欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

考研数学线性代数冲刺4大重点

时间:2023-04-15 08:05:58 其他范文 收藏本文 下载本文

下面是小编整理的考研数学线性代数冲刺4大重点,本文共8篇,欢迎大家阅读借鉴,并有积极分享。

考研数学线性代数冲刺4大重点

篇1:考研数学线性代数冲刺4大重点

考研数学线性代数冲刺4大重点

向量与线性方程组

向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,而其后两章特征值和特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。

向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

这部分的重要考点一是线性方程组所具有的两种形式――矩阵形式和向量形式;二是线性方程组与向量以及其它章节的各种内在联系。

(1)齐次线性方程组与向量线性相关、无关的联系

齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立――印证了向量部分的一条性质“零向量可由任何向量线性表示”。

齐次线性方程组一定有解又可以分为两种情况:1、有唯一零解;2、有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系――齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。

(2)齐次线性方程组的解与秩和极大无关组的联系

同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”。经过“秩-线性相关、无关-线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系)线性表示。

(3)非齐次线性方程组与线性表示的联系

非齐次线性方程组是否有解对应于向量是否可由列向量组线性表示,使等式成立的一组数就是非齐次线性方程组的解。

行列式与矩阵

行列式、矩阵是线性代数中的基础章节,从命题人的角度来看,可以像润滑油一般结合其它章节出题,因此必须熟练掌握。

行列式的核心内容是求行列式――具体行列式的计算和抽象行列式的计算。其中具体行列式的计算又有低阶和高阶两种类型,主要方法是应用行列式的性质及按行(列)展开定理化为上下三角行列式求解;而对于抽象行列式而言,考点不在如何求行列式,而在于结合后面章节内容的比较综合的题。

矩阵部分出题很灵活,频繁出现的知识点包括矩阵各种运算律、矩阵相关的重要公式、矩阵可逆的判定及求逆、矩阵的秩的性质、初等矩阵的性质等。

特征值与特征向量

相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容――既有行列式、矩阵又有线性方程组和线性相关性,“牵一发而动全身”。

本章知识要点如下:

1.特征值和特征向量的定义及计算方法就是记牢一系列公式和性质。

2.相似矩阵及其性质,需要区分矩阵的相似、等价与合同:

3.矩阵可相似对角化的条件,包括两个充要条件和两个充分条件。充要条件一是n阶矩阵有n个线性无关的特征值;二是任意r重特征根对应有r个线性无关的特征向量。

4.实对称矩阵及其相似对角化,n阶实对称矩阵必可正交相似于以其特征值为对角元素的对角阵。

二次型

这部分所讲的内容从根本上讲是特征值和特征向量的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵,必存在正交矩阵使其可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。

这四个方面是历年考研数学线代部分的重点,希望考生以此为重点,由点及面,复习好线性代数这部分。

篇2:考研数学:线性代数重点分析

考研数学:线性代数重点分析

考研数学包括:线性代数、高等数学、概率论与数理统计,高等数学占考研数学的大部分比例,而线性代数所占的分值比例是22%.线性代数知识点多、定理多、概念多、符号多、运算规律多,知识点之间的联系非常紧密。复习线性代数的时候,要对基本概念、基本定理、结论及其应用、各种运算规律及基本题型的计算方法都要掌握。下面针对各章节进行考点的总结,并给出复习重难点。

第一章行列式

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算,其中具体行列式的计算方法主要有两种,第一种方法是三角化法,即利用行列式的性质把复杂的行列式化为上三角或者下三角来计算,第二种方法是降价法,即利用行列式按行(列)展开定理把高阶行列式降为低阶行列式来计算。

第二章矩阵

首先是矩阵定义,它是一个数表。这个与行列式有明显的区别。然后看运算,常见的运算是求逆,转置,伴随,幂等运算。要注意它们的综合性。还有一个重点就是常见矩阵类型。大家特别要注意实对称矩阵,正交矩阵,正定矩阵以及秩为1的矩阵。最后就是矩阵秩。这是一个核心和重点。矩阵的秩是整个线性代数的核心。要清楚,秩的定义,有关秩的很多结论。针对结论,大家最好能知道他们是怎么来的,自己动手算一遍。要注意矩阵分块的原则,分块矩阵的初等变换与简单矩阵初等变换的区别和联系。

