欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

长方体和正方体的体积(1) 教案教学设计(北师大版六年级下册)

时间:2022-09-02 08:47:35 其他范文 收藏本文 下载本文

下面是小编整理的长方体和正方体的体积(1) 教案教学设计(北师大版六年级下册),本文共12篇,欢迎大家阅读分享借鉴,欢迎大家分享。

长方体和正方体的体积(1) 教案教学设计(北师大版六年级下册)

篇1:长方体和正方体 教案教学设计(北师大版六年级下册)

数学       课程教案

年级:  六     主备者:   蒋天锋    备课时间:-9-19

周次 4 课次(本周第几课时) 3

授课课题 整理与复习(1)

教学基本

内容

P33

教学

目的

和要

求 1、组织学生以小组讨论的方式,梳理本单元的主要知识点,进一步完善有关长方体和正方体的认知结构。

2、通过练习巩固本单元所学的最基础的知识,了解学生的掌握情况。

3、引导学生学会有条理的反思和罗列知识内容,培养合作交流的意识和习惯。

教学重点

及难点 梳理和巩固本单元所学的最基础的知识。

有条理的罗列知识和与他人交流自己的学习体验。

教学方法

及手段 讨论、梳理、练习

学法指导 通过四个问题组织学生进行“回顾与整理”,自主完善有关长方体和正方体的认知结构,然后在基本练习中发现问题,以便及时采取相应的教学措施,努力实现全体学生的共同进步。

集体备课 个性化修改

预习布置学生预习书P33问题:

1.长方体和正方体各有哪些特征?有什么联系?

2.体积和容积的意义分别是什么?常用的体积(或容积)单位有哪些?相邻体积单位间的进率是多少?

3.怎样计算长方体、正方体的表面积?解决有关表面积的实际问题要注意什么?

4.你是怎样发现长方体体积公式的?正方体的体积公式与它有什么联系?

一、整理完善。

组织学生在小组内交流。教师巡视选择最优小组汇报:学了哪些知识?经过怎样过程?解决怎样问题?

相机归纳展示知识图表。(略)

二、反馈练习。

1.长方体、正方体的特征。

(1)出示书P33T1.

问:上面各个形体是正方体还是长方体?你是怎样判断的?

教学环节设计 (2)问:长方体有些什么特征呢?教师直观演示:出示一个长方体,上下面(红色)、前后面(蓝色)、左右面(黄色),并使画面上下、前后、左右移动,接着微机显示12条棱、8个顶点,使学生观察长方体的特征。

(3)把这个长方体怎样变化可以得到正方体?教师演示正方体特征。

(4)问:长方体和正方体有什么相同与不同?

2. 长、正方体的表面积和体积。

(1)问:长方体和正方体直观图最多可以擦去几条棱而不影响形体大小的确定?长方体、正方体的大小是由什么决定的?

(2)(书P33T1)先估计哪个形体的体积最大?再分别计算它们的体积和表面积。怎样表示长方体、正方体的大小?

3.体积和容积的意义、单位。

(1) 书P33T2。学生说出图意,观察放入左、右两边的量杯里有多少毫升水?思考这样的变化原因是什么?

(2)书 P33T3先说出要转化单位之间的进率,再确定转化方法。

三、针对练习。

教学

环节

设计

1.判断。(对打“√”,错打“×”)

(1)相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。( )

(2)正方体的六个面都必须是正方形。( )

(3)一个正方体的棱长是6厘米,它的表面积和体积相等。( )

2.选择正确的字母填在括号里。

(1)做一个长方体的铁皮桶,要用多少铁皮,是求这个长方体的( ),能装多少水是求( )

A.体积 B.底面积 C.容积 D.表面积

(2)做一个棱长是4分米的鱼缸,需要( )平方分米玻璃。

A.4×4×4 B.4×4×6 C.4×4×5

(3)正方体的棱长扩大2倍,它的体积扩大( )倍。

A.2 B.4 C.8 D.9

(4)一块长方体木板,长2米,宽5分米,厚8厘米,它的体积是( )立方分米

A.2×5×8 B.20×5×0.8 C.(2O×5+5×8+20×8)×2

四、评价总结。

作业

板书

设计

1.长方体和正方体各有哪些特征?有什么联系?

2.体积和容积的意义分别是什么?常用的体积(或容积)单位有哪些?相邻体积单位间的进率是多少?

3.怎样计算长方体、正方体的表面积?解决有关表面积的实际问题要注意什么?

4.你是怎样发现长方体体积公式的?正方体的体积公式与它有什么联系?

执行

情况

与课

后小

篇2:长方体和正方体的体积(1) 教案教学设计(北师大版六年级下册)

周次 3 课次(本周第几课时) 4

授课课题

教学基本

内容 六年制小学数学第十一册P25-26。

教学

目的

和要

求 1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。

2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。

3、培养学生初步的归纳推理、抽象概括的能力。

教学重点

及难点 探索并掌握长方体和正方体体积的计算方法。

长方体和正方体体积公式的推导。

教学方法

及手段 本课设计了一系列的问题,让学生自主探究,从中探索并掌握长方体和正方体的体积计算公式,促进学生的思维,提高学生积累探索数学问题的经验,进一步增强学生的空间观念。

学法指导

讨论交流,并认真听讲思考。

集体备课 个性化修改

预习阅读书本25、26页,并初步理解解

教学

环节

设计

一、 以旧引新

师:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?

要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们来学习怎样计算长方体和正方体的体积.(板书课题)

二、探究新知

1、通过操作、观察、猜想来认识长方体的体积与长、宽、高的关系。

师:用1立方厘米的小正方体摆成长方体,要求四人小组内每人摆出的长方体各不相同。

师:将摆出的长方体放在桌上,并编号。

请同学们说一说这些长方体的长、宽、高各是多少,你是怎样看出来的,将这些长方体的长、宽、高依次记录在表格中。

引导学生依次去数每个长方体中包含的小长方体的个数,并记录在表格中。

问?观察表格中的这些长方体的长、宽、高以及它们的体积,再联系刚才数出它们体积的过程,你发现了什么?

