达C点,又向南行驶了30km到达B点,在此过程中它行驶的路程是多少?它的位移的大小和方向又如何?

[参考答案]

1、B 2、D3、B4、D5、C

6、时刻:第一秒初,第一秒末,后五秒初。

时间:第五秒内,五秒内,前五秒内。

7、2r,2.5πr。

8、通过的路程为70km;位移为50km,方向东偏南370。

篇2:时间和位移教学设计

教学目标

知识与技能

1.知道时间和时刻的区别和联系.

2.理解位移的概念,了解路程与位移的区别.

3.知道标量和矢量,知道位移是矢量,时间、时刻和路程是标量.

4.能用数轴或一维直线坐标表示时刻和时间、位置和位移.

5.知道时刻与位置、时间与位移的对应关系.

过程与方法

1.围绕问题进行充分的讨论与交流,联系实际引出时间、时刻、位移、路程等,要使学生学会将抽象问题形象化的处理方法.

2.会用坐标表示时刻与时间、位置和位移及相关方向

3.会用矢量表示和计算质点位移,用标量表示路程.

情感态度与价值观

1.通过时间位移的学习,要让学生了解生活与物理的关系,同时学会用科学的思维看待事实.

2.通过用物理量表示质点不同时刻的不同位置,不同时间内的不同位移(或路程)的体验,领略物理方法的奥妙,体会科学的力量.

3.养成良好的思考表述习惯和科学的价值观.

4.从知识是相互关联、相互补充的思想中,培养同学们建立事物是相互联系的唯物主义观点.

教学重难点

教学重点

1.时间和时刻的概念以及它们之间的区别和联系

2.位移的概念以及它与路程的区别.

教学难点

1.帮助学生正确认识生活中的时间与时刻.

2.理解位移的概念,会用有向线段表示位移

教学工具

多媒体、板书

教学过程

一、时刻和时间间隔

1.基本知识

(1)时刻是指某一瞬间,时间间隔表示某一过程.

(2)在表示时间的数轴上,时刻用点来表示,时间用线段来表示.

(3)在国际单位制中,表示时间和时刻的单位是秒,它的符号是s.

2.思考判断

(1)时刻和时间间隔都是时间,没有本质区别.(×)

(2)飞机8点40分从上海起飞,10点05分降落到北京,分别指的是两个时间间隔.(×)

(3)10月25日23时33分在西昌成功将第16颗北斗导航卫星发射升空.25日23时33分,指的是时刻.(√)

探究交流

时间的常用单位有哪些?生活中、实验室中有哪些常用的计时仪器?

【提示】在国际单位制中,时间的单位是秒,常用单位有分钟、小时,还有年、月、日等.生活中用各种钟表来计时,实验室和运动场上常用停表来测量时间,若要比较精确地研究物体的运动情况,有时需要测量和记录很短的时间,学校的实验室中常用电磁打点计时器或电火花计时器来完成.

二、路程和位移

1.基本知识

(1)路程

物体运动轨迹的长度.

(2)位移

①物理意义:表示物体(质点)位置变化的物理量.

②定义:从初位置到末位置的一条有向线段.

③大小:初、末位置间有向线段的长度.

④方向:由初位置指向末位置.

2.思考判断

(1)路程的大小一定大于位移的大小.(×)

(2)物体运动时,路程相等,位移一定也相等.(×)

(3)列车里程表中标出的北京到天津122 km,指的是列车从北京到天津的路程.(√)

探究交流

一个人从北京去重庆,可以乘火车,也可以乘飞机,还可以先乘火车到武汉,然后再乘轮船沿长江到重庆,如图所示,则他的运动轨迹、位置变动、走过的路程和他的位移是否相同?

【提示】 他的运动轨迹不同,走过的路程不同;他的位置变动相同,位移相同.

三、矢量和标量

1.基本知识

(1)矢量

既有大小又有方向的物理量.如位移、力等.

(2)标量

只有大小、没有方向的物理量.如质量、时间、路程等.

(3)运算法则

两个标量的加减遵从算术加减法,而矢量则不同,后面将学习到.

2.思考判断

(1)负5 m的位移比正3 m的位移小.(×)

(2)李强向东行进5 m,张伟向北行进也5  m,他们的位移不同.(√)

(3)路程是标量,位移是矢量.(√)

探究交流

温度是标量还是矢量?+2 ℃和-5 ℃哪一个温度高?

【提示】 温度是标量,其正、负表示相对大小,所以+2 ℃比-5 ℃温度高.

四、直线运动的位置和位移

1.基本知识

如图所示,一个物体沿直线从A点运动到B点,若A、B两点的位置坐标分别为xA和xB,则物体的位移为Δx=xB-xA.

若图中的单位长度为1 m,则xA=3 m,xB=-2 m,Δx=-5_m.

2.思考判断

(1)位置坐标就是位移.(×)

(2)初末两位置坐标为正时,位移一定是正.(×)

(3)初末两位置坐标为负时,位移可能为正.(√)

探究交流

上面例子中若物体到达B点接着又回到A点,那么第二个过程的位移是多少?整个过程的位移又是多少?

【提示】 第二个过程的位移为Δx=3 m-(-2 m)=5 m.整个过程的位移为零.

