下面是小编帮大家整理的如何备战初三期中数学考试,本文共10篇,希望对大家的学习与工作有所帮助。

篇1:如何备战初三期中数学考试
转眼间大家都已升入初三,而且升入初三的第一次月考刚刚结束,相信大家还沉浸在考试成功的喜悦与考试失利的悲伤中,不管你考的好与坏,我觉得那都不重要了,重要的是你要通过这次月考发现自己在哪些方面还存在问题,还有不到一个月的时间初三第一次大考――期中考试就要到了,一定要改掉上次的不足,争取期中考试的好成绩。
期中考试是我们进入初三后第一次重大考试,它的成败会直接影响到大家的学习情绪,考好了,信心大增。考的不满意,肯定会情绪比较低落,信心受到影响。有的学校在签约上还会参考这次期中考试成绩,所以它的重要性,我就不再多说了,希望大家积极备战。
我现在对如何备战初三数学期中考试谈一下我的看法,希望能对同学们有所帮助。
首先同学们要赶快走出上次月考成功的喜悦与失败的阴影,初三考的不仅仅是你的学习,而且需要过硬的心态,不能被一时的成功冲昏头脑,更不能因一时的失败而丧失信心。
其次上课一定注意听讲,因为现在每个学校的进度都非常快,而知识点又非常难,相信很多同学都跟不上老师的进度,那上课一定注意听讲,把不会的知识点在课上记下来,课下一定要主动问老师。一定要注意老师上课讲的题是最精华,一定要弄懂。现在是初学不在乎你做多少题,关键在于你会多少题。一定要准备错题本,反复看,只要你能保证再出现以前错过的题不再出错,那我相信你的成绩会非常理想的。
初中的题目有一点非常好,题型有很多相同性,等到你以后做题做多了,你会慢慢发现。所以我还可以教大家一招,当你看到非常容易出现的题型的时候,如果你实在不能理解,那我希望你暂时能背下来,第一可以保证此次期中考试的成绩,同时你会随着时间的推移慢慢理解它。
还有就是尽可能找一下学校去年的试卷自己检测一下自己,看看自己还有那些问题。
因为我们知道期中考试的难点有二次函数,所以最后把二次函数当中经常考的题型和大家分享一下:
二次函数:
1. 求二次函数解析式。
(1) 当出现任意三个点坐标的时候,直接带入求出解析式。
(2) 当出现(X1,0),(X2,0)的时候,用双根式求解析式。
(3) 当出现(h,k)时,就用顶点式求解析式。
2. 根据函数图象判断正负(a,b,c,a+b+c,a-b+c,2a+b)
a看开口方向(a>0开口向上,a<0 b=“” a=“” c=“” y=“”>0交y轴正半轴,=0过原点,<0交负半轴),a+b+c看当x=1时所对应的y值正负,a-b+c看当x=-1时所对应的y值正负,2a+b看对称轴。
3. 二次函数与一元二次方程的结合(大题)
出现这样的题的时候注意二次函数与x轴的交点就是一元二次方程的根。
4. 二次函数图像的对称
y=ax2+bx+c(a≠0)
(1)关于x轴对称
y=-ax2-bx-c
(2)关于y轴对称
y=ax2-bx+c
(3)关于原点对称
y=-ax2+bx-c
5. 二次函数图像的平移
左加右减,上加下减原则
6. 二次函数中的最值问题
注意对称轴是否在定义域内,如果在,那顶点坐标的纵坐标就是要求的最值,否则就不是。切记(很多同学在求最值时不看x的取值范围,直接用顶点坐标纵坐标当做最值,这样是错误的)
最后告诉自己你能行。祝大家期中考试成功!
篇2:数学考试期中总结300字
初一学生学习积极性的高低,一般是由学习动机所决定,入学初,我对班级进行调查,学生的学习动机可大致分为:
学习无目的,无兴趣,应付家长占52.8%
学习为个人前途,为家长争光占20.2%
学习为国家,为祖国的建设服务占27%
从中可以看出大部分同学学习目的不明确,但他们的可塑性很强,除了加强正常的正面教育,还可利用知识的魅力吸引学生.