第三章向量

向量组的线性相关性证明、线性表出等问题,解决此类问题的关键在于深刻理解向量组的线性相关性概念,掌握线性相关性的几个相关定理,另外还要注意推证过程中逻辑的正确性,还要善于使用反证法。向量组的极大无关组、等价向量组、向量组及矩阵秩的概念,以及它们之间的相互关系。要求会用矩阵的初等变换求向量组的极大线性无关组以及向量组或者矩阵的秩。

第四章特征值与特征向量

掌握特征值与特征向量的概念与性质;数值型矩阵特征值与特征向量的计算方法;理解掌握矩阵乘法运算与特征向量的.联系;抽象矩阵行列式的计算;特征值重数与无关特征向量的关系。

第五章二次型

二次型这一章的重点实质还是实对称矩阵的正交相似对角化问题。要掌握二次型的矩阵表示,用矩阵的方法研究二次型的问题。化二次型为标准形:主要是利用正交变换法化二次型为标准型,这是考研数学线性代数的重点大题题型,考生一定要掌握其做题的基本步骤。化二次型为标准型的实质也是实对称矩阵的正交相似对角化问题。二次型的正定性问题:对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象矩阵的正定性判断可以通过利用标准形,规范形,特征值等得到证明,这时应熟悉二次型正定有关的充分条件和必要条件。

篇3:考研数学线性代数冲刺复习思路

考研数学线性代数冲刺复习思路

考研最终的复习准备是决定考研成败的关键,这个阶段的复习要求高,时间紧,而且针对性也需要比较好。所以我们在最后的复习中应该以自己的弱势进行针对章节的复习。在真题题型上多下功夫,让复习的成效最接近于考试的技巧。

考研数学中线性代数的复习比其他学科难,因为它虽然有更明显的知识点,却是概念多、定理多、符号多、运算规律多、内容相互纵横交错,知识前后紧密联系的学科。考研数学线性代数暑期复习重点应充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法,并及时进行总结,抓联系,使学知识能融会贯通,举一反三。我们在前阶段的复习中不间断的对各个学科进行了持续预热的复习,但是最后阶段无论是你优势的或劣势的学科都不可以放弃复习计划,应该在保持复习的基础上进行合理的比重调整。

对于数学的复习做题方面是必不可少的,我们复习到最后已经有了一定的基础,可以独立进行模拟题的训练来判断自己复习的水平,可以根据测验的结果适时进行复习的调整,考研真题的复习也不可以放弃,有很多同学觉得真题做过一次就可以不去进行模拟考研的练习了,其实这是不正确的,我们在后期对于真题的解题记忆已经淡化,正好可以用真题检验自己的水平,这里要注意的是千万不要在短时间内将一份真题反复做很多遍,这样只能让你将真题背下来而不是做会。

我们在做题时应该注意我们做题的目的,做到更熟练地把握考试的题型、模式以及时间分配、做题顺序等要素,尽早适应考场模式。这一阶段的解题训练也万不可孤立进行,必须与再次系统梳理知识体系结合起来。应当结合做题反映出的弱点,针对性地重新梳理线性代数理论框架,同时认真归纳总结一些特定题型的解题方法和技巧。以下为大家说一下历年考研重点及复习思路,希望可以帮助到考研考生的数学复习。

1.行列式的重点是计算,利用性质熟练准确的计算出行列式的值。

2.矩阵中除可逆阵、伴随阵、分块阵、初等阵等重要概念外,主要也是运算,其运算分两个层次:

(1)矩阵的符号运算

(2)具体矩阵的数值运算

3.关于向量,证明(或判别)向量组的线性相关(无关),线性表出等问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。

4.向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。

5.于特征值、特征向量,要求基本上有三点:

(1)要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程OλE-AO=0及(λE-A)ξ=0即可,抽象的由给定矩阵的'特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用。

(2)有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵,反过来,可由A的特征值,特征向量来确不定期A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A。

(3)相似对角化以后的应用,在线性代数中至少可用来计算行列式及An。

6.将二次型表示成矩阵形式,用矩阵的方法研究二次型的问题主要有两个:

(1)化二次型为标准形,这主要是正交变换法(这和实对称阵正交相似对角阵是一个问题的两种提法),在没有其他要求的情况下,用配方法得到标准形可能更方便些。

(2)二次型的正定性问题,对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象的由给定矩阵的正定性,证明相关矩阵的正定性时,可利用标准形,规范形,特征值等到证明,这时应熟悉二次型正定有关的充分条件和必要条件。