师:通过刚才的操作和讨论,我们想一想,长方体的体积是不是它的长、宽、高的乘积呢?

依次出示例10中的三个长方体,问:如果用1立方厘米的小正方体摆出这三个长方体,各需要多少个小正方体?

师:摆出的每个长方体的长、宽、高分别是多少?体积是多少立方厘米?这个结果与你操作前的想法一样吗?

2、验证、交流后归纳出长方体的体积计算公式及字母公式。

通过刚才操作过程中的发现,同学们能说一说长方体的体积与它的长、宽、高有什么关系吗?怎样求长方体的体积?

通过交流得出公式:长方体的体积=长×宽×高。

问:如果用V表示长方体的体积用a、b、h分别表示长方体长、宽、高(出示如教材所示的长方体的直观图),你能用字母表示长方体的体积公式吗?

交流得出:V=abh.

3、根据正方体与长方体之间的联系,得出正方体的体积计算公式。

师:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗?

交流得出: 正方体的体积=棱长×棱长×棱长。

重点理解 的含义,进一步明确 的读法、写法。

做“试一试”。

业 做“练一练”。

做练习六第2题

课堂作业:做练习六第1、2题

板书设

执行

情况

与课

后小

篇3:长方体和正方体体积教学设计

教学目标:

1、知道容积的意义。

2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

3、会计算物体的容积。

教学重点:

1、容积的概念。

2、容积与体积的关系。

教学难点:容积与体积的关系。

教具:量筒和量杯、不同的饮料瓶、纸杯

教学过程:

一、复习检查:

说出长正方体体积计算公式。

二、准备:

把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是。

三、新授:

1、认识容积及容积单位:

(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。

通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

(3)演示:体积单位与容积单位的关系。

说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

1升(l)=1000毫升(ml)

将1升的水倒入1立方分米的容器里。

小结:

1升(l)=1立方分米(dm3)

1升=1立方分米

1000毫升1000立方厘米

1毫升(ml)=1立方厘米(cm3)

练一练:

1.8l=()ml;3500ml=()l;15000cm;3=()ml=()l;1.5dm3=()l

(4)小组活动:

(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

(2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

5×4×2=40(立方分米)40立方分米=40升

答:这个油箱可以装汽油40升。

做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)

小结:计算容积的步骤是什么?

3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

出示一个西红柿,谁有办法计算它的体积?小组设计方案:

西红柿的体积=350—200=(ml)

=(cm3)

四、巩固练习:

1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2。5分米,它的容积是多少升?

2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

4、提高题:p55、16

五、作业:

第三单元长方体和正方体体积教学设计第五课时容积相关内容:课题六:用方程和用算术方法解应用题的比较平行四边形的面积教案质数和合数教学设计小数乘整数《2,5倍数的特征》教学实录《2和5的倍数的特征》教案第四单元分数的意义和性质求两个数的最大公因数(小学数学五年级上册第三单元)简单立体图形的组合.

篇4:长方体和正方体体积教学设计

教学目标

1.理解并掌握长方体和正方体体积的计算方法.

2.能运用长、正方体的体积计算解决一些简单的实际问题.

3.培养学生归纳推理,抽象概括的能力.

教学重点

长方体和正方体体积的计算方法.

教学难点

长方体和正方体体积公式的推导.

教学用具

教具:1立方厘米的立方体24块,1立方分米的立方体1块.

学具:1立方厘米的立方体20块.

教学过程

一、复习准备.

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.

教师提问:拼成了一个什么形体?(长方体)

这个长方体的体积是多少?(4立方厘米)

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们

来学习怎样计算长方体和正方体的体积.

板书课题:长方体和正方体的体积

二、学习新课.

(一)长方体的体积【演示动画“长方体体积1”】

1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆

出的长方体的长、宽、高.

2.学生汇报,教师板书:

教师提问:这些长方体有什么共同点?(体积相等)

不同点?(数据不同)

为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——

12个1立方厘米)

教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1

立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.

3.【演示动画 “长方体体积2”】

第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.

一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层

第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.

一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层

第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.

一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层

思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长

方体的体积有没有关系?是什么关系?

(长方体的体积正好等于它的长、宽、高的乘积)

教师板书:长方体的体积=长×宽×高

教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

板书: V=abh.

出示投影图:

4.自学例1.

一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

7×4×3=84(立方厘米)

答:它的体积是84立方厘米.

(二)正方体体积.

1.【演示课件“正方体体积”】

教师提问:此时的长,宽,高各是多少?

变成了什么图形?

这个正方体的体积可以求出来吗?

2.练习棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)

棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)

3.归纳正方体体积公式.

教师板书:正方体体积=棱长×棱长×棱长.

用V表体积,a表示棱长

V=a·a·a或者V=

4.独立解答例2.

光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

(分米3)

答:体积是125立方分米.

(三)讨论长方体和正方体的体积计算方法是否相同.

学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中

b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.

三、巩固反馈.

1.口答填表.

长/分米

宽/分米

高/分米

体积(立方分米)

5

1

2

4

3

5

10

2

4

棱长/米

体积(立方米)

6

30

0.4

2.判断正误并说明理由.

① ( )

② ( )

③一个正方体棱长4分米,它的体积是: (立方分米)( )

④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )

四、课堂总结.

今天这节课我们学习了新知识?谁来说一说?

五、课后作业.

1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?

2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?

六、板书设计.教学目标

1.理解并掌握长方体和正方体体积的计算方法.

2.能运用长、正方体的体积计算解决一些简单的实际问题.

3.培养学生归纳推理,抽象概括的能力.

教学重点

长方体和正方体体积的计算方法.

教学难点

长方体和正方体体积公式的推导.

