欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

数学第十一册《长方体和正方体的体积》说课稿

时间:2022-07-19 08:09:46 其他范文 收藏本文 下载本文

以下是小编精心整理的数学第十一册《长方体和正方体的体积》说课稿,本文共15篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

数学第十一册《长方体和正方体的体积》说课稿

篇1:《长方体和正方体的体积》说课稿

一、 说教材

本篇教学内容是在学生学习了体积及体积单位后进行教学的,长方体体积计算公式,教材让学生用体积为1cm的小正方体摆成不同的长方体,通过对摆法不同的长方体相关数据的分析,引导学生找出长方体中所含体积单位的数量与它的长、宽、高的关系,从而总结出长方体体积的计算公式,并用字母表示出来。接着,教材安排了例1,计算长方体的体积,以巩固长方体的体积计算公式。正方体的体积公式,教材是通过启发学生根;据长方体和正方体的关系,推导出来的。在用字母表示正方体的公式时,教材介绍了“立方”的含意,说明三个相同的数连乘就是这个数的立方,之后安排例2,计算正方体的体积。

二、 说教学重难点

根据教学明白的要求,本教材的教学重难点主要体现为两点;

1,能正确运用体积公式计算长方体和正方体的体积。

2,能正确理解长方体和正方体体积公式的推导过程。

三、说教法学法

根据新课标的要求,在教法与学法上主要体现为以下两点;

1、给学生更多的动手操作实验与实践的空间。

2、课堂教学的组织,将突出探究性活动,使学生辛历;做数学’的过程。并在这一过程中,通过自主探索,认识和掌握图形性质,积累数学活动的经验,发现空间观念和推理能力,其间特别注意给学生提供充分的数学活动交流的机会。

四、说教学设计

鉴于新课标的要求,本节内容是在学生于掌握了体积的概念和体积单位的基础上进行的。教学过程中主要通过学生操作的方式,调动学生积极参与长方体体积公式的推导、推理和最后的结论,都由学生得出,老师只起‘导’的作用。正方体体积公式,小组合作的方式引导学生把它归为长方体的特殊情况来学习,这样既加深了对长方体、正方体之间包含关系的理解,同时也加深了对其它体积计算公式的理解。

篇2:长方体和正方体的体积

教学目标

(一)理解并掌握长方体和正方体体积的计算方法。

(二)能运用长、正方体的体积计算解决一些简单的实际问题。

(三)培养学生归纳推理,抽象概括的能力。

教学重点和难点

长方体和正方体体积的计算方法,以及其体积公式的推导。

教学用具

教具:投影片,长、正方体,1厘米3的立方体24块,1分米3的立方体一块,电脑动画软件(或活动投影片)。

学具:1厘米3的立方体20块。

教学过程设计

(一)复习准备

1.提问:什么是体积?

2.请每位同学拿出4个1厘米3的立方体,把它们拼在一起,摆成一排。

教师:拼成了一个什么形体?这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由 4个 1厘米3的正方体拼成,所以它的体积是 4厘米3。)

教师:如果再拼上一个1厘米3的正方体呢?

教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。(出示长方体和正方体教具)今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。

(二)学习新课

篇3:长方体和正方体的体积

(1)教师:请同学取出12个1厘米3的小正方体。问:它们的体积一共是多少?

教师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。

同学分小组活动,教师巡视。然后分别请摆成不同形状的'长方体的同学回答,教师板书:

教师:这些长方体有什么共同点?不同点?

问:为什么这些长方体的长、宽、高不同,即形状不相同而体积相同呢?

(因为它们都含有同样多的体积单位――12个1厘米3。)

教师:请观察自己摆出的长方体,长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

学生讨论后,师生共同归纳:

表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1厘米3的正方体。

同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层。

(2)请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积。

学生说出摆法和体积后。请看电脑动画图像:

一排摆出4个1厘米3的正方体→一共摆了三排→摆两层。

教师板书:

同上要求摆出长3厘米,宽3厘米,高2厘米的长方体。

学生操作,看电脑动画图像。教师板书:

3(厘米) 3(厘米)2(厘米)18(厘米3)

教师:想一想,如果要摆一个长5厘米,宽4厘米,高3厘米的长方体,该如何摆?体积是多少?

学生口答后,老师用电脑图演示。然后板书:

5(厘米) 4(厘米)3(厘米)60(厘米3)

教师:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长方体的体积有没有关系?是什么关系?