五、时间间隔与时刻的理解

【问题导思】

1.班里的作息时间表上的数据,表示的是时刻,还是表示时间间隔?

2.结合实际,你能列举出哪些关于时间间隔和时刻的说法?

3.时间间隔与时刻怎么区分?

1.时刻与时间间隔的区别与联系

2.表示时间的数轴

注意两点:(1)第n s(内)是时间间隔,时间是1 s;

(2)第n s末与第(n+1)s初是同一时刻.

特别提醒

人们在日常生活中所说的“时间”,其含义不尽相同,有时是指时刻,有时是指时间间隔,在物理学中,“时间”的含义就是时间间隔.

例:以下画线的数字指时刻的是(  )

A.某中学的作息时间表上写着,第四节:10∶15~10∶55

B.刘翔跨栏记录为12.91_s

C.中央电视台《星光大道》栏目每晚7∶30准时与您见面

D.午休从12∶10开始

【审题指导】 解答该题需注意以下两点:

(1)时间间隔对应着某个事件所经历的某个过程.

(2)时刻对应着某个事件开始、结束或进行到某一状态时所对应的瞬间.

【答案】 ACD

六、路程和位移的理解

【问题导思】

1.在学校操场上,转了一圈,位移和路程分别是多少?

2.位移和路程在大小上有什么关系?在什么情况下,位移的大小才等于路程?

3.位移与路径有关吗?路程与路径呢?

路程和位移的比较如下表所示

特别提醒

1.如果某段时间内某物体通过的路程为零,则这段时间内物体静止;但如果位移为零,则在这段时间内物体不一定静止.

2.位移可用“+”、“-”表示,但位移的正、负不表示大小,仅表示方向.

例:同学们都喜欢上体育课,一年一度的学校运动会同学们更是期待很大.如图所示为某学校田径运动场跑道的示意图,其中A点是所有跑步项目的终点,也是400 m、800 m赛跑的起跑点,B点是100 m赛跑的起跑点.在一次校运动会中,甲、乙、丙三位同学分别参加了100 m、400 m和800 m赛跑,则从开始比赛到比赛结束时(  )

A.甲的位移最大

B.丙的位移最大

C.乙、丙的路程相等

D.丙的路程最大

【审题指导】 解答思路是:

路程→找轨迹→轨迹长度表示大小

位移→连线段→线段长度表示大小

【答案】 AD

规律总结:位移与路程的关系

1.位移与路程永远不可能相同.因为位移是矢量,既有大小又有方向;而路程是标量,它只有大小没有方向.两者的运算法则不同.

2.位移大小与路程可能相等,一般情况下,位移大小都要小于路程,只有当物体做单向直线运动时,位移大小才与路程相等.

板书

§1.2时间和位移

1.时间时间是时间间隔的简称,指一段持续的时间间隔。两个时刻的间隔表示一段时间,在时间坐标轴上对应于一段

2.时刻时刻是指某一瞬时,在时间坐标轴上对应于一点

3.位移初位置指向末位置的有向线段表示位移,描述物体位置的改变,是矢量,与运动路径无关,只由初末位置决定

4.路程质点运动轨迹的长度,是标量,取决于物体运动路径

5.矢量矢量既有大小,又有方向

6.标量只有大小,没有方向,标量相加遵从算术加法的法则

7.位置用坐标表示位置

8.位移用位置坐标的变化量表示物体位移

[时间和位移教学设计]

篇3:《时间和位移》教学反思

今天早上在三班和四班上了《时间和位移》,下午在五班听了吴老师的《时间和位移》的课,感触颇深,看到了一个教了十来年书的教师的沉淀,发现自己的距离真是太远了。结合吴老师的课,我反思了几个方面:

1、上课时间的分配。像《时间和位移》这节课共包含了时间和时刻、路程和位移、矢量与标量等三方面的内容。我几乎是平均分配了时间。由于缺乏高中三年总体的把握,以及不够了解学生的学情,我没有花足够的时间去突破难点,即使牵涉到了,也没有针对到点上。比如,对于第几秒内,第几秒初,第几秒末,前几秒的辨别,虽然我提到了,但是我没有花足够的时间去深化,因此我不确定同学们是否真的落实了。还有如路程和位移的区别也没有花很多的时间去说明。

2、声音的控制。我觉得自己一节课都是用高声调来上课的。用一个调最大的缺点就是学生无法感知哪些是重点,哪些是我要强调的。而且语气单一,缺乏抑扬顿挫,不够有变化。

3、提问的艺术。当问出一个问题的时候,没有给学生足够的思考时间,就叫学生起来回答,这中间存在着两个缺点:

a、被提问的同学由于没看完题目或者没思考好就被叫起来会紧张,影响思考。

b、没有被提问到的学生可能就会偷懒不去思考。

我觉得我的一堂课只能说把概念讲清楚了,但是不一定把学生讲会了。以后在教与学的联系上面还需要加强。

篇4:《时间和位移》教学反思

1、理论联系实际,激发学生的学习兴趣

理论联系实际不仅使学生深刻的理解物理的规律;也是培养学习物理兴趣,使学生真正学好物理、培养学生能力最有效的途径。

本课开始引入课题时,设计了刘其贤同学参加100m赛跑的例子,极大地激发了学生的学习热情,学生建立模型并动手实验,从实验中得出结论,体验探索的快乐,充分发挥学生学习的积极性、主动性,很好地提高了课堂效率,并使学生的思维得到了提高。