教学用具

教具:1立方厘米的立方体24块,1立方分米的立方体1块.

学具:1立方厘米的立方体20块.

教学过程

一、复习准备.

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.

教师提问:拼成了一个什么形体?(长方体)

这个长方体的体积是多少?(4立方厘米)

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们

来学习怎样计算长方体和正方体的体积.

板书课题:长方体和正方体的体积

二、学习新课.

(一)长方体的体积【演示动画“长方体体积1”】

1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆

出的长方体的长、宽、高.

2.学生汇报,教师板书:

教师提问:这些长方体有什么共同点?(体积相等)

不同点?(数据不同)

为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——

12个1立方厘米)

教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1

立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.

3.【演示动画 “长方体体积2”】

第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.

一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层

第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.

一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层

第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.

一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层

思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长

方体的体积有没有关系?是什么关系?

(长方体的体积正好等于它的长、宽、高的乘积)

教师板书:长方体的体积=长×宽×高

教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

板书: V=abh.

出示投影图:

4.自学例1.

一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

7×4×3=84(立方厘米)

答:它的体积是84立方厘米.

(二)正方体体积.

1.【演示课件“正方体体积”】

教师提问:此时的长,宽,高各是多少?

变成了什么图形?

这个正方体的体积可以求出来吗?

2.练习棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)

棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)

3.归纳正方体体积公式.

教师板书:正方体体积=棱长×棱长×棱长.

用V表体积,a表示棱长

V=a·a·a或者V=

4.独立解答例2.

光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

(分米3)

答:体积是125立方分米.

(三)讨论长方体和正方体的体积计算方法是否相同.

学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中

b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.

三、巩固反馈.

1.口答填表.

长/分米

宽/分米

高/分米

体积(立方分米)

5

1

2

4

3

5

10

2

4

棱长/米

体积(立方米)

6

30

0.4

2.判断正误并说明理由.

① ( )

② ( )

③一个正方体棱长4分米,它的体积是: (立方分米)( )

④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )

四、课堂总结.

今天这节课我们学习了新知识?谁来说一说?

五、课后作业.

1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?

2.一块正方体的石料,棱长是7分米,这块石料的'体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?

六、板书设计.

篇5:长方体和正方体体积教学设计

教学目标:

1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积×高”的过程。

2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积×高”的实际意义,会利用公式计算长方体、正方体的体积。

3、在把长方体体积计算迁移到正方体体积计算及公式归纳的过程中,感受数学思考的条理性和数学结论的确定性。

教学重点和难点:

长方体和正方体体积的计算方法,以及其体积公式的推导。

教学过程:

一、复习引入

(1)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少?

(2)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少?

二、学习新课

探究正方体体积公式:

问:通过计算2号长方体的体积你们发现了什么?

引导学生明确:

(1)这个长方体长、宽、高都相等,实际上它是一个正方体。

(2)正方体体积=棱长×棱长×棱长(板书)

(3)如果用V表示正方体体积,用a表示它的棱长字母公式为:V=a

教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:V=a3(板书)

三、议一议

长方体和正方体的体积公式有什么相同点?

长方体和正方体底面的面积叫做底面积。

长方体(或正方体)的体积=底面积×高

如果用S表示底面积,上面的公式可以写成:

V=Sh

四、巩固练习

计算下面图形的体积

板书设计:

正方体体积=棱长×棱长×棱长 长方体(或正方体)的体积=底面积×高

V=a3 V=Sh

篇6:长方体和正方体体积教学设计

一、教材分析:

本课内容来自人教版小学数学五年级下册第三单元《长方体和正方体》。长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。学生以前虽然接触过长方体和正方体,但只是直观形象的认识,要上升到理性认识还有一定难度。本单元前几课时已经认识了长方体和正方体的特征,学习了表面积的计算,。这节课要在此基础上掌握体积的概念和常用的体积单位,学会长方体和正方体的体积计算,掌握公式的意义和用法。这是下一步学习体积单位进率的基础,更是以后学习容积的基础。因此,长方体和正方体的体积计算必须掌握熟练。

二、教学目标:

1、结合具体操作,引导学生探索并掌握长方体、正方体体积的计算公式,并能熟练地运用公式解决一些实际问题。

2、通过探索活动,培养学生的分析、概括能力,发展学生的空间观念。

3、培养学生数学的应用意识。

重点:掌握长方体、正方体体积的计算方法,并运用公式解决实际问题。

难点:理解体积公式的意义。

三、教法与学法

学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试。而他们的思维特点又一般都是从感性认识开始,然后形成表象,再通过一系列的思维活动,上升到理性认识。因此要引导学生通过自己的探索、实践,独立地发现问题、思考问题、解决问题,才能真正对所学内容有所领悟,进而内化为己有,使教学收到事半功倍的教学效果。

为了实现教学目标,本课以学生动手操作,合作交流与探究为主,教师同时配合多媒体课件演示,指导学生自主学习.

四、教学过程

(一)激情引趣,揭示课题。

任何新知识都是以原有知识体系为依托,因此在复习中我设计了如下内容来为新课做好铺垫。

1.什么叫体积,常用的体积单位有哪些?用学具手势或其他方式描述出1立方厘米,1立方分米,1立方米分别有多大。

2.多媒体课件出示一个长方体和一个正方体,利用动画演示把它们切割成棱长1厘米的小正方体,请学生说一说他们的体积分别是多少?是怎样知道的。从中使学生体会到长方体、正方体是由多少个棱长1厘米的小正方体组成的,它的体积就是多少立方厘米。

这时学生就会产生疑问:生活中遇到的计算长方体正方体体积的问题,多数不能切开来数,这种方法在实际生活中行不通,又该怎么办?这样就在学生心里形成了一种悬而未决的状态,一方面自然而然地引出这节课要学习的“长方体和正方体的体积计算”,另一方面也激起了学生探索新知识强烈愿望。

(二)操作想象,探索公式。

小学生的思维特点是以形象思维为主,逐步向抽象思维过渡。根据这一特点,先利用直观学具,引导学生进行实验操作,首先吸引学生,刺激感官,启迪思维,提高兴趣,在头脑中建立清晰的表象,丰富他们的感性认识,也是引导学生的思维逐步由形象走向抽象。

具体的过程是:

(1)让学生以小组为单位用棱长1厘米的小正方体摆长方体,边摆边在表格里记录:长、宽、高和体积

(2)汇报交流,学生在事物投影上演示讲解,教师依次板书在表格中。

(3)请学生观察所摆的长方体的长、宽、高与它的体积有什么关系?