学生讨论后回答:长方体的体积正好等于它的长、宽、高的乘积。

教师板书:长方体的体积=长×宽×高

教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

板书:V=abh。

出示投影图:

(3)例1(投影片)一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?学生口答,教师板书:7×4×3=84(厘米3)。

答:它的体积是84厘米3。

练习:(投影出题,学生口答。)

一块水泥板,长5分米,宽3分米,厚2分米,这块水泥板的体积是多少分米3?(5×3×2=30(分米3)。)

2.正方体体积。(1)请学生看电脑动画录像:

长4厘米,宽3厘米,高3厘米的长方体,长缩短一厘米(图上从右边去掉一排)。教师:此时的长,宽,高各是多少?变成了什么图形?

问:这个正方体的体积可以求出来吗?

学生口答,老师板书: 3×3×3=27(厘米3)。

投影出一个正方体图。(可以用翻页变换它的棱长。)

问:①棱长为2分米,求它的体积?②棱长为4厘米,求它的体积?

学生口答,老师板书: 2×2×2=8(分米3),4×4×4=64(厘米3)。教师:我们已经会计算具体的正方体的体积了,能说出正方体体积计算的方法吗?学生口答,老师板书:正方体体积=棱长×棱长×棱长。

用V表体积,a表示棱长,公式可写成:V=a・a・a或者V=a3。

(2)例2(投影)光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

学生口答,老师板书:53=5×5×5=125(分米3)。

答:体积是125分米3。

做一做:课本34页1,2题,请4位同学用投影片写,其余同学写本上。集体订正。(3)说一说长方体和正方体的体积计算方法和字母公式。

教师:请讨论长方体和正方体的体积计算方法相同还是不相同。

学生讨论后归纳:因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中b,h都变为a。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。

(三)巩固反馈

1.口答填空。课本P35练习七:2,3。

2.口答填表:

3.判断正误并说明理由。

①0.23= 0.2×0.2×0.2;( )

②5x2=10x;( )

③一个正方体棱长4分米,它的体积是:43=12(分米3);( )

④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米3。( )

(四)课堂总结及课后作业

1.长方体的体积计算方法及公式。

正方体的体积计算方法及公式。

2.作业:课本P35练习七:4,6。

课堂教学设计说明

本节内容是在学生已掌握了体积的概念和体积单位的基础上进行的。教学过程中通过学生操作,观看动画录像等多种方式,调动学生积极参与长方体体积公式的推导,推理和最后的结论,都由学生得出,老师只起“导”的作用。正方体体积公式,设计通过动画录像引导学生把它归为长方体的特殊情况来学习,这样既加深了对长、正方体之间包含关系的理解,同时也加深了对其体积计算公式的理解。练习中针对乘方运算和单位不统一的易错点,设置题目进行训练,这样可以提高学生运用所学知识解决实际问题的准确性。

新课教学共分两个部分:

第一部分教学长方体体积计算方法。分为三个层次。通过摆长方体,使学生认识到长方体形状不同但只要含有同样多的体积单位,它们的体积就相等;通过操作和动画图,帮助学生发现体积与长、宽、高之间的数量关系,即体积公式;运用体积计算解决实际问题。

第二部分学习正方体体积计算方法。也分三层。通过图像推出正方体体积计算公式;解决简单的实际问题;沟通长、正方体体积公式的区别与联系。

板书设计

篇4:长方体和正方体体积练习题

长方体和正方体体积练习题

一、填空:

1、叫体积。

2、长方体体积公式是:;用字母表示:

3、正方体体积公式是:;用字母表示:

4、一个正方体棱长5厘米,它的棱长和是,表面积是,体积是。

5、一个长方体木箱的长是6分米,宽是5分米,高是4分米,它的棱长和是占地面积是,表面积是,体积是。

6、一个长方体方钢,横截面是边长4厘米的正方形,长2分米,体积是立方厘米。

7、一个长方体水池占地24平方米,深3.5米,它能蓄水立方米。

8、一个长方体木料,长4米,如果把它截3段,表面积增加24平方分米,这根木料的.体积是。

9、用棱长3厘米的小正方体拼成一个大正方体,至少需这样的小正方体块。

10、将一个长2米,宽3分米,高2.6分米的长方体木料,将它平均截成两段,表面积增加平方分米。

二、操作题:

右图是长方体展开图,测量所需数据,并求长方体体积。(取整厘米)

三、解决问题。

1、一个无盖的长方体金鱼缸,长8分米,宽6分米,高7分米。制作这个鱼缸共需玻璃多少平方分米?这个鱼缸能装水多少升?(玻璃厚度忽略不计)

2、一个长方体铁块,长10分米,宽5分米,高4分米,每立方分米铁块重7.8千克,这个铁块重多少千克?