精心设疑,激发学习兴趣,点燃学生对数学“爱”的火花
爱因斯坦有句名言,“兴趣是最好的老师”.一个人有了“兴趣”这位良师,他的知觉就会清晰而明确,记忆会深刻而持久,在学习上变被动为主动.在教学中,特别注意以知识本身吸引学生.巧妙引入,精心设疑,造成学生渴求新知识的心理状态,激发学生学习的积极性和主动性.如利用课本每一章开始的插图,提出一般的实际问题,这样既能提高学生的学习兴趣,又能帮助学生了解每一章的学习目的;又如代数第二章有理数的引入,我给学生举了一个实例:从讲台走向门(向南)走3米,从门走回讲台(向北)也走3米,接着我问学生两个问题:(1)我的位置变了没有 (2)我走了几米 能用数学式子表示吗 对于这个具体问题,学生都说我的位置没变,可实际走了6米,怎么用数学式子表示就感到茫然了.这个例子诱发了学生的胃口,趁(自百分网 学生急于求知的心理状态引入新的课题:“为了满足实际需要,必须把学过的算术数扩充到有理数.”
此外,还利用学生每天的作业反馈和单元测验成绩的反馈,进一步激发和培养学生的兴趣.
[数学考试期中总结300字]
篇3:期中数学考试总结反思
期中测试已经结束,静下心来思索前一段时间的教学和本次期中考试中所暴露出的问题,简单地予以小结。
我觉得在小学高段的数学教学中,让学生理解数学概念(例如圆柱圆锥的体积计算、统计表统计图、比和比例的概念等)是掌握数及其运算性质、法则、公式等基础知识的前提,又是发展智力,培养能力的基础。平时的练习和考试时学生在运算中发生错误,解题能力差,不能把所学知识运用到实际中去解决问题,其主要原因我觉得是学生对某些数学概念掌握得差。对此我想只有组织好教学过程中的各个环节,才能起到优化教学过程的作用,提高课堂教学的效率。
概念是从现实世界的具体事物中抽象概括出来的。因此,我们在数学概念教学中,必须遵循从具体到抽象的原则,由感性认识逐步上升为理性认识,并根据学生的学习特点,注意利用学生熟悉的事物进行观察比较,或让学生动手操作,获得必要的感性认识,然后通过语言来逐步抽象、概括出数学概念。例如,在教学体积概念时,可以先让学生观察一个铅笔盒和一块黑板擦,问学生谁大?紧接着,又让学生观察两个棱长分别是2厘米和4厘米的方木块,问学生哪个大?通过这样比较,学生初步获得了物体有大小的感性认识,在这个基础上,再进一步引导学生去发现概念的本质属性。拿出一个梭长是4厘米的正方体空纸盒,先将梭长是2厘米的方木块放入盒内,学生便清楚地看到这方木块只占据了盒子的一部分空间,然后把一个梭长为4厘米的方木块放入盒内,正好占满纸盒的整个空间,学生又从这一具体事例中获得了物体占空间的感性认识,在这个基础上就能较自然地导出:物体所占有空间的大小,叫做“体积”这一概念。
同时,课堂练习是教学上的反馈活动,是学生对教师输出信息的反映信号。学生通过练习,不仅可以起到巩固概念、深化概念的作用,而且通过练习可以学习正确的思维方法,形成技能技巧。因此,精心设计好练习题并及时评讲、纠错,可以起到事半功倍的教学效果。因此我们在概念教学中。如果能根据学生的生活实际及年龄特点及教学规律,合理采用各种教学手段与方法来进行教学,处理好教学过程中的各个环节,可以使学生概念清晰、能力增强。从而提高课堂教学效率,为学生后继学习打下坚实的基础。
许多老师在月考或期中、期末考试之后都会发出这样的感慨:试卷上有些题目都已讲了好多遍,为什么仍有这么多的'学生做不出来、考不好!接下来就会说为什么自己教的学生会有这么笨,讲了这么多遍都记不住。于是乎在讲评试卷时或在家长会上就不停地强调有多少多少题目是自己讲过好多次的。把考得不好的责任都推给学生。如果只是个别学生出现了这种情况,那可能是学生的问题;如果是群体出现了这样的问题,那教师就得反省自己了,是自己没有讲清楚,还是教学方法、教学常规上存在薄弱之处。关于这个问题,我从两个方面做了一些反思,供大家思考。