篇4:考研数学冲刺攻略之线性代数:融汇贯通

2014考研数学冲刺攻略之线性代数:融汇贯通

2014考研数学的数一、二、三中,线代部分占22%,虽然所占比例不及高数分值高,但这部分的成绩也会直接影响整体成绩,所以希望广大考生要足够重视。

2014考研数学包含三部分:高等数学、线性代数、概率论与数理统计(数二不要求)。在数一、二、三中,线代部分占22%,虽然所占比例不及高数分值高,但这部分的成绩也会直接影响整体成绩,所以希望广大考生要足够重视。

线性代数的考题与高等数学、概率部分考题最大的不同就是,线性代数的一道考题可能会涉及到行列式、矩阵、向量等等很多知识点,这是因为线性代数各个章节知识之间联系非常紧密,知识是环环相扣且互相融合的。

线性代数概念多、定理多、符号多、运算规律多、内容相互纵横交错,知识前后紧密联系。因此考研复习重点应该先充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法等等。基本概念、基本性质和基本方法一直是考研数学的重点。

所以,考生在复习中一定要重视基本概念、基本性质和基本方法的理解与掌握,多做一些基本题来巩固基础知识,并及时进行总结,使所学知识能融会贯通,举一反三。

结合考研数学新大纲线代部分以及历年真题来看,考研数学试卷总共有23道题,其中线代部分有5道题,即两个选择,一个填空,两个解答题。从近十年考研数学真题来看,选择题和填空题多数情况下都是针对单一知识点考查考生,如行列式、矩阵初等变换、向量组线性相关(无关)、方程组基础解系等,难度较低。而对两个解答题的考查,基本上都是多个知识点的综合,从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的'考核,比如线性方程组的求解和二次型与特征值特征向量结合等。因此,把基础烂熟于心之后,再利用做题进行综合思维的锻炼,通过做一些综合性较强的习题,比如万学海文的讲义和用书,结合老师在课上所讲的方法,边做边总结,以加深对概念、性质的理解和应用方法的掌握。不建议同学们搞题海战术,提倡精练。在这个阶段我们都是给学生讲解和联系近常考题型,针对训练,不求多但求精!还有一点就是,近三年的考研数学真题的价值很大,同学们不要太着急做,最好是放在冲刺阶段或考前十天来做,作为考前热身是个不错的选择。

选择正确的资料,用科学的方法,定能马到功成。

篇5:考研数学线性代数冲刺阶段学习建议

考研数学线性代数冲刺阶段学习建议

在一张考研数学试卷中,线性代数这一学科所占的分值为34分,通常由两道选择题、一道填空题(每道题4分)、两道解答题(每道题11分左右)组成,通过冲刺阶段的学习,我们的目标是至少可以拿到30分,

整个线性代数的课程可以分为六个章节:行列式、矩阵、线性方程组、特征值与特征向量、二次型。为了说明每个章节的学习重心,我们将近十年的考研数学试卷(包括数学一、数学二和数学三)做了一个统计,得到了每个章节的题量和分值分布。

(1)行列式。近十年的试卷中,直接考查行列式的有6道题,共24分。首先,从题量上看,直接考察行列式的题目出现的频率是比较低的,不是每年都考,但是,行列式与后续各个章节都有联系,所以,更多的是以间接方式考查。其次,从平均分上看,多以选择或填空题的形式考查。

(2)矩阵。近十年试卷中,考查矩阵的有19道题,共84分。从题量上看,矩阵这块是每年必考题,从平均分上看,也是多以选择或填空题的形式考查。行列式与矩阵对应教材上的前四个模块,这两部分的内容都是以小题为主,这类题目的特点是:计算量不大,重在理解思想方法,所以,在上课的时候,学生应该是以听课为主;但是,与行列式相比,矩阵这一块的考点更多一些。

(3)向量。近十年来,向量共考了17道题,占110分。从平均分上看,从向量开始出现解答题。而线性代数的解答题有两个特点,一个是比较综合,比如,向量这块的题目可能会综合了行列式、矩阵以及后面的线性方程组、秩的相关知识;另一个是计算量比较大。所以,在学这一部分的知识时,首先要把基础知识学好,另外,需要动手计算、多练习,