3、有一个底面积是250平方厘米、高16厘米的长方体,里面盛有8厘米深的水。现在把一块石头浸没到水里,水面上升3厘米。这块石头的体积是多少立方厘米?

4、一根方钢长3米,它的横截面是一个边长为4厘米的正方形,已知每立方分米的方钢重7.8千克,这根方钢重多少千克?

5、一张长方形铁皮长26分米,宽18分米,在它的四个角剪去边长3分米的正方形,焊成一个长方体,这个长方体的容积是多少升?

6、一个游泳池,长50米,宽20米,深2米,现在要给游泳池的四壁和底面抹水泥,抹水泥的面积是多少平方米?

7、一根铁丝,可以做成长8厘米,宽6厘米,高4厘米的长方体框架,如果用它来做一个正方体框架,做成的正方体框架棱长是多少厘米?

8、一块橡皮泥,先捏成一个棱长6厘米的正方体,后来,又改捏成一个长8厘米,宽3厘米的橡皮泥,这时高是多少厘米?

篇5:长方体和正方体的体积计算小学数学说课稿

各位老师:

你们好!

今天我说课的内容是九年义务教育六年制小学数学第十册《长方体和正方体的体积计算》。下面我就从教材、学情、教法、学法以及教学流程和板书设计等方面谈谈我的构思。

一、说教材

(一)教学内容

人教版九年义务教育六年制小学数学第十册第二单元第三节《长方体和正方体的体积计算》。即P33页例1和P34页的例2题及相关练习。

(二)教材分析与目标确定

长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。本单元前几课时已经基本上认识了长方体和正方体的特征和性质,学习了表面积的计算,掌握了体积的概念和常用的体积单位。这节课要学习长方体和正方体的体积计算,认识体积公式的来源,掌握公式的意义和用法.长方体和正方体的体积计算是今后继续学习几何知识的基础,根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定了如下教学目标:

①知识目标:使学生掌握长方体和正方体的体积计算公式,学会计算长方体和正方体的体积。

②能力目标:培养学生实际操作能力,推理能力及运用知识解决实际问题的能力。

③情感目标:引导学生去实验推导出长方体、正方体的体积计算公式。让学生亲身经历探索知识的过程,激发他们乐于探索的热情, 培养学生的探索性和挑战性。同时渗透理论来源于实践的思想。

(三)教学重点及难点。

根据长方体和正方体之间的关系,重、难点应定位在以下几方面:

(1)教学重点:指导学生探究长方体和正方体的体积形成过程。

(2)教学难点:理解公式的意义。

二、说学情

体积对学生来说是一个新概念,课前,学生已经初步认识了体积和体积单位,对物体的体积有一个比较模糊的认知。在教学中,教师要着眼于学生空间观念的培养,从学生的实际出发,充分利用和创造条件,使学生在轻松愉快的气氛中学习;利用互动多媒体课程,引导学生通过对物体、模型等的观察、测量、拼摆、画图、制作等活动,丰富学生对形体的感知,以培养学生的初步的空间观念和抽象概括能力。

三、说教法

第多斯惠说过:一个不好的教师是奉送真理,而一个好的教师则是教人发现真理。按照新课程标准要求,我想我要转变观念,不再是单纯的知识传授者,而要成为儿童生活的指导者、支持者、合作者,努力为他们创设适宜的活动环境与学习条件,让他们能够主动地去探究、发现问题,并自己总结出规律。本课的教学从儿童的认知特点出发,强调寓教于乐,形象直观,采取启发式、探究式的方法教学,让学生自己参与,自己动手,自己得出结论。

四、说学法

1.启发学生独立思考。

学生是学习的主体,只有引导学生独立地发现问题、思考问题、解决问题,才能收到事半功倍的教学效果。例如,在操作的基础上,让学生观察、分组讨论:每排个数、每层排数、层数是长方体的什么?长方体的长、宽、高与它的'体积有什么关系,这是总结公式、理解公式的重要途径。

2. 让学生在问题解决中学习。

问题是数学教学的核心,也是激发学生探究欲望的最佳动力。教学设计时,我力求以“长方体、正方体体积”这一数学知识为载体,通过学生主动参与、发现结论、猜测验证的探究过程,使学生的数学认知结构建立在自己的实践经验和主动建构之上,从而转变学生的学习方式,体现课程改革精神。

五、说教学流程

(一)教学准备

1.学生动手操作的小正方体积木若干套。

2.自制课件。

(二)教学过程

(1)、创设情景,导入新课。

1、课件演示如下图,让学生说出他们的体积各是多少?