这里要充分发挥学生的主体性,给他们充足的讨论时间,让他们有机会各抒已见,然后根据学生的回答,共同总结出:长方体的体积=长×宽×高。

(4)用字母表示公式,要注意书写形式的指导。

(5)完成例1,学以致用,加深理解。

通过前面的学习学生已经知道了正方体是特殊的长方体,并且在刚才的实验操作中,也有学生摆出了正方体,因此学生很容易就能够由长方体的体积公式推导出正方体的体积公式。需要注意的是用字母表示公式时,使学生明确三个a相乘也可以写成a3,3写在a的右上角。

(三)巩固练习,扩展应用

练习是数学中教学巩固新知,形成技能,发展思维,提高学生分析问题,解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式,我设计了多层次的练习:

1通过让学生完成教科书第43页的“做一做”的第一题,先让学生动手操作,这样有助于学生理解长方体的体积与它的长、宽、高的关系,掌握长方体的体积计算公式。

2.做第43页“做一做”的第二题,巩固刚学过的“立方”的知识,要使学生弄清,什么情况下可以写成一个数的立方,一个数立方应该怎样计算。做题时,如果发现学生把3个相同数连加与连乘混淆起来,教师应及时纠正。

拓展运用:

完成练习七第5—8题,让学生运用公式计算。

设计意图:学生明确求体积应先量出它的长、宽、高,再进行计算。这样设计,既能使学生加深对计算长方体的计算方法的掌握,有利于培养学生的动手操作和解决实际问题的能力。

(四)总结全课,质疑解惑。

(1)谈收获:让学生说说这节课学习了什么?

(2)质疑解惑:还有什么疑问。

这样设计目的对新知识进行一次全面的回顾,梳理,内化的过程,同时培养学生总结概括能力和回顾与反思的习惯。

篇7:长方体和正方体体积教学设计

教学基本

内容六年制小学数学第十一册P25—26。

教学目的和要求

1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。

2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。

3、培养学生初步的归纳推理、抽象概括的能力。

教学重点

及难点探索并掌握长方体和正方体体积的计算方法。

长方体和正方体体积公式的推导。

教学方法

及手段本课设计了一系列的问题,让学生自主探究,从中探索并掌握长方体和正方体的体积计算公式,促进学生的思维,提高学生积累探索数学问题的经验,进一步增强学生的空间观念。

学法指导

讨论交流,并认真听讲思考。

集体备课个性化修改

预习阅读书本25、26页,并初步理解解

教学环节设计

一、以旧引新

师:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?

要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们来学习怎样计算长方体和正方体的体积.(板书课题)

二、探究新知

1、通过操作、观察、猜想来认识长方体的体积与长、宽、高的关系。

师:用1立方厘米的小正方体摆成长方体,要求四人小组内每人摆出的长方体各不相同。

师:将摆出的长方体放在桌上,并编号。

请同学们说一说这些长方体的长、宽、高各是多少,你是怎样看出来的,将这些长方体的长、宽、高依次记录在表格中。

引导学生依次去数每个长方体中包含的小长方体的个数,并记录在表格中。

问?观察表格中的这些长方体的长、宽、高以及它们的体积,再联系刚才数出它们体积的过程,你发现了什么?

师:通过刚才的操作和讨论,我们想一想,长方体的体积是不是它的长、宽、高的乘积呢?

依次出示例10中的三个长方体,问:如果用1立方厘米的小正方体摆出这三个长方体,各需要多少个小正方体?

师:摆出的每个长方体的长、宽、高分别是多少?体积是多少立方厘米?这个结果与你操作前的想法一样吗?

2、验证、交流后归纳出长方体的体积计算公式及字母公式。

通过刚才操作过程中的发现,同学们能说一说长方体的体积与它的长、宽、高有什么关系吗?怎样求长方体的体积?

通过交流得出公式:长方体的体积=长×宽×高。

问:如果用V表示长方体的体积用a、b、h分别表示长方体长、宽、高(出示如教材所示的长方体的直观图),你能用字母表示长方体的体积公式吗?

交流得出:V=abh.

3、根据正方体与长方体之间的联系,得出正方体的体积计算公式。

师:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗?

交流得出:正方体的体积=棱长×棱长×棱长。

重点理解的含义,进一步明确的读法、写法。

做“试一试”。

作业做“练一练”。

做练习六第2题

课堂作业:做练习六第1、2题

板书设计

执行情况与课后小结

篇8:长方体的体积 教案教学设计(北师大版五年级下册)

课题 教时                   (27)

学  习

目  标 1、巩固长方体,正方体体积的计算

2、探索长方体、正方体体积与底面积和高之间的关系

学  习

重  点 长方体、正方体体积计算

底面积和高之间的关系

过    程    与    方    法

一、复习导入

1、出示长方体

思考:如何计算它的体积?

2、带入数字,计算长方体体积。

长:2cm宽:3cm高:4cm

二、引入新课

1、出示正方体

提问:如何计算正方体体积?

2、根据学生反馈,教师极书公式:

正方体体积=棱长×棱长×棱长

V =a×a×a=a3

3、试一试

1出示三幅图。

○2引导学生观察:

图中阴影部分叫什么?

它们与高之间有什么关系?