(4)线性方程组,共考了16道题,占135分。从平均分上看,这部分的题以解答题为主。而且,线性方程组是线性代数其半部分内容的理论核心,这部分的题目比较综合,而且计算量大。

(5)特征值与特征向量,考了22道题,占192分。这部分无论是题量还是分值,都是最多的,形式以解答题为主,计算量也是最大的。

(6)二次型,考了14道题,占88分。这部分考题也是以小题为主,但也会考解答题,特别是最近几年,二次型这块出解答题的可能性越来越大。

通过以上的分析,我们会发现,线性代数的核心就集中在线性方程组、特征值与特征向量这两个章节。总的来说,我们的线性代数要考高分,关键是解答题,而能出解答题的地方就集中在线性方程组、特征值与特征向量这两个章节,所以,这两个章节应该成为考生学习的重中之重。

线性代数本身也有很多的特点与难点,需要考生在学习过程中注意。第一,内容很综合。考研题目是很综合的`,所以,考生在学习过程中要学会打破章节限制,学的综合一些。比如,讲到行列式时,我们会总结出线性代数从第一章到最后一章,所有用到行列式的考点。第二,授课形式,以题带点。学会通过题目来结合知识点,以题目来辐射知识点,而且还要清楚怎么用知识点来解题,目的是训练考生的解题能力。在做题时,考生应该注意两点:第一,做什么?哪些题该做,哪些题不该做,我们会首先给大家讲清楚,当然我们的答案是基于对历年考研真题的深度解析基础之上的。作为我们的学员,就不用担心这个问题了,大家只需将我们的教材上的例题以及对应习题集上的题目掌握到位就足够了。第二,怎么做?考生在冲刺阶段的需要做的题量是非常大的,在有限的时间内,效率就显得非常重要。所以,我们会总结出每个模块的常考题型,并且系统总结出对应的基本思路和方法,考生课下再按照老师讲的思路和方法做题,训练即可。

篇6:考研数学 冲刺复习不忘预热线性代数

考研数学 冲刺复习不忘预热线性代数

距离考研初试的时间还有一个月,这30多天的复习对于我们薄弱科目的提高有着至关重要的作用,在各科的复习都处于紧张状态下我们对于数学的复习不应该只停留于整体,因线性代数的特殊性我们应该有针对性的进行复习规划,从而达到最后的冲刺复习效果。

线性代数的数学考研大纲和去年相比较基本没有变化。这是因为数学学科本身的严谨性和稳定性所导致。对于考研考试,线性代数每年考查的题型题量很固定,考查内容也很稳定,以考察计算题为主,相对来说,是同学们复习比较好拿分的科目。下面我们的数学老师就针对线性代数为大家做出复习规划和建议。

我们在之前的复习中一直处于一种冲刺的阶段,目的就是为了有更多的时间进行其他科目的复习,而当前我们应该以预热熟悉知识点,查漏补缺为主要复习手段,不丢掉之前复习的同样也吸收新的东西。在最后的冲刺复习这个阶段对复习的针对性要求更高,因此同学们最好在自己的弱势科目或掌握还不够牢固的知识点、题型上多下工夫,争取一举攻克难关。而相反地对自己向来持有优势的学科和知识点则不必过多投入时间,多花气力突击自己的弱项,这样就会在最短的时间内获得最显著的提高,增强应试信心。

我们要针对一个知识内容进行复习就要首先了解这个知识点的框架,我们平时复习时让大家进行笔记的整理和框架的总和,但是对于数学这样一个理学科科目来讲,总结框架对于考生来讲未免有些困难,以下为大家总结了线性代数各项目考查特点如下:线性代数一共六章的内容。