2、如果较大的物体用1立方厘米去量好不好?我们能不能用学过的数学知识来计算呢?

(2)、师生互动,探究新知。

1实验探究

小学生的思维特点是以形象思维为主,逐步向抽象思维过渡。根据这一特点,先利用直观学具,引导学生进行直观操作、思考,并且具体操作、思维和语言表达紧密地结合起来。具体的过程是:

1)每五人一组做实验并记录:

取24块1立方分米的小正方体积木,任意拼摆长方体,然后把数字记录在表格里面。

2)通过课件演示,根据学生的记录表,操作验证。小组讨论:通过填表,你发现了什么?

2归纳概括

1)研究数字间关系。

分组讨论:从这些数字中你发现了什么?

①体积与每排个数、排数、层数的关系。

长方体体积=每排个数×排数×层数

②长方体所含体积单位的个数与它的长、宽、高的关系。

(长方体体积等于长方体所含体积单位的个数,所含体积单位的个数正好等于长方体长、宽、高的乘积)

2)概括体积公式。

①引导学生观看课件,由学生自己总结出长方体的体积公式。

长方体体积=长×宽×高 V=a×b×h V=abh

[例1.的讲解]进一步让学生默记公式,指名说一说求长方体的体积,必须要知道什么条件?让学生计算例1。

②根据长方体与正方体之间的关系,我们可以推出正方体的体积计算公式吗?

正方体体积=棱长×棱长×棱长 V=a·a·a V=a3 [V=a·a·a,也可以写成a3 读作a的立方,表示三个a相乘,不要误认为а与3相乘。写“а3”时,3写在a的右上角。]

[例2.的讲解]要使学生树立学习新知识,解决新问题的信心,所以让学生独立完成例2,教师巡视。

(3)、反馈练习,实践运用。

练习是数学中教学巩固新知,形成技能,发展思维,提高学生分析问题,解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式,我设计了多层次的练习:

(1)、堆积木,算体积。

(2)、通过让学生完成教科书第34页的“做一做”的第一题,先让学生动作操作,这样有助于学生理解长方体的体积与它的长、宽、高的关系,记住长方体的体积计算公式。

(3)、做第34页“做一做”的第二题,先学生独立完成,这道题是巩固刚学过的“立方”的知识,要使学生弄清,什么情况下可以写成一个数的立方,一个数立方应该怎样计算。做题时,如果发现学生把3个相同数连加与连乘混淆起来,教师应及时纠正。

(三)、全课总结。

(1)让学生说说这节课学习了什么?

(2)教师总结。

这样设计目的对新知识进行一次全面的回顾,梳理,内化的过程,同时培养学生总结概括能力。

六、附板书设计:

篇6:《长方体和正方体的体积》数学教案设计

教学目标

1.1 知识与技能:

使学生学会计算长方体和正方体的体积,并能利用公式正确进行计算。

1.2过程与方法:

在公式的推导过程中培养学生的观察能力、空间想象能力、提出问题的意识及解决实际问题的能力。

1.3 情感态度与价值观:

使学生体会数学来源于生活,且服务于生活,产生热爱数学的思想感情。

教学重难点

2.1 教学重点:

2掌握长、正方体体积的计算方法,解决实际问题。

2.2 教学难点:

长、正方体体积公式的推导过程

教学工具

教学课件、一个长方体拼制模型(长4厘米、宽3厘米、高2厘米)每组24个边长1立方厘米的小木块

教学过程

一、复习引入

1、下列长方体的长、宽、高各是多少:

长:8厘米 长:6分米 长:8厘米 长:12米

宽:4厘米 宽:2.5分米 宽:4厘米 宽:10米

高:5厘米 高:10分米 高:4厘米 高:1.5米

2、下列图形是用1立方厘米的正方体搭成的。它们的体积各是多少立方厘米?

3、怎样知道这个长方体的体积是多少呢?