2、处理画出匀速直线运动s-t图象时要具体、细致。

根据图象反映物理规律,是根据实验探索自然规律的重要的途径。为了尽量能够让学生体会到这一点,我设计了模拟实验来模拟刘其贤同学的运动情况,然后要求学生记录实验数据,列表,画出s-t图象。画出图象后,又让学生了解到图象是如何反映物体的运动规律的,从而说明图象的意义是反映位移随时间变化的规律。

3、尽量做好铺垫,循序渐进

本节课在教学设计时,结合学生基础比较薄弱的实际特点,认真铺设好“台阶”,从匀速到变速,从简单到复杂,图象的设计从直、折到曲这种上升的趋势。在教学过程中,学生很容易把图象看成是物体运动的轨迹,所以课堂中我强调了这两者是根本不同的。

4、精心地设计一些问题

问题的设计,要求教师要找准学生学习的难点、不足点、上当点,只有这样才能使教师和学生的思维产生共振。通过问题的导向,既可以使学生建立起比较清晰的知识结构,又能使学生在知识建构中培养能力。

5、教师的讲课应该与学生的参与、交流、合作相结合,多媒体的直观教学呈现与学生的生活经验相联系。

教师的思维活动不能代替学生的思维活动,没有经过学生的“认真思考、发现矛盾,产生困难、自行解决困难”的过程,学生不可能真正掌握知识,更谈不上创造性学习。所以在教学过程中,我尽量留时间让学生去思考。比如,学生上台演示时,下面的同学在观察他们的模拟的同时,有足够的时间进一步去思考s-t图象的物理意义。此外我还设计了学生观察教师活动然后画图象,观察图象描述小朋友上学过程等活动,大大调动了学生的积极性,激发学生的想象力。

学生的想象力是极其丰富的,创造力是无限的,因此上这样的课,我们教师一定要尽最大努力去激发学生的学习兴趣,让学生在相互讨论、合作交流、自主探究的学习过程中获得知识,我们的教学质量将会大幅提高。

“速度”这个词经常出现在我们的生活当中,学生都知道我们常说的快慢指的就是速度。可是到底什么是速度,速度的快慢又与什么有关呢?学生便不太清楚。所以在情境中,教师通过刘翔夺得110米栏冠军的成绩表以及老师与刘翔比赛的成绩分析,使学生知道了在路程相等和时间相等的时候怎样比快慢,并明确了速度的快慢与路程和时间有关。同时也埋下一个伏笔,如果路程和时间都不相同,又该怎样比快慢呢?进而揭示课题。

在路程与时间都不相等的'时候怎样比快慢?对于这个问题,教师放手给学生采用计算的方法或借助画线段图来解决。对于学生来说,用计算的方法解决难度不大,但要求画线段图,尤其是标准的线段图,学生会有一定困难。我们都知道,线段图可以帮助我们直观地分析数量关系从而有效地解决问题。但是线段图学生在此之前的学习中并没有涉猎,所以学生画的可能不够准确或有误。此时,我们有必要跟学生一起经历准确画线段图的过程。在线段图的生成过程中,教师注意引导学生积极思考,全程参与,这样就为学生下一步学习奠定了基础。同时教师通过计算和线段图的对比将数形结合,使学生清楚地看到比较两辆车的快慢,实际就是比较两辆车1时行驶的路程,而这1时行驶的路程,正是我们所说的速度。从而使学生明确在路程与时间都不相同的时候比快慢,就是比速度。

帮助学生在实际情境中理解速度的意义,这是本节课的难点。所以教师在引导学生得出速度与时间和路程的关系式的后,又提供三个情境,让学生口算出3个运动物的速度。而这3个物体的速度分别是火车、自行车、运动员在1时、1分、1秒的时间内行驶的路程。在此基础之上,让学生来谈谈对速度是怎样理解的,当学生理解到1时、1分、1秒这样的时间内行驶的路程就是速度时,教师给出“单位时间”的概念,进而引导学生概括出“速度”的意义,既体现了从一般到特殊的数学从而发展了学生的抽象概括能力。

速度有快有慢,单位也各不相同,这需要学生在具体生活情境中加以理解和感受。此环节教师通过播放课件,让学生亲身感受蜗牛爬行速度之慢、光传播速度之快,使学生在轻松与震撼中进一步认识和理解了速度,进而能够运用这些知识解释生活中的自然现象。

教师选择了“题中题”的形式,即在一个大的问题情境中设有小情境,通过引导学生对不同角度问题的争议和思考,帮助他们进一步理解路程、时间与速度三者之间的关系,特别是通过多样化的算法,既巩固了学生对三者关系的认识,又发展了学生的思维能力,并从中体会到三者关系的紧密。

篇5:《时间和位移》教学反思

匀变速直线运动的位移公式是高中物理教学中的难点之一,教师在教学设计中分析了以往两种处理方法(既“先分割,再极限求和”以及“根据平均速度求位移”)的不足,根据学生实际提出了自己的教学思路。其突出的特点有以下几方面:

1.新课程倡导探究,并将科学探究与科学知识并列为课程的学习内容。猜想与假设是科学探究的要素之一,但不是没有依据的胡猜乱想。本节课从复习旧知识引出新问题之后,由匀速直线运动速度图象中“面积”的物理意义,迁移到在匀变速直线运动速度图象中的“面积”是否也具有同样的物理意义,提出猜想有根有据、合情合理,符合高一新学生的认知水平。

2.教学过程中,教师要求学生设计实验去验证“猜想”,这个实验设计对于高一学生有一定的难度,但是不同的学生有不同的思维“堵塞”点,教师要求各小组提出各自的困难与障碍,由其他同学帮助该组解决问题,最后达成共识。实现了对症下药,对于困难,鼓励学生敢于挑战,落实了“情感”目标,也体现了面向全体学生的课程理念。之后,教师要求学生设计记录实验数据的表格,这既是实验前的准备工作,也促进了学生对实验的设计进行整理,使学生在思维上再经历了一次过程,培养了学生设计实验的能力。当学生根据实验数据验证了猜想,推导出位移公式,水到渠成,知识目标、过程目标和情感目标教学目标也得到实现。

3.当推导出匀变速直线运动的位移公式之后,教师没有急于进行巩固训练,而是要求学生以上述研究过程为载体进行反思,感悟科学探究的方法和过程。

篇6:路程与位移

1.人绕操场跑一圈,回到原点的路程和位移

2.人绕圆形操场跑道某位置的路程和位移

3.火车从北京到上海的路程和位移

4.甲拿着地图向乙问路,如图所示.有下面的一段对话:甲:请问到市图书馆怎么走?乙:从你所在的市中心向南走400 m到一个十字路口,再向东走300 m就到了.甲:谢谢!乙:不用客气.则根据上面的对话甲从市中心到图书馆要走的路程和位移的大小分别为(

)

A.700 m、700 m B.500 m、500 m C.700 m、500 m D.500 m、700 m

5.有两位同学进行无线电测控,甲同学因为迷路走了10 000 m回到出发点A,乙同学沿曲线走了10 000 m到达目标点,如图所示.这两位同学都走了10 000 m,而效果不同,甲位移_____m,乙位移为

_____m.

6.如图所示,一实心长方体的长、宽、高分别为a、b、c,且a>b>c,有一蚂蚁自A点运动到B点.求:

(1)蚂蚁的位移大小. (2)蚂蚁的最短路程

.

7.某同学从他家出发步行到学校,要先向正东走400 m,然后再向正北走600 m,最后再向正东走400 m才能到达,如图所示.则他从家到学校的位移大小和走过的路程分别为(

)

A.1 000 m,1 000 m B.1 400 m,1 400 m C.1 000 m,1 400 m D.1 400 m,1 000 m

8.已知物体t时刻的末位置Q.要完全确定该物体在t=0时的初位置P,还必须知道( )

A.位移 B.路程C.平均速率 D.平均功率

9.皮球从3m高处落下, 被地板弹回, 在距地面1m高处被接住, 则皮球通过的路程和位移的大小分别是

(A) 4m、4m (B) 3m、1m (C) 3m、2m (D) 4m、2m

10.一个电子在匀强磁场中沿半径为R的圆周运动。转了3圈回到原位置,运动过程中位移的最大值和路程的.最大值分别是:

A.2R,2R; B.2R,6πR; C.2πR,2R; D.0,6πR。

答案

1,2,3:略

4. 【答案】C 【解析】路程是运动物体实际轨迹的长度,而位移是起点到终点距离的有向线段,大小等于起点到终点的连线的长度,不难得出选项C正确.

5.【答案】0 8000

6.

7. 【答案】C【解析】位移为由家到学校的直线距离,由几何关系可得位移x=2400?300 m=1 000 m.路程为由家到学校走过的路径,即x′=400 m+600 m+400 m=1 400 m.故C正确.22

8. 【答案】A 【解析】物体从t=0时刻的初位置P经过t时间运动到末位置Q,整个过程中位移是唯一确定的,即从P到Q的有向线段.从P到Q的路程是不能确定的,因此,平均速率也是不能确定的.当然,平均功率也不能确定.所以,若已确定末位置Q,只有知道位移才能够完全确定物体在t=0时的初位置P.

9、D

10.答案:B

篇7:高中物理时间和位移教学设计

高中时间和位移教学设计

高中物理时间和位移教学反思

新课程倡导探究,并将科学探究与科学知识并列为课程的学习内容。猜想与假设是科学探究的要素之一,但不是没有依据的胡猜乱想。本节课从复习旧知识引出新问题之后,由匀速直线运动速度图象中“面积”的物理意义,迁移到在匀变速直线运动速度图象中的“面积”是否也具有同样的物理意义,提出猜想有根有据、合情合理,符合高一新学生的认知水平。

教学过程中,我要求学生设计实验去验证“猜想”,这个实验设计对于高一学生有一定的难度,但是不同的学生有不同的思维“堵塞”点,要求各小组提出各自的困难与障碍,由其他同学帮助该组解决问题,最后达成共识。实现了对症下药,对于困难,鼓励学生敢于挑战,落实了“情感”目标,也体现了面向全体学生的课程理念。之后,我要求学生设计记录实验数据的表格,这既是实验前的准备工作,也促进了学生对实验的设计进行整理,使学生在思维上再经历了一次过程,培养了学生设计实验的能力。当学生根据实验数据验证了猜想,推导出位移公式,水到渠成,知识目标、过程目标和情感目标教学目标也得到实现。

篇8:高一物理时间和位移教案

知识目标

知道什么是匀速直线运动,什么是变速直线运动

理解位移—时间图像的含义,初步学会对图像的分析方法.