1、从认识方面看:
①学生是参差不齐的。平时教师讲过的内容,哪怕是经验丰富的教师讲了很多遍,也仍会有部分学生掌握得不好。学生的认知能力有强弱之分,我们不能认为自己讲了很多遍之后,学生就记住了、掌握了。我们的头脑中始终应该有这样一根弦:可能还有部分学生对某些内容没有掌握好。有了这根弦,也许我们就会经常去查漏补缺,而不至于怨天尤人。
②学生没有记住我们讲过的内容或题目也是合乎常理的,那么多的学科、那么多的内容需要他们去记,谁能记住那么多呢!但重要的是,在授课过程中我们是否帮助学生构建了知识体系、培养了解题能力。从新课程理念看,教学应注重过程,结果是其次的。在我们现在的教学中就应积极地贯穿这一理念,我们讲评某一方面的内容或某一个题目时,我们是填鸭式的讲评,还是在教师的启发下让学生在积极的思维过程中自觉地理解、掌握这部分内容。在这个过程中我们是否帮助学生构建了知识体系、培养了他们的解题能力。若完成了这一目标,哪怕有很多我们讲过的题目学生记不住,也是不可怕的,因为学生具备了获得正确答案的能力,而且我们没有讲过的题目学生也能解出正确的答案。我们这一生也许记不住我们骑过哪种型号、哪种颜色的自行车,但我们骑自行车的能力是不会忘记、不会丢掉的。所以在教学过程中,我们首先要追求的不是花多少课时去讲多少题目(当然让学生适当地见识一些题型是必要的),而是要不断地去培养学生的学习能力和解题能力。我们常说“要培养学生的终身学习能力”、“给学生一个苹果,还是给学生一棵苹果树”,讲的都是同一个道理。
2、从教学常规方面看:
首先我们得熟悉自己任教的学科,并积累大量的经验。然后利用这些经验去帮助学生构建知识体系并获得解题能力。但往往会出现这样的情况:你把许多自认为很好的经验、方法传授给学生,学生仍掌握不好。这里有一个问题值得我们注意,我们把经验、方法讲给学生听了,不等于学生就获得了这个经验、方法,我们必须要有及时的、有针对性的练习去进行巩固,才能转化为学生自己的东西,要把作业、知识点落到实处。另外,人都有懒惰的天性,要想大部分学生都掌握较好,还得在课堂上、作业上严格要求他们,并严防学生不做作业或假做作业。实际上许多高一学生在克服了知识障碍、能力障碍、行为障碍之后,在高二、高三年级便会进入良性循环;反之,一旦形成恶性循环,学生便会自暴自弃,而且师生关系恶化。而在这个克服的过程中,教师的严格要求往往起着很重要的作用。
要使学生考出好成绩,并学得轻松,我们就必须构建学生得知识体系、培养他们的解题能力,并使他们获得终身学习的能力。如何做到这一点,不同的老师会有不同的做法,希望我上面的反思能对大家有所启发。
篇4:期中数学考试反思300字
期末考试完了,我听到了一件事我的数学很差,我的三好学生拿不到了。
我连忙看看我的英语和语文都是九十几分,那时我很难过。可是曹老师跟我说:“佳怡,你不要灰心,这次没考好没系。放寒假后买一些学数学知识的书,好好复习数学知识。争取下次考到九十五分以上。”我听了以后心情感觉好了许多。我一定要好好学习把三好学生的奖再拿回来。
[期中数学考试反思300字]
篇5:初三数学考试知识点
九年级下册数学知识点归纳
知识点1.概念
把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形)
解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.