○3你还能提示三个图形的体积吗?

○4引导学生计逄三幅图的体积。

三、练一练

1、 练一练1

引导学生通过观察得出长方体的长、宽、高成正方体的棱长,再利用公式计算。

2、 练一练2

让学生应用公式进行计算独立完成。

学 生 活 动

学生进行思考

反馈:长×宽×高

学生进行计算

2×3×4=24cm3

学生回顾长方体体的公式,联系长方体、正方体的关系,进行推理。

正方体体积=棱长×棱长×棱长

V =a×a×a=a3

反馈计论结果。

引导学生观察,找出阴影部分,并认识体面积。

独立思考:它们与高之间的关系。

得出:底面积×高=体积

学生利用所推导出的公式,计算三幅图的体积。

反馈。

学生观察图

计算

教师指导详细教研组4.7

板书设计

长方体的体积

教学反思

课题 长方体体积 教时                   (28)

学  习

目  标 1、引导学生通过观察得出长方体的长、宽、高成正方体的棱长,再应用公式计算。

2、通过操作活动,发展学生的空间观念,提高学生的自学应用意识。

学  习

重  点 应用体积计算公式计算长方体、正方体的体积。

过    程    与    方    法

教  师  活  动

一、复习导入

1、提问:

长方体的体积公式、正方体的体积公式。

2、应用公式计算:

(1)一个长方体,长20厘米,宽12厘米,高5厘米。

(2)一个正方体,棱长是6分米。

(3)一个长方体,底面积60cm2,高7cm.

(4)一个长方体,底面是边长为2分米的正方形,高5分米。

二、操作练习

1、我说你搭

教师说,学生进行拼搭

引导学生进行拼搭,反馈、展示。

2、练一练

(1)练一练4

(2)练一练5

a、指导学生用图示表示

b、通过画图,

c、在此基础上学生独立完成。

(3)练一练8

a、引导学生运用公式计算

b、集体反馈 学 生 活 动

学生独立思考,个别回答

学生利用所学公式,对所学内容进行巩固练习。

学生独立完成,集体反馈。

1、用体积是1cm3的小正方体搭长方体。

2、摆出体积是12cm3的长方体。

3、一排5个,4排,3层体积,是多少?

1、学生理解题意。

2、分析题意。

a、分析题意,要先求出这个纸箱的体积和每个牙膏盒的体积,再用纸箱的体积除以每个牙膏盒的体积。

b、学生独立计算

c、集体反馈

学生发现,由于长方体的高是3cm,所以正方体的棱长为3cm。

板书设计

长方体体积

教学反思

课题 体积单位的换算 教时                   (29)

学  习

目  标 1、结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。

2、在观察,操作过程中,发展空间观念。

学  习

重  点 会进行体积、容积单位之间的换算。

体积、容积单位之间的换算。

过    程    与    方    法

教  师  活  动

一、 导入:

1、出示1dm3的盒子,

提问:这个盒子可以放多少个体积为1cm3的正方体?

2、摆一摆

引导学生摆设小正方体。

学生通过摆设,得出:

1分米3=1000厘米3

1升   =   1000毫升

二、试一试

1、引导学生完成试一试第1题

提问:你是怎样得出来的?

让学生通过填一填,比一比:

了解长度、面积、体积单位之间的联系与区别。

三、练一练

1、学生练习

2、反馈 学 生 活 动

学生进行猜测,并说一说自己的猜测理由。

1排摆10个

每层可以摆多少排?算一算,每层可以摆多少个?(10×10×=100个)

1分米=(10)厘米

盒子里可以摆几层?

算一算,1dm3的盒子里可装多少个1cm3的小正方体?

10×10×10=1000

根据1米=10分米

计算1m3=U     dm3

学生计算:

10×10×10=1000分米3

得出:1米3=1000分米3

学生分析长度、面积、体积之间的关系。

1、学生先填一填。

2、让学生说说思考的方法和过程。

板书设计

体积单位的换算

教学反思

课题 练习四--体积和容积 教时                   (30)

学  习

目  标 通过练习,进一步巩固长方体、正方体的体积计算方法,进一步体会体积和容积的意义。

在观察中操作活动中,发展动手能力和空间观念。

学  习

重  点 熟练掌握体积计算方法。

理解体积和容积的意义。

过    程    与    方    法

教  师  活  动

一、揭示课题

师板书课题

二、进行练习

1、 求图形的体积

请学生看书上的图然后回答:如何计算长方体和正方体的体积。

2、用体积单位的进率单位换算知识未判断。

3、填上适当的体积单位

一块橡皮约10

一本词典约900

一个文具盒约0.35

一个用品约0.6

4、解决实际问题

引导学生说一说表面积和体积的不同计算方法。

5、让学生理解两个图形所占的空间就是两个图形的体积;

三、布置作业

让学生独立在课堂本上完成第2、6、8、9、10题。 学 生 活 动

学生打开书,观察第1题的两个长方体和1个正方体的长、宽、高分别是多少?

指否回答否,再让学生计算

学生先找一找,再让学生交流思考的方法。

根据自己的判断填上适当的单位。

学生先说一说计算方法,

然后进行计算。

集体订正

学生仔细观察图,理解题意后,独立完成。

然后进行全班交流。

可以结合实物,指一指。

第一个图形:4×3×1=12cm;

第二个图形的体积的策略可以多样化,可以移下面两个侧面,从而转化为一个长方体。

板书设计  练习四--体积和容积

12×5×6=360(cm)3         表面积:6×6×6=216(cm)3

9×9×9=729 (cm)3

22×10×8=1760 (cm)3

体   积:6×6×6=216(cm)

3   教学反思

篇9:长方体的体积 教案教学设计(北师大版五年级下册)

执教:任金花(山东省东营市广饶县稻庄镇中心小学)

指导:焦文海(山东省东营市广饶县教研室)