能力目标

培养自主学习的能力及思维想象能力.

情感目标

培养学生严肃认真的学习态度.

篇9:高一物理时间和位移教案

教材分析

匀速直线运动是一种最简单的运动,教材通过汽车运行的实例给出定义,且下定义时没有用“在任何相等时间里”这种过于数学化的说法,适合高一同学的学习情况.本节的重点是由匀速直线运动的定义,用图像法研究位移与时间的关系,本节教材没出现任何公式,而是利用图2—6形象地描述了一辆汽车的运动情况,图上还标了位移和时间的测量结果.教材用表格的形式记录下测量数据,取平面直角坐标(横轴表示时间,纵轴表示位移,取单位,定标度),再根据记录数据描点,最后画出表示汽车运动的结果.教材用表格的形式记录下测量数据,取平面直角坐标(横轴表示时间,纵轴表示位移,取单位,定标度),再根据记录数据描点,最后画出表示汽车运动的位移图像为一直线,这个程序体现了我们研究问题的一种方法,要让学生领会.本节的第二个知识点是变速直线运动的定义,教材也是通过生活常识直接给出定义,本节的最后对图像法做了一个简介,能够引起同学们的重视.

教法建议

本节内容不多,但学习了一种新的处理问题的方法:即根据实验数据作出图像,图像反映物理规律,这是我们通过实验探求自然规律的一要重要的基本的途径.应在学生充分预习的基础上,真正让学生自己能画出图像,并练习分析图像所代表的过程或规律.学生容易把位移图像看成物体的运动轨迹,我们要注意强调它们是根本不同的两个东西,如果学生基础较好,我们应该尽量使学生看到物体的位移图像能想象出物体的运动情况,也应该使学生根据物体的运动情况正确地画出物体的位移图像.

篇10:高一物理时间和位移教案

教学重点:匀速直线运动的位移—时间图像的建立.

教学难点 :对位移图像的理解.

主要设计:

一、匀速直线运动:

(一)思考与讨论:

1、书中给出的实例,汽车每经过100m的位移所用的时间大致为多少?

2、什么叫匀速直线运动?

3、如何建立位移——时间图像?根据图像如何分析物体的运动规律?

4、如图一个物体运动的位移——时间图像如图所示,分析物体各段的运动情况?

(二)多媒体演示,加强对位移图像的理解

将教材图2—6及图2—7做出动态效果.

(三)练习:给出另一个物体做匀速直线运动的例子,让同学自己画出位移图像.

(四)教师小结位移——时间图像的有关知识

1、图像是描述物理规律的一种常用方法.

2、建立图像的一般步骤:采集实验数据,建立表格记录数据,建立坐标系,标明坐标轴代表的物理量及标度,描点做图.

3、分析图像中的信息:(轴的含义,一个点的含义,一段线的含义等)

二、变速直线运动

(一)提问:

什么是变速直线运动?请举例说明.

(二)展示多媒体资料:

汽车启动及进站时的情况.

篇11:高中物理匀变速直线运动的位移与时间的关系教案

整体设计

高中物理引入极限思想的出发点就在于它是一种常用的科学思维方法,上一章教材用极限思想介绍了瞬时速度和瞬时加速度,本节介绍v-t图线下面四边形的面积代表匀变速直线运动的位移时,又一次应用了极限思想.当然,我们只是让学生初步认识这些极限思想,并不要求会计算极限.按教材这样的方式来接受极限思想,对高中学生来说是不会有太多困难的.学生学习极限时的困难不在于它的思想,而在于它的运算和严格的证明,而这些,在教材中并不出现.教材的宗旨仅仅是“渗透”这样的思想.在导出位移公式的教学中,利用实验探究中所得到的一条纸带上时间与速度的记录,让学生思考与讨论如何求出小车的位移,要鼓励学生积极思考,充分表达自己的想法.可启发、引导学生具体、深入地分析,肯定学生正确的想法,弄清楚错误的原因.本节应注重数、形结合的问题,教学过程中可采用探究式、讨论式进行授课.

教学重点

1.理解匀速直线运动的位移及其应用.

2.理解匀变速直线运动的位移与时间的关系及其应用.

教学难点

1.v-t图象中图线与t轴所夹的面积表示物体在这段时间内运动的位移.

2.微元法推导位移公式.

课时安排

1课时

三维目标

知识与技能

1.知道匀速直线运动的位移与时间的关系.

2.理解匀变速直线运动的位移及其应用.

3.理解匀变速直线运动的位移与时间的关系及其应用.

4.理解v-t图象中图线与t轴所夹的面积表示物体在这段时间内运动的位移.