今天我们就一起来学习长方体和正方体的体积。(板书:长方体和正方体的体积)

二、新知探究

1、长方体的体积。

(1)活动一:

师:郑老师在每个4人小组都放了12个1平方厘米的小正方体和一张学习单,下面我们将以四人小组的形式进行探究。首先请看活动要求(课件出示):

A、四人小组合作用12个小正方体摆形状不同的长方体;

B、每摆出一种请在学习单上做好记录,然后再摆下一种;

C、摆完后想想你发现了什么,在四人小组内交流;

D、每组选出一位代表进行汇报。

生小组合作动手操作

反馈,学生汇报

生每汇报出一种情况,师在黑板上的表格中板书:

师:观察表格,你发现了什么?

引导学生得出:只要用每行的个数乘以行数,得到一层所含的体积单位数,再乘以层数,就能得到这个长方体所含的体积单位数。

板书:体积=每行个数×行数×层数

师:刚才同学们用12个小正方体摆出的长方体体积都是12平方厘米的,郑老师刚才也摆了两个,不过体积比你们大多了,但是要看懂郑老师的长方体必须发挥一下你们的空间想象能力。(课件出示)

你知道这两个长方体的体积吗?你是怎么知道的?(生说,师填表)

(2)活动二:

师:四人小组合作,你们能摆出一个体积更大的长方体吗?

预设:长5厘米,宽5厘米,高4厘米。

师:你发现了什么?每排个数、排数、层数相当于长方体的什么?

生:长宽高,因为每一个小正方体的棱长是1厘米,所以,每行摆几个小正方体,长正好是几厘米;摆几行,宽正好是几厘米;摆几层,高也正好是几厘米。

2、下面的长方体,看它包含有多少个体积单位?并指出它的长、宽、高各是多少。

(2)观察上面个部分之间的关系,可以得出:

第一个:5=5×1×1

第二个:15=5×3×1

第三个:12=3×2×2

通过上面的关系式,可以得出:长方体的体积=长×宽×高

如果用字母V表示长方体的体积,用a、b、c分别表示长方体的长、宽、高,那么长方体的体积计算公式可以写成:V=a×b×c。

根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?

3、正方体的体积。

因为正方体的性质,所有的棱长都相等,所以,正方体的体积=棱长×棱长×棱长

如果用字母V表示正方体的体积,用a表示正方体的棱长,那么正方体的体积计算公式可以写成:V=a·a·a。

a·a·a也可以写作a ?,读作“a的立方”,表示3个a相乘。

正方体的体积计算公式一般写成V=a3。

三、巩固提升

1、计算下面图形的体积。

V=abh=7×3×3=63(cm?)

V=a3=4×4×4=64(cm)

2、求下列长方体的体积。

8×4×5=160(cm3) 6×2.5×10=15(dm3) 8×4×4=128 (cm3) 1.5×10×12=180(m3)

3、雄伟的人民英雄纪念碑矗立在天安门广场上,石碑的高是14.7米,宽是2.9米,厚1米。这块巨大的花岗岩石碑的体积是多少立方米?

解:V=abh

=2.9×1×14.7

=42.63(m?)

答:这块石碑的体积是42.63立方米。

4、判断正误并说明理由。

(1)0.23=0.2×0.2×0.2。( √ )

(2)5X3=10X。( × )

(3)一个正方体棱长4分米,它的体积是:43=12(立方分米)。( × )

( 4 )一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米。( × )

5、一个长方体的体积是48立方分米,长8分米、宽4分米,它的高是多少分米?

48÷8÷4=1.5(分米)

答:它的高是1.5分米。

6、一个长方体的棱长总和是96厘米。它的长10厘米,宽8厘米,它的体积是多少立方厘米?

96÷4=24(厘米) 24-10-8=6(厘米)

10×8×6=480(立方厘米)

答:它的体积是480立方厘米。

7、一个无盖的长方体鱼缸,长8分米,宽6分米,高7分米,制作这个鱼缸共需玻璃多少平方分米?这个鱼缸的体积是多少?

(8×6)+(8×7+6×7)×2=244(平方分米)

8×6×7=336(立方分米)

答:制作这个鱼缸共需玻璃244平方分米。这个鱼缸的体积是336立方分米。

课后小结

这节课我们学习了什么?

我们学习了长方体和正方体体积的计算公式。

长方体的体积=长×宽×高,V=a×b×h

正方体的体积=棱长×棱长×棱长,V=a×a×a=a3

板书

长方体和正方体的体积

长方体的体积=长×宽×高

V=a×b×h

正方体的体积=棱长×棱长×棱长

V=a×a×a=a3

篇7:《长方体和正方体的体积》数学教案设计

教学目标

1.通过讲授,引导学生找出规律,总结出体积的公式。

2.指导学生运用公式正确计算长方体、正方体的体积。

3.培养学生积极思考、探索新知的思维品质。

教学重难点

1.通过讲授,引导学生找出规律,总结出体积的公式。

2.指导学生运用公式正确计算长方体、正方体的体积。

3.培养学生积极思考、探索新知的思维品质。

教学工具

课件

教学过程

【复习导入】

1.什么叫体积?计量物体的体积常用的单位有哪些?