【教学内容】新世纪小学数学五年级下册第46-47页“长方体的体积”

【教材分析】

本课是在学生已经基本认识了长方体和正方体的特征,学习了表面积的计算,掌握了体积的概念和常用的体积单位的基础上进行教学的。本节内容重点是引导学生探索长方体体积的计算方法。主要包括“比一比”、“做一做”、“说一说”三个栏目。“比一比”的目的是让学生感知长方体的体积与它的长、宽、高有关,为进一步自主探索长方体体积的计算方法打下良好的基础。“做一做”的目的是让学生通过用小正方体摆长方体这个活动,探索长方体体积的计算方法。“说一说”的目的是引导学生思考如何计算正方体的体积。

学习体积的计算,使学生进一步体会到知识来源于实践、用于实践的道理,掌握一些研究问题的方法。并且对学生空间观念的形成有着重要的意义。同时为学习体积单位之间的进率打下基础。

【学生分析】

五年级的学生已经掌握了一些数学基础知识和学习数学的基本方法,具备了一些基本的解决数学问题的能力和技巧。大部分学生具有较强的自我发展的意识,对有挑战性的任务很感兴趣。这使得我们在学习素材的选取与呈现,以及学习活动的安排上除了关注数学的用处之外,也应当设法给学生经历做数学的机会,使他们能够在这些活动中表现自我、发展自我,从而感受到数学学习是很重要的活动,初步形成并学会数学地思考。此外,学生已经学过长方形等基本图形,对长方体、正方体有了认识与了解,因此对本节课的内容理解起来并不是难事,关键是如何利用他们对实践及探究活动的热情,让他们在活动中建立数学模型的数学发现的过程。

【学习目标】

1.结合具体情景和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积,解决一些简单的实际问题。

2.在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。

3.主动寻求解决问题的方案,积极参与小组合作学习,体会到合作交流的价值。

【教学过程】

一、复习旧知,呈现课题

1.体积是指什么?常用的体积单位有哪些?什么是1立方厘米,1立方分米,1立方米?(教师出示体积单位的模型)

2.体积是4立方厘米的正方体里含有多少个体积是1立方厘米的小正方体?那么,体积是8立方厘米、10立方厘米呢?这说明了什么?(生:体积是多少就含有多少个体积单位。)

(设计意图:以原有知识系为依托,使学生进一步树立空间观念,为这一节课做好铺垫。)

(师出示一长方体教具)

师:你能猜出这个长方体的体积是多少吗?

生:长方体的体积=长×宽×高

师:你怎么知道的?

生:我以前问过我爸爸。

师:你真是一个勤学上进的孩子!

师:你们对他的回答有什么问题想问吗?

生:为什么长方体的体积=长×宽×高。

(设计意图:引出为什么长方体的体积=长×宽×高,激励学生上进好学,充分发挥学生的主观能动性,让他们产生探究新知的欲望,从而积极、主动地参与探究。)

二、观察操作,实验探究长方体体积的计算方法

1.探索活动:

小组合作(每四人一组做实验并记录):用24个体积是1立方厘米的小正方体摆出不同的长方体。

活动前师友情提示:(1)每个小组用24个体积是1立方厘米的小正方体摆出4个不同的长方体;(2)注意观察你所摆的长方体有几层?每层有几行?每行有几块小正方体?你所摆的长方体的长、宽、高分别是多少?(3)我的发现是___。

(设计意图:利用学具,引导学生进行直观操作、思考,增加学生参与活动的热情,发展学生的空间观念,培养学生的想象力和创造力;同时增强学生合作交流、克服困难、勇于探索的意识。)

2.成果展示:

(请小组代表到台前利用实物投影展示拼摆的过程并汇报方法及结果。)

(1)体积与每排个数、排数、层数的关系。

(板书:长方体体积=每排个数×排数×层数)

每排个数、排数、层数与长方体的长、宽、高的关系。(每排个数相当于长;排数相当于宽;层数相当于高)

(板书: 长 宽 高)

(2)长方体所含体积单位的个数与它的长、宽、高的关系。

(长方体体积等于长方体所含体积单位的个数,所含体积单位的个数正好等于长方体长、宽、高的乘积)

长方体体积公式 长方体体积=长×宽×高

(3)如果用V表示长方体的体积,用a、b、h分别表示长方体的长、宽、高(出示标有a、b、h的长方体积木)体积的字母公式怎样写?V=a×b×h V=abh(板书)

(设计意图:将具体操作、思维和语言表达紧密地结合起来,然后逐步脱离操作直观,利用表象逐步抽象化。)

(4)说一说:长方体的体积与什么有关?(长、宽、高)

(设计意图:进一步认识长方体的体积与长、宽、高的关系。)

3.运用长方体体积公式解决问题(独立完成)

(1)(幻灯出示)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少?

(设计意图:巩固基础知识,提高口算能力。)

(2)(幻灯出示)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少?

(设计意图:巩固新知的同时引出正方体的体积公式的探究。)

4.探究正方体体积公式:

问:通过计算2号长方体的体积你们发现了什么?