(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.
(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.
知识点2.比例线段
对于四条线段a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.
知识点3.相似多边形的性质
相似多边形的性质:相似多边形的对应角相等,对应边的比相等.
解读:(1)正确理解相似多边形的定义,明确“对应”关系.
(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.
知识点4.相似三角形的概念
对应角相等,对应边之比相等的三角形叫做相似三角形.
解读:(1)相似三角形是相似多边形中的一种;
(2)应结合相似多边形的性质来理解相似三角形;
(3)相似三角形应满足形状一样,但大小可以不同;
(4)相似用“∽”表示,读作“相似于”;
(5)相似三角形的对应边之比叫做相似比.
知识点5.相似三角的判定方法
(1)定义:对应角相等,对应边成比例的两个三角形相似;
(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.
(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.
(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.
(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.
(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.
知识点6.相似三角形的性质
(1)对应角相等,对应边的比相等;
(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;
(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.
(4)射影定理
九年级数学课文知识点
配方法的应用
对所有一元二次方程都适用,但特别对于二次项系数为1,一次项系数为偶数的一元二次方程用配方法会更为简单。
【配方法】
一般步骤:
第一步:使方程左边为二次项和一次项,右边为常数项;
第二步:方程两边同时除以二次项系数;
第三步:方程两边都加上一次项系数一半的平方,把原方程化为的形式;
第四步:用直接开平方解变形后的方程.
古希腊数学家丢番图(公元250年前后)在《算术》中就提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解.在欧几里得的《几何原本》中,形如x2+ax=b2(a>0,b>0)的方程的图解法是:以和b为两直角边作Rt△ABC,再在斜边上截取BD=,则AD的长就是所求方程的解.
注意:
1.一元二次方程得一般形式特点为方程右边是0,方程左边是关于x的二次整式。
2.“a≠0”是一元二次方程的一个重要组成部分,也是它的一个判断标准之一,但b、c可以为0。若没有出现bx,则b=0;没有出现c,则c=0。
3.可以通过“去分母,去括号,移项,合并同类项”等步骤得到一元二次方程得一般形式。
【因式分解法】
一般步骤:
第一步:将已知方程化为一般形式,使方程右端为0;
第二步:将左端的二次三项式分解为两个一次因式的积;
第三步:方程左边两个因式分别为0,得到两个一次方程,它们的解就是原方程的解。
初三数学学习方法技巧
一、该记的记,该背的背,不要以为理解了就行
有的同学认为,数学不像英语、史地,要背单词、背年代、背地名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。试想一下,小学的加、减、乘、除运算要不是背熟了“乘法九九表”,你能顺利地进行运算吗?尽管你理解了乘法是相同加数的和的运算,但你在做9.9时用九个9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同样,是运用大家熟记的法则做出来的。同时,数学中还有大量的规定需要记忆,比如规定(a≠0)等等。因此,我觉得数学更像游戏,它有许多游戏规则(即数学中的定义、法则、公式、定理等),谁记住了这些游戏规则,谁就能顺利地做游戏;谁违反了这些游戏规则,谁就被判错,罚下。因此,数学的定义、法则、公式、定理等一定要记熟,有些能背诵,朗朗上口。比如大家熟悉的“整式乘法三个公式”,我看在座的有的背得出,有的就背不出。在这里,我向背不出的同学敲一敲警钟,如果背不出这三个公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这三个公式,特别是初二即将学的因式分解,其中相当重要的三个因式分解公式就是由这三个乘法公式推出来的,二者是相反方向的变形。
对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。
二、几个重要的数学思想
1、“方程”的思想
数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度.时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
2、“数形结合”的思想
大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支枣-代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。
篇6:初三数学考试知识点
初三新学期数学知识点苏教版
一元一次方程:
①在一个方程中,只含有一个未知数,并且未知数的指数是
1、这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:
去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
2、不等式与不等式组
不等式:
①用符号”=“号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
一元一次不等式组:
①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。
九年级下册数学知识点归纳
一、平行线分线段成比例定理及其推论:
1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二、相似预备定理:
平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
三、相似三角形:
1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。
2.性质:(1)相似三角形的对应角相等;
(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;
(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。
说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。
3.判定定理:
(1)两角对应相等,两三角形相似;
(2)两边对应成比例,且夹角相等,两三角形相似;
(3)三边对应成比例,两三角形相似;
(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。
初三数学复习方法及技巧
一、?深刻理解概念。??