过程与方法

1.通过近似推导位移公式的过程,体验微元法的特点和技巧,能把瞬时速度的求法与此比较.

2.感悟一些数学方法的应用特点.

情感态度与价值观

1.经历微元法推导位移公式和公式法推导速度位移关系,培养自己动手的能力,增加物理情感.

2.体验成功的快乐和方法的意义.

课前准备

多媒体课件、坐标纸、铅笔

教学过程

导入新课

情景导入

“适者生存”是自然界中基本的法则之一,猎豹要生存必须获得足够的食物,猎豹的食物来源中,羚羊是不可缺少的.假设羚羊从静止开始奔跑,经50 m能加速到最大速度25 m/s,并能维持较长的时间;猎豹从静止开始奔跑,经60 m能加速到最大速度30 m/s,以后只能维持这个速度4.0 s.设猎豹在某次寻找食物时,距离羚羊30 m时开始攻击,羚羊在猎豹开始攻击后1.0 s才开始逃跑,假定羚羊和猎豹在加速阶段分别做匀加速直线运动,且均沿同一直线奔跑,猎豹能否成功捕获羚羊?

故事导入

1962年11月,赫赫有名的“子爵号”飞机正在美国马里兰州伊利奥特市上空平稳地飞行,突然一声巨响,飞机从高空栽了下来,事后发现酿成这场空中悲剧的罪魁祸首竟是一只在空中慢慢翱翔的天鹅.

在我国也发生过类似的事情.1991年10月6日,海南海口市乐东机场,海军航空兵的一架“014号”飞机刚腾空而起,突然,“砰”的一声巨响,机体猛然一颤,飞行员发现左前三角挡风玻璃完全破碎,令人庆幸的是,飞行员凭着顽强的意志和娴熟的技术终于使飞机降落在跑道上,追究原因还是一只迎面飞来的小鸟.

飞机在起飞和降落过程中,与经常栖息在机场附近的飞鸟相撞而导致“机毁鸟亡”.小鸟为何能把飞机撞毁呢?学习了本节知识,我们就知道其中的原因了.

复习导入

前面我们学习了匀变速直线运动中速度与时间的关系,其关系式为v=v0+at.在探究速度与时间的关系时,我们分别运用了不同方法来进行.我们知道,描述运动的物理量还有位移,那位移与时间的关系又是怎样的呢?我们又将采用什么方法来探究位移与时间的关系呢?

推进新课

一、匀速直线运动的位移与时间的关系

做匀速直线运动的物体在时间t内的位移x=v-t.

说明:取运动的初始时刻物体的位置为坐标原点,这样,物体在时刻t的位移等于这时的坐标x,从开始到t时刻的时间间隔为t.

教师设疑:同学们在坐标纸上作出匀速直线运动的v-t图象,猜想一下,能否在v-t图象中表示出做匀速直线运动的物体在时间t内的位移呢?学生作图并思考讨论.

合作探究

1.作出匀速直线运动的物体的速度—时间图象.

2.由图象可看出匀速直线运动的v-t图象是一条平行于t轴的直线.

3.探究发现,从0——t时间内,图线与t轴所夹图形为矩形,其面积为v-t.

4.结论:对于匀速直线运动,物体的位移对应着v-t图象中一块矩形的面积,如图2-3-1.

图2-3-1

点评:1.通过学生回答教师提出的问题,培养学生应用所学知识解决问题的能力和语言概括表达能力.

2.通过对问题的`探究,提高学生把物理规律和数学图象相结合的能力.

讨论了匀速直线运动的位移可用v-t图象中所夹的面积来表示的方法,匀变速直线运动的位移在v-t图象中是不是也有类似的关系,下面我们就来学习匀变速直线运动的位移和时间的关系.

二、匀变速直线运动的位移

教师启发引导,进一步提出问题,但不进行回答.

问题:对于匀变速直线运动的位移与它的v-t图象是不是也有类似的关系?

通过该问题培养学生联想的能力和探究问题、大胆猜想的能力.

学生针对问题思考,并阅读“思考与讨论”.

学生分组讨论并说出各自见解.

结论:学生A的计算中,时间间隔越小,计算出的误差就越小,越接近真实值.

点评:培养用微元法的思想分析问题的能力和敢于提出与别人不同见解发表自己看法的勇气.

说明:这种分析方法是把过程先微分后再累加(积分)的定积分思想来解决问题的方法,在以后的学习中经常用到.比如:一条直线可看作由一个个的点子组成,一条曲线可看作由一条条的小线段组成.

教师活动:(投影)提出问题:我们掌握了这种定积分分析问题的思想,下面同学们在坐标纸上作初速度为v0的匀变速直线运动的v-t图象,分析一下图线与t轴所夹的面积是不是也表示匀变速直线运动在时间t内的位移呢?

学生作出v-t图象,自我思考解答,分组讨论.

讨论交流:1.把每一小段Δt内的运动看作匀速运动,则各矩形面积等于各段匀速直线运动的位移,从图2-3-2看出,矩形面积之和小于匀变速直线运动在该段时间内的位移.

图2-3-2 图2-3-3 图2-3-4

2.时间段Δt越小,各匀速直线运动位移和与匀变速直线运动位移之间的差值就越小.如图2-3-3.