(设计意图:巩固新知的同时引出正方体的体积公式的探究。)

引导学生明确:

(1)这个长方体长、宽、高都相等,实际上它是一个正方体。

(2)正方体体积=棱长×棱长×棱长(板书)

(3)如果用V表示正方体体积,用a表示它的棱长(出示标有字母的正方体)字母公式为:V=aaa

教师提示:aaa也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:V=a3(板书)

(设计意图:加强新旧知识的衔接,使学生感觉新知识“不新”,新知识不难,实现平稳过渡,使学生树立学习新知识,解决新问题的信心。)

5.运用正方体体积公式解决问题

出示问题,学生独立完成,(指名板演并说体积公式)

6.小结:刚才我们通过实验推导出了长方体、正方体体积公式,这就是我们这节课学习的主要内容(板书课题)。

(设计意图:总结重点,揭示课题。)

三、巩固发展

计算出数学课本的体积。(学生两人一组完成该项任务)

(设计意图:学生要计算数学课本的体积,就必须先量出它的长、宽、高,学生通过动手测量和计算培养学生的实际操作能力,不但计算出了数学课本的体积,同时体会到可以运用数学知识解决实际问题,增强了学生学习数学的兴趣。)

四、小结

(设计意图:对新知识进行一次全面的回顾,梳理,内化的过程,同时培养学生总结概括能力。)

『江西赣州会场一等奖(现场研讨课)』

篇10:长方体和正方体的表面积(2) 教案教学设计(北师大版六年级下册)

数学      课程教案

6年级:         主备者: 马国霖        备课时间:10-9-3

周次 3 课次(本周第几课时) 1

授课课题

教学基本

内容 六年级数学(上册)第二单元教学第16页的例5,完成相应的“练一练”和练习四第6~10题。。

教学

目的

和要

求 1、进一步巩固长方体和正方体的表面积的含义和计算方法,能根据所求问题的具体特点选择计算方法解决一些简单的实际问题。

2、进一步发展空间观念和数学思考。

3、密切数学与生活的联系,提高学生的学习兴趣。

教学重点

及难点 能根据所求问题的具体特点选择计算方法解决一些简单的实际问题。

教学方法

及手段 通过教学使学生经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。

学法指导

引导学生在积极参与数学活动的过程中,养成独立思考,主动与他人合作交流,自觉检验等习惯

集体备课 个性化修改

教学

环节

设计

一、 复习旧知、导入新课

上节课我们学习了长方体和正方体的表面积,谁能说说什么是长方体(或正方体)的表面积?

提问:长方体的表面积怎样求?正方体呢?

一个长方体纸盒,长30厘米,宽20厘米,高15厘米。做这个纸盒至少要用多少平方厘米硬纸?

二、探究新知

1、课件出示例5:

启发思考:要求制作这个鱼缸至少需要多少平方分米玻璃,实际上就是求什么?

可以怎样计算呢?

2、出示练一练第1题

思考:

这张的商标纸的面积就是那几个面积的面积之和?明确就是求侧面积。

业 1、练一练第1题

2、完成练习四第6题

启发思考:解答这个问题是求那几个面的面积之和?

根据给出的条件,这几个面的长和宽分别是多少?

3、完成练习四第7题

4、完成练习四第8题

5、完成练习四第9题

思考:

求五级台阶占地多少平方米实际上就是求什么?

求铺瓷砖的面积实际上就是求什么?

板书设

执行

情况

与课

后小

周次 3 课次(本周第几课时) 2

授课课题 体积和体积单位(1)

教学基本

内容 六年级数学(上册)第二单元教学第19~20页的例6、例7及相应的“试一试”,完成随后的“练一练”和练习五1~4题。

教学

目的

和要

求 1、引导学生通过操作活动,初步认识体积和容积的意义。

2、使学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。

3、使学生进一步激发学生探究立体图形的兴趣。

教学重点

及难点 通过操作活动,初步认识体积和容积的意义。

教学方法

及手段 通过教学使学生经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值

学法指导

观察思考并讨论练习。

集体备课 个性化修改

教学

环节

设计

一、 激发兴趣、导入新课

谈话:同学们,前几节课我们认识立体图形,大家都掌握得不错。这节课老师想和大家一起进行几个小实验,考考大家的眼力,愿意接受挑战吗?

让我们来试试看。

二、动手操作、自主探究

1、认识体积

1、学习例6

(1)教师出示一个空杯,给空杯倒满水。

再出示一个同样的空杯:这两个杯子同样大,装的水也是一样多吗?

教师往空杯中装入一个桃,将满杯的水往装桃的杯中倒,直至倒满。

问:杯子中为什么会剩下一些水呢?

(2)教师出示两个水果,分别装入两个空杯,倒满水。

你觉得倒入几号杯里的水多?为什么?

将两个杯中的水果取出,以验证哪个背的水多。

(3)出示大小不同的三个水果,分别装入三个空杯,倒满水。

思考:

这三个水果,哪一个占的空间大?把它们放在同样的杯子里,在倒满水,哪个杯子里水占的空间大?

(4)师指出:物体所占空间的大小叫做物体的体积。(板书:体积)

追问:你能举例比较两个物体的体积吗?

2、认识容积

2、学习例7

(1)出示两盒书

师:你们看,书的体积大,也就是书盒所能容纳的书的体积大。这个书盒就是一个容积。

我们把“容器所能容纳的物体的体积,叫做这个容器的容积”( 板书:容积)

追问:这两个书盒,谁的容积大一些?为什么?

(2)试一试

下面那个玻璃杯的容积大一些,你能想办法比一比吗?

师:什么是玻璃杯的容积,你能想办法解决这个问题吗?

三、巩固应用

1、完成练一练第1题

思考:溢出的水的体积分别相当于哪个物体的体积。

2、完成练一练第2题

3、完成练习五第1题

4、完成练习五第2题

5、完成练习五第3题

6、完成练习五第4题

业 补充习题

板书设

执行

情况

与课

后小

篇11:长方体和正方体的表面积(1) 教案教学设计(北师大版六年级下册)

周次 3 课次(本周第几课时) 5

授课课题

教学基本

内容 六年制小学数学第十一册P27。

教学

目的

和要

求 1、让学生经历长方体和正方体的统一体积计算公式的推导过程,进一步认识两种几何体的基本特征及它们之间的关系。

2、使学生会应用长方体、正方体体积的统一计算公式解决一些简单的实际问题。

3、让学生知道我国古代数学家在两千多年前就掌握了长方体体积的计算方法,增强学生的民族自豪感和勇超先贤的信心和决心。

教学重点

及难点 会应用长方体、正方体体积的统一计算公式解决一些简单的实际问题。

探索和理解长方体、正方体体积的统一计算公式。

教学方法

及手段 本课充分利用多媒体的直观优势,在自主探究中掌握长方体和正方体的体积统一计算公式,促进学生的逻辑思维的发展,进一步增强学生的空间观念。同时使学生感受中国数学悠久的文化,增强学生的民族自豪感。