2.怎样计算一个物体的体积呢?

【新课讲授】

1.长方体体积的计算。

教师课件出示一块长方体积木,一块盖房用的大型砖板。

(1)提问:它们的体积是多少?你是怎样想的?

引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

(2)观察操作,探究长方体的体积公式。

小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?

学生独立思考,然后小组内讨论交流,得出结论。

小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。

板书:长方体的体积=长×宽×高

讲述:如果用字母V表示长方体的体积公式可以写成:V=abh

(3)质疑:求长方体的体积公式需要知道什么条件?

2.探究正方体的体积公式。

(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

(2)引导学生明确。正方体的体积=棱长×棱长×棱长(板书)用字母表示:V=aoaoa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)

3.运用长方体的体积公式解决问题。

(1)出示教材第30页的例1。

(2)学生看图,理解题意。

(3)说出题中所给信息,和所求问题。

(4)指名说出长方体的体积公式。

(5)指名学生上台板演过程,其他同学判断。

(6)老师订正书写。V=abh=7×4×3=84(cm3)

(7)看图,学生独立在练习本上完成。

(8)指名板演,集体订正。

【课堂作业】

完成课本第31页“做一做”第1、2题。

【课堂小结】

1.这节课,你有什么收获?

2.在计算长方体和正方体的体积时,要注意哪些问题?

【课后作业】

完成练习册中本课时练习。

篇8:数学长方体和正方体的体积练习题

数学长方体和正方体的体积练习题

1.填空。

(1)( )叫做物体的体积。

(2)用字母表示长方体的体积公式是( )。

(3)棱长2分米的.正方体,一个面的面积是( ),表面积是( ),体积是( )。

(4)一个长方体长是0.4米、宽0.2米、高0.2米,它的表面积是( ),体积是( )。

(5)5立方米=( )立方分米

2.8立方分米=( )立方厘米

720立方分米=( )立方米

32立方厘米=( )立方分米

2.7立方米=( )升

1200毫升=( )立方厘米

4.25立方米=( )立方分米=( )升

1.2立方米=( )升=( )毫升

2.一块砖长24厘米,宽1.2分米,厚6厘米,它的体积是多少立方分米?

篇9:六年制小学数学说课稿:长方体和正方体的体积计算

六年制小学数学说课稿:长方体和正方体的体积计算

各位老师:

你们好!

今天我说课的内容是九年义务教育六年制小学数学第十册《长方体和正方体的体积计算》,下面我就从教材、学情、教法、学法以及教学流程和板书设计等方面谈谈我的构思。

一、说教材

(一)教学内容

人教版九年义务教育六年制小学数学第十册第二单元第三节《长方体和正方体的体积计算》。即P33页例1和P34页的例2题及相关练习。

(二)教材分析与目标确定

长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。本单元前几课时已经基本上认识了长方体和正方体的特征和性质,学习了表面积的计算,掌握了体积的概念和常用的体积单位。这节课要学习长方体和正方体的体积计算,认识体积公式的来源,掌握公式的意义和用法.长方体和正方体的体积计算是今后继续学习几何知识的基础,根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定了如下教学目标:

①知识目标:使学生掌握长方体和正方体的体积计算公式,学会计算长方体和正方体的体积。

②能力目标:培养学生实际操作能力,推理能力及运用知识解决实际问题的能力。

③情感目标:引导学生去实验推导出长方体、正方体的体积计算公式。让学生亲身经历探索知识的过程,激发他们乐于探索的热情, 培养学生的探索性和挑战性。同时渗透理论来源于实践的思想。

(三)教学重点及难点。

根据长方体和正方体之间的关系,重、难点应定位在以下几方面:

(1)教学重点:指导学生探究长方体和正方体的体积形成过程。

(2)教学难点:理解公式的意义。

二、说学情

体积对学生来说是一个新概念,课前,学生已经初步认识了体积和体积单位,对物体的体积有一个比较模糊的认知。在教学中,教师要着眼于学生空间观念的培养,从学生的实际出发,充分利用和创造条件,使学生在轻松愉快的气氛中学习;利用互动多媒体课程,引导学生通过对物体、模型等的观察、测量、拼摆、画图、制作等活动,丰富学生对形体的感知,以培养学生的初步的空间观念和抽象概括能力。