3.当Δt→0时,各矩形面积之和趋近于v-t图象下面的面积.

4.如果把整个运动过程划分得非常非常细,很多很小矩形的面积之和就能准确代表物体的位移了,位移的大小等于如图2-3-4所示的梯形的面积.

根据同学们的结论利用课本图2.3-2(丁图)能否推导出匀变速直线运动的位移与时间的关系式?

学生分析推导,写出过程:

S面积= (OC+AB)OA

所以x= (v0+v)t

又v=v0+at

解得x=v0t+ at2.

点评:培养学生利用数学图象和物理知识推导物理规律的能力.

做一做:位移与时间的关系也可以用图象表示,这种图象叫做位移—时间图象,即x-t图象.运用初中数学中学到的一次函数和二次函数知识,你能画出匀变速直线运动x=v0t+ at2的x-t图象吗?(v0、a是常数)

学生在坐标纸上作x-t图象.

点评:培养学生把数学知识应用在物理中,体会物理与数学的密切关系,培养学生作关系式图象的处理技巧.

(投影)进一步提出问题:如果一位同学问:“我们研究的是直线运动,为什么画出来的x-t图象不是直线?”你应该怎样向他解释?

学生思考讨论,回答问题:

位移图象描述的是位移随时间的变化规律,而直线运动是实际运动.

知识拓展

问题展示:匀变速直线运动v-t关系为:v=v0+at

x-t关系为:x=v0t+ at2

若一质点初速度为v0=0,则以上两式变式如何?

学生思考回答:v=at x= at2

进一步提出问题:一质点做初速度v0=0的匀加速直线运动.

(1)1 s末、2 s末、3 s末……n s末的速度之比为多少?

(2)1 s内、2 s内、3 s内……n s内的位移之比为多少?

(3)第1 s内、第2 s内、第3 s内……第n s内的位移之比为多少?

(4)第1个x,第2个x,第3个x……第n个x相邻相等位移的时间之比为多少?

点评:通过该问题加深对公式的理解,培养学生灵活运用所学知识解决实际问题的能力.

学生活动:思考,应用公式解决上述四个问题.

(1)由v=at知,v∝t,故1 s末、2 s末、3 s末……n s末的速度之比为:1∶2∶3∶…∶n

(2)由x= at2知x∝t2,故1 s内、2 s内、3 s内……n s内的位移之比为:1∶4∶9∶…∶n2

(3)第1 s内位移为x1= a,第2 s内位移为x2= a(22-12),第3 s内位移为x3= a(32-22),第n s内位移为xn= a[n2-(n-1)2]

故第1 s内,第2 s内,第3 s内,…第n秒内位移之比为:1∶3∶5∶…∶(2n-1).

(4)由x= at2知t∝ ,故x,2x,3x,…nx位移所用时间之比为:1∶ ∶ ∶…∶ .

第1个x,t1= ;第2个x,t2= ;第3个x,t3= ……第n个x,tn= ,故第1个x,第2个x,第3个x……第n个x相邻相等位移的时间之比:1∶( -1)∶( - )∶…∶( - )

三、匀变速直线运动位移时间关系的应用

引导学生由v=v0+at,x=v0t+ at2两个公式导出两个重要推论,再利用两个推论解决实际问题,加深对公式的理解,提高学生逻辑思维能力.

问题:在匀变速直线运动中连续相等的时间(T)内的位移之差是否是恒量?若不是,写出之间的关系;若是,恒量是多少?

学生分析推导:xn=v0T+ aT2

xn+1=(v0+aT)T+ aT2

Δx=xn+1-xn=aT2(即aT2为恒量).

展示论点:在匀变速直线运动中,某段时间内中间时刻的瞬时速度等于这段时间内的平均速度.

学生分组,讨论并证明.

证明:如图2-3-5所示

图2-3-5

= +

= +at

= = = +

所以 = .

例1一个做匀变速直线运动的质点,在连续相等的两个时间间隔内,通过的位移分别是24 m和64 m,每一个时间间隔为4 s,求质点的初速度和加速度.

解析:匀变速直线运动的规律可用多个公式描述,因而选择不同的公式,所对应的解法也不同.如:

解法一:基本公式法:画出运动过程示意图,如图2-3-6所示,因题目中只涉及位移与时间,故选择位移公式:

图2-3-6

x1=vAt+ at2

x2=vA(2t)+ a(2t)2-( t+ at2)

将x1=24 m、x2=64 m,代入上式解得:

a=2.5 m/s2,vA=1 m/s.

解法二:用平均速度公式:

连续的两段时间t内的平均速度分别为:

=x1/t=24/4 m/s=6 m/s

=x2/t=64/4 m/s=16 m/s

B点是AC段的中间时刻,则

= ,

=

= = = m/s=11 m/s.

得 =1 m/s, =21 m/s

a= = m/s2=2.5 m/s2.

解法三:用推论式

由Δx=at2得

a= = m/s2=2.5 m/s2

再由x1= t+ at2

解得 =1 m/s.

答案:1 m/s 2.5 m/s2

说明:1.运动学问题的求解一般均有多种解法,进行一题多解训练可以熟练地掌握运动学规律,提高灵活运用知识的能力.从多种解法的对比中进一步明确解题的基本思路和方法,从而提高解题能力.