概念是初三数学的基石,学习概念(包括定义、定理、性质与判定)不仅要知其然,还要知其所以然,许多同学只注重记概念,而忽视了对其背景的理解,这样是学不好数学的,对于每个定义、定理,我们必须在牢记其内容的基础上知道它是怎样得来的,又是运用到何处的,只有这样,才能更好地运用它来解决问题。多看一些例题。??
细心的朋友会发现,老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大忙,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻,由于老师补充的例题十分有限,所以我们还应自己找一些来看,看例题,还要注意以下几点:????
不能只看皮毛,不看内涵。??
我们看例题,就是要真正掌握其方法,建立起更宽的解题思路,如果看一道就是一道,只记题目不记方法,看例题也就失去了它本来的意义,每看一道题目,就应理清它的思路,掌握它的思维方法,再遇到类似的题目或同类型的题目,心中有了大概的印象,做起来也就容易了,不过要强调一点,除非有十分的把握,否则不要凭借主观臆断,那样会犯经验主义错误,走进死胡同的。????要把想和看结合起来。??
我们看例题,在读了题目以后,可以自己先大概想一下如何做,再对照解答,看自己的思路有哪点比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,总结经验。??
二、多做综合题。??
综合题,由于用到的知识点较多,颇受命题人青睐。??
做综合题也是检验自己学习成效的有力工具,通过做综合题,可以知道自己的不足所在,弥补不足,使自己的数学水平不断提高。??
“多做练习”要长期坚持,每天都要做几道,时间长了才会有明显的效果和较大的收获。如何对待考试??
学数学并非为了单纯的考试,但考试成绩基本上还是可以反映出一个人数学水平的高低、数学素质的好坏的,要想在考试中取得好的成绩,以下几个方面的素质是必不可少的。
篇7:初三数学考试技巧
第一步:换个方式看例题
不少同学看书和看例题,往往看一下就过去了,其实自己并没有理解透彻。
所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
第二步:探究出题的目的
数学能力的提高离不开做题,“熟能生巧” 这个简单的道理大家都懂。
但做题不是搞题海战术,要通过一题联想到很多题。
一节课与其抓紧时间大汗淋淋地做二、三十道考查思路重复的题,不如深入透彻地掌握一道典型题。
第三步:学会优化解题过程
在做选择题时,尽可能小题小做,除直接法外,还要灵活运用特殊值法、排除法、检验法、数形结合法、估计法来解题。
在做解答题时,书写要简明、扼要、规范,不要“小题大做”,只要写出“得分点”即可。
第四步:分析试卷,总结经验
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。
① 遗憾之错。分明会做,反而做错了的题;
② 似非之错。记忆得不准确,理解得不够透彻,应用得不够自如的题
③ 无为之错。由于不会答错了或猜的,或者根本没有答的问题。
第五步:错一次反思一次
每次考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误在今后的考试中重现。
因此平时注意把错题记下来,包括三个方面:
① 记下错误是什么。
② 错误原因是什么。
③ 错误纠正方法及注意事项。
中考数学复习一轮的一些技巧
1.关于复习节奏。
一轮复习时,你需要两条复习思路: 老师安排的复习进度+结合自身情况的自主规划。两条主线双管齐下,先前者再后者。
2.数学拉分最严重。