三、说教法

第多斯惠说过:一个不好的教师是奉送真理,而一个好的教师则是教人发现真理。按照新课程标准要求,我想我要转变观念,不再是单纯的知识传授者,而要成为儿童生活的指导者、支持者、合作者,努力为他们创设适宜的活动环境与学习条件,让他们能够主动地去探究、发现问题,并自己总结出规律。本课的.教学从儿童的认知特点出发,强调寓教于乐,形象直观,采取启发式、探究式的方法教学,让学生自己参与,自己动手,自己得出结论。

四、说学法

1.启发学生独立思考,

学生是学习的主体,只有引导学生独立地发现问题、思考问题、解决问题,才能收到事半功倍的教学效果。例如,在操作的基础上,让学生观察、分组讨论:每排个数、每层排数、层数是长方体的什么?长方体的长、宽、高与它的体积有什么关系,这是总结公式、理解公式的重要途径。

2. 让学生在问题解决中学习。

问题是数学教学的核心,也是激发学生探究欲望的最佳动力。教学设计时,我力求以“长方体、正方体体积”这一数学知识为载体,通过学生主动参与、发现结论、猜测验证的探究过程,使学生的数学认知结构建立在自己的实践经验和主动建构之上,从而转变学生的学习方式,体现课程改革精神。

五、说教学流程

(一)教学准备

1.学生动手操作的小正方体积木若干套。

2.自制课件。

(二)教学过程

(1)、创设情景,导入新课。

1、课件演示如下图,让学生说出他们的体积各是多少?

2、如果较大的物体用1立方厘米去量好不好?我们能不能用学过的数学知识来计算呢?

(2)、师生互动,探究新知。

1实验探究

小学生的思维特点是以形象思维为主,逐步向抽象思维过渡。根据这一特点,先利用直观学具,引导学生进行直观操作、思考,并且具体操作、思维和语言表达紧密地结合起来。具体的过程是:

1)每五人一组做实验并记录:

取24块1立方分米的小正方体积木,任意拼摆长方体,然后把数字记录在表格里面。

2)通过课件演示,根据学生的记录表,操作验证。小组讨论:通过填表,你发现了什么?

2归纳概括

1)研究数字间关系。

分组讨论:从这些数字中你发现了什么?

①体积与每排个数、排数、层数的关系。

长方体体积=每排个数×排数×层数

②长方体所含体积单位的个数与它的长、宽、高的关系。

(长方体体积等于长方体所含体积单位的个数,所含体积单位的个数正好等于长方体长、宽、高的乘积)

2)概括体积公式。

①引导学生观看课件,由学生自己总结出长方体的体积公式。

长方体体积=长×宽×高 V=a×b×h V=abh

[例1.的讲解]进一步让学生默记公式,指名说一说求长方体的体积,必须要知道什么条件?让学生计算例1。

②根据长方体与正方体之间的关系,我们可以推出正方体的体积计算公式吗?

正方体体积=棱长×棱长×棱长 V=a·a·a V=a3 [V=a·a·a,也可以写成a3 读作a的立方,表示三个a相乘,不要误认为а与3相乘。写“а3”时,3写在a的右上角。]

[例2.的讲解]要使学生树立学习新知识,解决新问题的信心,所以让学生独立完成例2,教师巡视。

(3)、反馈练习,实践运用。

练习是数学中教学巩固新知,形成技能,发展思维,提高学生分析问题,解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式,我设计了多层次的练习:

篇10:长方体正方体体积教学反思

教学中,我注意了培养学生的数学语言能力,重视学生的口头表达,同学们在操作活动中产生了大量的思维语言,小学生的特点就是急于把这些想法告诉老师和同学。我在教学时安排了边摆边记录,再汇报的活动,让学生养成及时记录实验数据的习惯,同时为整理、分析数据准备好必要的材料,更有利于有条理地分析汇报,从而提高语言表达能力。

教学过程就是学生实现认知目标的过程,在这个过程中,给学生思维空间,给学生自主探索的机会,让学生多维多向思考,同时实现师生互动,也就遵循了学生的认知规律,使学生获得了最佳的认知效果。