学法指导

使学生会应用长方体、正方体体积的统一计算公式解决一些简单的实际问题。

集体备课 个性化修改

预习阅读书本27页,了解方程解应用的方法。

教学

环节

设计

一、 情景激情。

师:西汉末年我国古代数学家编撰了一本不朽的传世名著《九章算术》。这本书共九章,其中一章叫商功章,它收集的都是一些有关体积计算的问题。书中是这样叙述有两个面是正方形的长方体体积的计算方法的:“方自乘,以高乘之即积尺。”就是说,先用边长乘边长得底面积,再乘高就得到长方体的体积。

二、探究新知

1、理解“底面”、“底面积”的含义。

师:一个长方体的6个面中,任何一个面都可以做底面,不一定要以水平放置的面做底面。应根据问题中的需要来决定,哪一个面利于问题的解决,就确定那个面为底面。

总结算法:底面积=长×宽=边长×边长。

2、总结、归纳长方体体积的统一计算公式。

问:古代数学家是怎样计算长方体体积的?

引导学生对照两个公式,找出它们的异同点及之间的联系。让学生认识到古人和今人计算长方体体积的方法是一致的,两个公式可以写成如下形式:

长方体体积=长×宽×高

=底面积×高

3、总结、归纳正方体体积的统一计算公式。

推出正方体体积的另一种计算方法。

正方体体积=棱长×棱长×棱长

↓       ↓

=  底面积  × 高

问:这两个公式能统一起来吗?

写上长方体、正方体体积计算的统一公式,并用字母表示出来。

长方体(或正方体)的体积

=底面积×高。www.xkb1.com

V=Sh

业 1.做“练一练”第1、2题。2、练习六第4题。3、练习六第5题。课件展示:什么叫“横截面”?4、练习六第8题。

课件展示题意:一个长方形的操场──在上面铺上10厘米厚的三合土形成一个扁扁的长方体情境──再铺上4厘米厚的煤渣形成一个更薄一些的长方体的情境。5、布置作业:练习六的第6、7题。

板书设

执行

情况

与课

后小

篇12:《长方体和正方体的体积》教学设计

长方体的体积计算这一内容是在学生认识了长方体(正方体)的体积的概念,长方体(正方体)的体积:立方米、立方厘米、立方分米的基础上学习的。通过这一节课的学习,可以帮助学生在今后的生产和生活中实际测量和计算一些物体的体积,解决一些实际问题,进一步体会到知识来源于实践、用于实践的道理,学习一些研究问题的方法。并且对学生空间观念的形成有着重要的意义。听了叶老师执教的《长方体的体积》一课,深受启发。我认为主要有以下几方面的亮点:

一、重视引导学生经历知识的探究过程。

究竟长方体的体积与长、宽、高有什么定量关系呢?叶老师安排了操作活动,引导学生用小正方体摆4个不同的长方体,通过观察、分析,发现长方体体积与长、宽、高的关系,逐步归纳得出计算方法。这一过程都是学生在教师的引导下,自主探究的过程,而不是教师的简单说教。

二、重视学生能力的培养。叶老师展示出6个大小不同的长方体,引导学生观察、发现长、宽、高与体积的关系的过程,是培养学生观察能力的过程。叶老师引导学生通过观察长、宽、高与体积的关系,让学生发现规律:长方体的体积正好是它们长、宽、高的乘积的过程,也是培养学生观察能力的过程。叶老师引导学生用棱长为1厘米的小正方体摆不同的长方体的过程,是培养学生动手实践的过程。老师引导学生练习的过程,是培养学生应用所学知识解决问题的能力的过程。在这一系列的探索活动中,学生通过动眼观察、动脑思考、动手操作,发散思维能力、解决问题的能力和策略都得到了不同程度的提高。

三、重视联系学生的生活实际。脱离生活的数学,把数学知识的学习与学生身边的事物割裂开来,既不利于学生理解抽象概括的数学知识,又无法让学生体会学习数学的意义。在课后练习中“一个长方体木箱长5分米,宽和高都是0.4米,它的体积是多少立方分米?”在课程接近尾声之时,叶老师始终没有忘记让学生再次感受我们今天学习的内容是解决我们身边的一些实际问题,我们学习了它,就应该把它运用到生活中。通过联系实际,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣。

四、重视反馈纠正。反馈纠正是改善教学过程,提高教学效率的重要手段。叶老师在教学中反馈形式多种多样,随堂提问、课堂交流、布置练习等反馈及时,纠正有力。反馈面较广,反馈角度多方面,有效地防止了学生知识缺陷的积累,增强了学生学习的自信心。

总之,这节课充分体现了叶老师先进的教学理念和高超的教学艺术,充分体现叶老师追求课堂教学有效性的探索过程,给我们以深刻的启示和借鉴。当然,艺无止境,教学尤其如此,针对这堂课,我认为以下几个方面还需再继续探究,以达更好的教学效果呢?

可以借助多媒体课件逐一展示每个长方体,要求学生记录每个长方体的长、宽、高、体积等有关数据,这样更直观。更便于学生发现体积与长、宽、高之间的关系。

长方体和正方体体积教学设计

长方体和正方体的体积

长方体和正方体的体积计算教案

长方体和正方体体积的教学反思

《长方体和正方体的体积》教学反思

长方体的体积 教案教学设计(北师大版五年级下册)

长方体和正方体的教学设计

长方体和正方体的认识教学设计

《长方体和正方体体积的统一公式》教学反思

小学五年级数学下册《长方体和正方体》教案

《长方体和正方体的体积(1) 教案教学设计(北师大版六年级下册)(共12篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档