如果是语文,大家都差不多100分左右,班里的尖子生也就考个120来分,也就差不到20分。但是数学,你懂得……
3.你需要地毯式扫荡。
先把该复习的基础知识全面过一遍,追求尽可能全面,哪怕是阅读材料或者文字注释。要有蝗虫精神,所向披靡一处不留。
4.你需要有系统概念。
在看书的时候,找到知识之间的联系。把一章章一节节联系点找到。追求的是从局部到全局,从全局中把握局部。
5.如果你的基础够好,可以跳过3、4了。
6.区分普通知识点和考试重难点。
非重难点可以不独立安排复习时间,跟着老师的进度就可以得分。
7.将这个知识体系分成版块
圆、三角形、四边形、统计与概率、视图与投影、数与式、方程与不等式、函数及其图像。针对自身强弱状况,合理分配复习时间。
8.每一周上课前,可以把老师上一周带动复习的内容再给自己计划一下。
计划这一周在以前老师讲过的基础上再给自己添加哪些内容,无论是做新题,还是整理做过的题型来寻找考试方向,都要提前安排好,每天给自己规定额外的几个小时的自习时间来完成自己的数学计划。比如说,老师上周带我们复习了三角函数中与解三角形有关的内容,如果发现自己这些方面还有一些不会做的题或者不熟练的方法或者题型,就在资料上寻找相关的题目来试试,并且按时总结,找出这些题型的共同点,摸索中考命题方式。如果觉得自己在解三角形这些方面比较熟练了,就可以考虑赶在老师前面,把老师接下来要带着复习的方面先复习一遍。总之就是要使两个进度互为补充,这样才会一直有一个合理的顺序,不至于到了某一个星期就觉得乱了。最后的结果就是,别人是复习了一轮,而自己在同样的时间可以使自己的知识掌握更加牢固。
9.你的错题本有可能就是中考的“重灾区”。
对于理科生来说,尤其是数学,在笔记本上整理总结题型是很有用的。一轮复习做到的一些错题是很有代表性的,自己要学会分章节把错题或者自己觉得经典的题目记录下来。因为,大考范围内的数学题目还是比较中规中矩的,除了压轴题会有一些特殊的思路或者灵感之外,大多数题目都是常规题型。所以你的错题本才是传说中的“划重点”!
10.错题本的正确打开方式:
在把题目写在笔记本上时,要学会问自己这几个问题:
(1)问题所涉及的知识点是什么?
(2)是否已接触过相同或相类似的问题及有什么联系?
(3)解决这类问题的通法是什么?
(4)解决这一类问题常犯错误或要注意的是什么?
(5)是否可转换角度进行思考及不同知识点的相互联系?
(6)问题能否进行变式或推广?
11.一轮复习可以开始做一些综合题或者中考真题了。
篇8:初三数学考试反思
一、考试成绩分析
1、 试卷分析
1)试卷共三道大题,28道小题。
2) 试卷满分130分。考试时间为120分钟。
3) 难易程度:难:中:易=6:3:1
4) 知识结构:本次考试共考二章内容,分别是一元二次方程、圆。
2 、各班成绩分析
1班:平均分:59.90 及格率:24.14%
2班:平均分:63.62 及格率:41.38%
3班:平均分:62.57 及格率:42.86%
4班:平均分:60.94 及格率:48.39%
5班:平均分:101.47 及格率:93.62% 优秀率:34.04%
6班:平均分:98.13 及格率:82.69% 优秀率:28.85%
3、错题原因分析:
填空选择题的错题是10题,18题,19题,20题。原因:概念掌握不扎实。不会应用性质灵活地解决问题。21题:计算能力差。22题:粗心。23题、24题、25题、26题:(题目难度在加大)学生一看到这几个题目就有点恐惧,一时产生退缩的心理;再加上基础不扎实,时间紧,导致所学的知识不能灵活的应用,不会整体代入进行计算,对方程的根的情况没有系统掌握,对几何定理的理解不够透彻。28题,(难度最大)灵活运用直线与圆相切的性质和三角形相似,解决问题的能力差。