第一章行列式,它在整张试卷中所占比例不是很大,一般以填空题和选择题为主,但它是必考内容,即便没有单独考查的题目,也会在其它的`试题中给以考查,如求特征值就是计算相应的行列式。行列式的重点内容是掌握计算行列式的方法,同学们要掌握降阶法求行列式,以及其它的像爪型、三对角、范德蒙、行和或列和相等的行列式的求法。矩阵是后面各章节的基础。矩阵的概念、运算及理论贯穿线性代数的始末。这部分考点较多,像逆矩阵、伴随矩阵、转置矩阵、矩阵的幂、矩阵的行列式等概念的定义、性质、运算等等是每年考研的重点内容,同学们在复习的时候一定要注意归纳总结才可能掌握好。向量组的线性相关性是线性代数的重点也是考研的难点,大家复习的时候一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定方法并能灵活应用,还要弄清楚线性表出、向量组的秩及线性方程组等之间的联系,从各个侧面加强对线性相关性的理解。历年考题中,方程组是每年必考的题目,这也是线性代数部分考查的重点内容。要掌握齐次和非齐次线性方程组的解的判定定理,能够熟练求解线性方程组。这部分内容是重点考查解答题的章节。特征值和特征向量也是考研的重点内容之一,题多分值大,共有三部分内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相对而言,这部分计算量是比较大的,复习的时候一定要加强练习。由于二次型与它的实对称矩阵是一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,只要正确写出二次型所对应的实对称矩阵,就可以利用相似对角化的方法解决二次型的问题了。解线性方程组和矩阵相似对角化是每年两道大题最容易考查的地方。

线性代数的知识点相对来讲比较松散,而且试题的综合性非常强。很多考生在前期的复习中已经花费了很多的精力,相比应该知道了复习基础内容对于做题提高上的效果。但是在冲刺阶段认为已经复习的很好就可以高枕无忧就放弃了对于线性代数的复习是非常危险的,数学的学习要熟能生巧,如果有一段时间不用恐怕就需要再次从头开始了,所以在最后的冲刺阶段也提醒广大考生以基础为重,不放过简单的知识点;稳健的进行提高。

篇7:考研数学 线性代数高频考点

考研数学 线性代数高频考点

一、行列式

行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式。如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现。所以要熟练掌握行列式常用的计算方法。

1重点内容:行列式计算

(1)降阶法

这是计算行列式的主要方法,即用展开定理将行列式降阶。但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。

(2)特殊的行列式

有三角行列式、范德蒙行列式、行和或列和相等的行列式、三线型行列式、爪型行列式等等,必须熟练掌握相应的计算方法。

2常见题型

(1)数字型行列式的计算

(2)抽象行列式的计算

(3)含参数的行列式的计算。

二、矩阵

矩阵是线性代数的核心,是后续各章的基础。矩阵的概念、运算及理论贯穿线性代数的始终。这部分考点较多。涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。有些性质得证明必须能自己推导。这几年还经常出现有关初等变换与初等矩阵的命题。

1重点内容:

(1)矩阵的`运算

(2)伴随矩阵

(3)可逆矩阵

(4)初等变换和初等矩阵

(5)矩阵的秩

2常见题型:

(1)计算方阵的幂

(2)与伴随矩阵相关联的命题

(3)有关初等变换的命题

(4)有关逆矩阵的计算与证明

矩阵可逆有哪几种等价关系?如何判别?都必须熟练掌握。

(5)解矩阵方程。

三、向量

向量部分既是重点又是难点,由于n维向量的抽象性及在逻辑推理上的较高要求,导致考生在学习理解上的困难。考生至少要梳理清楚知识点之间的关系,最好能独立证明相关结论。

1重点内容:

(1)向量的线性表示

线性表示经常和方程组结合考察,特点,表面问一个向量可否由一组向量线性表示,其实本质需要转换成方程组的内容来解决,经常结合出大题。

(2)向量组的线性相关性

向量组的线性相关性是线性代数的重点,也是考研的重点。同学们一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解。

(3) 向量组等价

要注意向量组等价与矩阵等价的区别。

(4)向量组的极大线性无关组和向量组的秩

(5)向量空间

2常见题型:

(1)判定向量组的线性相关性

(2)向量组线性相关性的证明

(3)判定一个向量能否由一向量组线性表出

(4)向量组的秩和极大无关组的求法

(5)有关秩的证明

(6)有关矩阵与向量组等价的命题

(7)与向量空间有关的命题。

四、线性方程组

往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。但也不会简单到仅考方程组的计算,还需灵活运用,比如的线性代数第一道解答题,粗看不是解方程组,如果你光会熟练计算方程组而不知如何把问题归结为解线性方程组,那么你会有英雄无用武之地的感叹,就像一个人苦练屠龙本领,结果却发现无龙可屠。