2.对一般的匀变速直线运动问题,若出现相等的时间间隔问题,应优先考虑公式Δx=at2求解.

课堂训练

一个滑雪的人,从85 m长的山坡上匀变速滑下,初速度是1.8 m/s,末速度是5.0 m/s,他通过这段山坡需要多长时间?

分析:滑雪人的运动可以看作是匀加速直线运动,可以利用匀变速直线运动的规律来求.已知量为初速度v0、末速度vt和位移x,待求量是时间t,此题可以用不同的方法求解.

解法一:利用公式vt=v0+at和x=v0t+ at2求解,

由公式vt=v0+at得,at=vt-v0,代入x=v0t+ at2有,

x=v0t+ ,故

t= = s=25 s.

解法二:利用平均速度的公式:

= 和x= t求解.

平均速度: = = =3.4 m/s

由x= t得,需要的时间:t= = =25 s.

关于刹车时的误解问题:

例2 在平直公路上,一汽车的速度为15 m/s,从某时刻开始刹车,在阻力作用下,汽车以2 m/s2的加速度运动,问刹车后10 s末车离开始刹车点多远?

分析:车做减速运动,是否运动了10 s,这是本题必须考虑的.

初速度v0=15 m/s,a=-2 m/s2,设刹车时间为t0,则0=v0+at.

得:t= = s=7.5 s,即车运动7.5 s会停下,在后2.5 s内,车停止不动.

解析:设车实际运动时间为t,vt=0,a=-2 m/s2,由v=v0+at知t=7.5 s.

故x=v0t+ at2=56.25 m.

答案:56.25 m

思维拓展

如图2-3-7所示,物体由高度相同、路径不同的光滑斜面静止下滑,物体通过两条路径的长度相等,通过C点前后速度大小不变,问物体沿哪一路径先到达最低点?

图2-37 图2-3-8

合作交流:物体由A→B做初速度为零的匀加速直线运动,到B点时速度大小为v1;物体由A→C做初速度为零的匀加速直线运动,加速度比AB段的加速度大,由C→D做匀加速直线运动,初速度大小等于AC段的末速度大小,加速度比AB段的加速度小,到D点时的速度大小也为v1(以后会学到),用计算的方法较为烦琐,现画出函数图象进行求解.

根据上述运动过程,画出物体运动的v-t图象如图2-3-8所示,我们获得一个新的信息,根据通过的位移相等知道两条图线与横轴所围“面积”相等,所以沿A→C→D路径滑下用的时间较短,故先到达最低点.

提示:用v-t图象分析问题时,要特别注意图线的斜率、与t轴所夹面积的物理意义.(注意此例中纵轴表示的是速率)

课堂训练

“适者生存”是自然界中基本的法则之一,猎豹要生存必须获得足够的食物,猎豹的食物来源中,羚羊是不可缺少的.假设羚羊从静止开始奔跑,经50 m能加速到最大速度25 m/s,并能维持较长的时间;猎豹从静止开始奔跑,经60 m能加速到最大速度30 m/s,以后只能维持这个速度4.0 s.设猎豹在某次寻找食物时,距离羚羊30 m时开始攻击,羚羊则在猎豹开始攻击后1.0 s才开始逃跑,假定羚羊和猎豹在加速阶段分别做匀加速直线运动,且均沿同一直线奔跑,问猎豹能否成功捕获羚羊?(情景导入问题)

解答:羚羊在加速奔跑中的加速度应为:

a1= = ①

x= a1t2 ②

由以上二式可得:a1= =6.25 m/s2,同理可得出猎豹在加速过程中的加速度a2= = =7.5 m/s2.羚羊加速过程经历的时间t1= =4 s.猎豹加速过程经历的时间t2= =4 s.

如果猎豹能够成功捕获羚羊,则猎豹必须在减速前追到羚羊,在此过程中猎豹的位移为:x2=x2+v2t=(60+30×4) m=180 m,羚羊在猎豹减速前的位移为:x1=x1+v1t′=(50+25×3) m=125 m,因为x2-x1=(180-125) m=55 m>30 m,所以猎豹能够成功捕获羚羊.

课堂小结

本节重点学习了对匀变速直线运动的位移—时间公式x=v0t+ at2的推导,并学习了运用该公式解决实际问题.在利用公式求解时,一定要注意公式的矢量性问题.一般情况下,以初速度方向为正方向;当a与v0方向相同时,a为正值,公式即反映了匀加速直线运动的速度和位移随时间的变化规律;当a与v0方向相反时,a为负值,公式反映了匀减速直线运动的速度和位移随时间的变化规律.代入公式求解时,与正方向相同的代入正值,与正方向相反的物理量应代入负值.

布置作业

1.教材第40页“问题与练习”第1、2题.

2.利用课余时间实际操作教材第40页“做一做”的内容.

板书设计

高中物理匀变速直线运动的位移与时间的关系教案

时间和位移教学的课后反思

与时间赛跑

小升初语文测试题与答案

税务师《财务与会计》测试题

与时间对话作文

与时间的名言

与时间赛跑读后感

与时间同行作文

与时间交流作文

《时间与位移测试题(合集11篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档