反思: 本次考试基础性较强,概念题占比例较大,学生答题情况很不理想,许多基础性的东西都有错误,特别是涉及到的一些计算题,学生的错误率是相当高的。这也说明了在今后的教学中应该注重学生的计算能力和基础知识的落实和巩固。
这届初三只有极少的学生基础知识掌握得较好,概念理解得较透彻,计算题和解方程的准确率较高,但部分学生理解能力较差,应用题审题不清,导致出现不少错误。几何证明题分析问题的思路上不去,分析问题的方法掌握得不够好。另外,部分学生学习习惯较差,接受能力较差,懒动脑懒动笔,碰到思维力度较强的题目就无法解答,特别是回家作业的质量是相当低的,只有一小部分的学生能独立完成。在今后的教学中,要特别注重对发展不理想学生的辅导,注重对学生理解能力、分析问题解决问题能力的培养,更要重视学生的学习习惯的养成教育。
今后工作的做法:
1 、在钻研教材,研究考点,解题方法的指导上下功夫,作为初三教师在练习中不断反思,归纳。加强备课和上课的针对性,对于学生的知识掌握情况要做到心中有数。
2 、 在日常的教学中合理地应用分层教学,尤其是复习阶段,力争让每个人每节课都有所收获。并狠抓学生基础知识的巩固和落实情况。
3、 加强学生计算能力培养,加强综合题目的训练,逐步培养学生自己分析问题,解决问题的能力。
4、 加大对后进生学习方法的指导,重视对优等生的提优,力争不同层次学生实现不同层次的发展。
5、考场经验不足,部分同学对于时间的分配,一些大题的技巧还不行。
6、重视课堂监测和平时作业的质量,发现问题要及时弥补,不能拖后。
[初三数学考试反思]
篇9:初三数学考试复习方法
细心的朋友会发现,老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大忙,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻,
还要注意以下几点:不能只看皮毛,不看内涵。我们看例题,就是要真正掌握其方法,建立起更宽的解题思路,如果看一道就是一道,只记题目不记方法,看例题也就失去了它本来的意义,每看一道题目,就应理清它的思路,掌握它的思维方法,再遇到类似的题目或同类型的题目,心中有了大概的印象,做起来也就容易了,不过要强调一点,除非有十分的把握,否则不要凭借主观臆断,那样会犯经验主义错误,走进死胡同的。
初中数学复习的类型:复习基本上分为两类,一类是概念复习,目的是建立知识框架图表,梳理知识结构,建立知识网络,使知识点系统化和结构化;另一类是习题复习,目的是通过有针对性的、逐层递进的题组的练习,巩固知识点的理解和记忆,加强实际操作水平和能力。
初中数学复习原则:
1、基础知识习题化原则
把基本知识以题组的形式呈现,不能单纯的只讲概念,而应在实际练习中巩固知识点,即“基本知识习题化”,也就是要“练在复前”。“基本知识习题化”还必须做到“例题、习题模型化”,即做“好题”,“做好”题。结合所要复习的内容精选习题,尤其要重视平时的错题,使练习不疏漏、不重复,题题有目的、题题有深意,习题安排从浅入深、由表及里,娓娓道来,即做“好题”;同时在课堂教学环节,教师应该充分发挥指导者、引领者的作用,掌控好课堂,采用多种形式的、分层次的、有效的监控、评价策略,及时反馈学生的练习情况,确保学生“做好”题。选择习题应从侧重性、示范性、针对性、导向性方面考虑;在习题形式上,通常采用传统题型、探究性题型和开放性题型三大类,也可两两结合。
2、知识结构系统化原则