1重点内容

(1)齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构

(2)齐次线性方程组基础解系的求解与证明

(3)齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。

2常见题型

(1)线性方程组的求解

(2)方程组解向量的判别及解的性质

(3)齐次线性方程组的基础解系

(4)非齐次线性方程组的通解结构

(5)两个方程组的公共解、同解问题。

五、特征值与特征向量

特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大。

1重点内容

(1)特征值和特征向量的概念及计算

(2)方阵的相似对角化

(3)实对称矩阵的正交相似对角化。

2常见题型

(1)数值矩阵的特征值和特征向量的求法

(2)抽象矩阵特征值和特征向量的求法

(3)判定矩阵的相似对角化

(4)由特征值或特征向量反求A

(5)有关实对称矩阵的问题。

六、二次型

由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。

1重点内容:

(1)掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;

(2)了解二次型的规范形和惯性定理;

(3)掌握用正交变换并会用配方法化二次型为标准形;

(4)理解正定二次型和正定矩阵的概念及其判别方法。

2常见题型

(1)二次型表成矩阵形式

(2)化二次型为标准形

(3)二次型正定性的判别。

考研教育网最后提醒大家,做题的时候一定要总结,复习到现在这个阶段了,一定要注意从各个方面来总结。比如说像线性方程组这一章,你应该总结一下,像这一块真题应该怎么考,都有什么花样,有哪些思想和技巧在里边,把这些东西归纳好了,在以后做题的时候应该怎么做就会很清楚了,考试的时候碰到这种题也就手到擒来,轻松搞定!

篇8:考研数学:线性代数怎么复习

2014考研数学:线性代数怎么复习

2014年数学考试大纲和去年相比,线性代数基本没有变化。这是数学学科本身的严谨性和稳定性的体现,对于考研的同学们来说也是一个好消息。线性代数每年考查的题型题量很固定,考查内容也很稳定,以考察计算题为主,相对来说,是同学们复习比较好拿分的科目。下面就线性代数的考查特点给大家做一个分析。

线性代数一共六章的内容。其中第一章行列式,它在整张试卷中所占比例不是很大,一般以填空题和选择题为主,但它是必考内容,即便没有单独考查的题目,也会在其它的试题中给以考查,如求特征值就是计算相应的行列式。行列式的重点内容是掌握计算行列式的方法,同学们要掌握降阶法求行列式,以及其它的像爪型、三对角、范德蒙、行和或列和相等的'行列式的求法。矩阵是后面各章节的基础。矩阵的概念、运算及理论贯穿线性代数的始末。这部分考点较多,像逆矩阵、伴随矩阵、转置矩阵、矩阵的幂、矩阵的行列式等概念的定义、性质、运算等等是每年考研的重点内容,同学们在复习的时候一定要注意归纳总结才可能掌握好。向量组的线性相关性是线性代数的重点也是考研的难点,大家复习的时候一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定方法并能灵活应用,还要弄清楚线性表出、向量组的秩及线性方程组等之间的联系,从各个侧面加强对线性相关性的理解。历年考题中,方程组是每年必考的题目,这也是线性代数部分考查的重点内容。要掌握齐次和非齐次线性方程组的解的判定定理,能够熟练求解线性方程组。这部分内容是重点考查解答题的章节。特征值和特征向量也是考研的重点内容之一,题多分值大,共有三部分内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相对而言,这部分计算量是比较大的,复习的时候一定要加强练习。由于二次型与它的实对称矩阵是一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,只要正确写出二次型所对应的实对称矩阵,就可以利用相似对角化的方法解决二次型的问题了。解线性方程组和矩阵相似对角化是每年两道大题最容易考查的地方。

线性代数的知识点比较多而且比较松散,而考研数学试题的综合性非常强,所以大家在复习的时候一定要注意总结常用的结论、性质,例如伴随矩阵的秩、矩阵相乘的秩等等,抓住重点,解决难点,只要我们把握住了命题规律,就一定能取得线代的高分,并最终取得考研数学的胜利。

考研冲刺阶段线性代数备考建议

考研数学线性代数复习建议

考研数学线性代数四个核心考点

考研英语冲刺 写作重点句型

考研数学概率冲刺复习各章节重点解析

考研数学线性代数复习的关键点

考研冲刺 最后25天数学复习

考研政治冲刺重点:马原第三章第一节

考研政治冲刺期复习抓住三重点

考研备考指导 线性代数复习建议

《考研数学线性代数冲刺4大重点(通用8篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档