通过本节课的教学,我认识将主动权还给学生的必要性,这样更能让学生充分体会到学习的乐趣,并能使他们获得成就感。教学是课堂创新和开发的过程,在以后的教学中,()需要我付出更多的心血来激发学生的潜能。

有好的方面,但仍有许多不足,下面就我上的这一节课存在的问题从以下几个方面自评一下。

第一、课件设计还不够完美。如:在关闭flash课件的主页面后,出示幻灯片时应设计一个封面,这样就自然些,而不会显得太突然,而我却将一个封面删取了;还有我后面还设计了一个拓展性的题就是利用长方体和正方体组成的一个动画机器人,让同学们想一想如何知道它的体积,并且还有分解后的图。这道题按我原来的设计是个很能调动学生积极性的题。但时间计划不周这道题没有出示出来,深感遗憾!

第二、教学过程中细心程度不够,有些慌。在随意展示学生填好的表时没有先认真看一下,结果出现学生在长、宽、高数值后面带的单位是cm3而不是cm。

第三、数学教学理论,数学教材钻研的纵深度不够。对数学理论的掌握,数学教材的把握火候不到,对数学有些专业性术语掌握的还有些欠妥。

篇11:长方体和正方体的体积数学教案

教学目标

1.理解并掌握长方体和正方体体积的计算方法.

2.能运用长、正方体的体积计算解决一些简单的实际问题.

3.培养学生归纳推理,抽象概括的能力.

教学重点

篇12:长方体和正方体的体积数学教案

教学用具

教具:1立方厘米的立方体24块,1立方分米的立方体1块.

学具:1立方厘米的立方体20块.

教学过程

一、复习准备.

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.

教师提问:拼成了一个什么形体?(长方体)

这个长方体的体积是多少?(4立方厘米)

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们

来学习怎样计算长方体和正方体的体积.

篇13:长方体和正方体的体积数学教案

二、学习新课.

(一)长方体的体积【演示动画“长方体体积1”】

1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆

出的长方体的长、宽、高.

2.学生汇报,教师板书:

教师提问:这些长方体有什么共同点?(体积相等)

不同点?(数据不同)

为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——

12个1立方厘米)

教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1

立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.

3.【演示动画 “长方体体积2”】

第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.

一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层

第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.

一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层

第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.

一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层

思考:请观察这些从实际操作中得出的`数据,结合拼摆成的图形,看一看这些数据与长

方体的体积有没有关系?是什么关系?

(长方体的体积正好等于它的长、宽、高的乘积)

教师板书:长方体的体积=长×宽×高

教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

板书: V=abh.

出示投影图:

4.自学例1.

一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

7×4×3=84(立方厘米)

答:它的体积是84立方厘米.

(二)正方体体积.

1.【演示课件“正方体体积”】

教师提问:此时的长,宽,高各是多少?

变成了什么图形?

这个正方体的体积可以求出来吗?

2.练习棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)

棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)

3.归纳正方体体积公式.

教师板书:正方体体积=棱长×棱长×棱长.

用V表体积,a表示棱长

V=a·a·a或者V=

4.独立解答例2.

光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

(分米3)

答:体积是125立方分米.

(三)讨论长方体和正方体的体积计算方法是否相同.

学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中

b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.

篇14:数学教案-长方体和正方体的体积

教学目标

1.理解并掌握长方体和正方体体积的计算方法.

2.能运用长、正方体的体积计算解决一些简单的实际问题.

3.培养学生归纳推理,抽象概括的能力.

教学重点

长方体和正方体体积的计算方法.

教学难点

长方体和正方体体积公式的推导.

教学用具

教具:1立方厘米的立方体24块,1立方分米的立方体1块.

学具:1立方厘米的立方体20块.

教学过程

一、复习准备.

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.

教师提问:拼成了一个什么形体?(长方体)

这个长方体的体积是多少?(4立方厘米)

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们

篇15:长方体、正方体的体积教案

三、练习

1、出示课本30页的例一:生独自完成,集体订正。

2、课本31页做一做。

四、课堂总结

今天你有哪些收获?还有什么疑问?

板书设计:

《长方体和正方体》数学说课稿

长方体和正方体的体积

长方体和正方体体积教学设计

长方体和正方体的体积计算教案

长方体和正方体体积的教学反思

《长方体和正方体的体积》教学反思

小学数学说课稿《长方体和正方体的表面积》

长方体和正方体的体积(人教版五年级教案设计)

《长方体和正方体的体积》评课稿

长方体和正方体教案设计

《数学第十一册《长方体和正方体的体积》说课稿(锦集15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档