通过题组有目的的操练,建立属于自己的知识脉络结构图,使知识点结构化、系统化,培养定期梳理知识结构的复习习惯,学会如何梳理知识结构的学习方法,学会学习,也就是要“复到关键”。复习要重视“文字语言的叙述、数学语言的表述、图形语言的描述”三位一体相结合。结合复习内容,全方位地展现数学学科的表达多元化,提供给更广阔的数学思维空间。
3、训练方法科学化原则
要谨记“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩。”的规律,也就是要“在复中练”。复习也要重视引入环节,可以渗透德育思想,体现数学的实用价值,促进不同学科间的互通。练习,是学习最直接的亲身体验,通过课内外练习,使数学知识得以补缺、巩固和提高。在茫茫题海中,我们可以采用题组训练法。复习中例题习题的设计特别要加强数学模型方法的教学,以补平时教学之不足。数学模型方法的教学就是根据实际问题构造数学模型,也就是根据实际问题的特定关系(限于初中学生的知识水平和认知能力,这里的“实际问题”并不是真正意义上的实际问题,而是已经“初步数学化”了的实际问题)和具体要求,考察主要因素和有关量之间的关系,在进行抽象概括的基础上,利用有关的数学知识和数学语言刻画这种关系。
4、温故知新深入化原则
在巩固旧知的基础上也要给以新的收获,即“在练中复”。学什么呢?可以适当的渗透数学思想方法,让学生可以站在更高一层次看待问题,学习用思维指导行为;也可以学会一种自主学习数学的方法,授之以渔;还可以横向、纵向提升难度,拓展思路,训练思维,有提纲挈领,纲举目张的时间和空间。数学思想方法作为数学知识的一般原理和依据,在数学教学中是至关重要的。因此,在复习的过程中,从数学方法论的高度,揭示中学数学知识的来龙去脉,错综联系,这才能把数学知识学懂学活,学到的数学知识才能是完整的、透彻深刻和有效可用的。数学复习不仅要“会做这道题目”,而是要“会做这一类题目”,进行一题多变,做到透彻理解、牢固掌握、举一反三、熟能生巧。
5、查漏补缺群体化原则
要建立学习的病例卡,把错误的原因分析透,把它作为复习课的重点,编写类似的习题进行有针对性的学习和训练,发挥错题的资源把问题的本质属性搞清楚。这就是我们提倡的复习十六字原则:练在复前,复到关键;在复中练,在练中复。
上文是初中数学期末复习,希望文章对您有所帮助!
篇10:备战期中作文550字
备战期中作文550字
每一场考试对于每一个人来说,那是截然不同的。每一场考试对我来说都是非常重要的,因为每一场考试,都会让您的同学或老师重新认知你。如果你要考差了,那么同学和老师对你的态度一定会有改变。如果你要考好了,那么同学和老师对你的态度也一定会有改变。而且每一场考试都关系到你的学习成果以及学习有没有努力的问题,所以,我认为每一场考试对我来说都是至关重要的'。
今日,我坐在椅子上看着那些写完的作业以及一堆教科书微笑着,说:“呼,终于把作业写完了,终于有时间复习了。”
复习,可能很多人都不会愿意,但如果你要不想复习,那你是无法获得高分的!如果你要是努力复习了,那你多多少少也会加点分。分数,对于每一个人来说,多一分少一分都不是小事。有可能。多了一分,就进90分里去了。有可能,少了一分,就到不了90分去了。当然,如果有人说自己的分数永远没变,那你也可能会越来越往后。因为毕竟有很多想学的人,一开始没你的分数高,但经过自己的努力,慢慢的追上你,然后超过你。所以你的成绩如同一条河上的船,不进而退,即使不退,也会被其他同学超过了。
如果你要复习,而你拿不准复习哪个科目,那就让我来告诉你吧。
如果你所有的科目分数都差不多的话,那你就是每科都复习一点儿。如果你有一个差的分数很大,那你就得先复习分数差的很多的那科。因为这样,就好像是一个凳子,三个长腿,一个短腿儿,那这个凳子就不会特别结实。
所以,让我们好好复习,争取发挥出更好的自己。
★数学考试
文档为doc格式