下面是小编为大家整理的常用函数极限的求法,本文共10篇,供大家参考借鉴,希望可以帮助您。

篇1:常用函数极限的求法
常用函数极限的求法
极限被称为高等数学基本运算,其方法多变,技巧性强,为此对一元函数极限的'常见求解方法进行了归纳总结,以便我们了解函数的各种极限以及对各类函数极限进行计算,帮助初学者深刻地理解极限的概念并熟练掌握.
作 者:马艳慧 作者单位:长春医学高等专科学校,长春,130031 刊 名:中国科教创新导刊 英文刊名:CHINA EDUCATION INNOVATION HERALD 年,卷(期): “”(35) 分类号:G64 关键词:函数 极限 求法篇2:高等数学极限求法总结
高等数学极限求法总结
函数极限的求法
函数极限可以分成而运用ε-δ定义更多的见诸于已知的极极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。 限为例,f(x) 在点以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数,使得当x
满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当 x→x。时的极限。
1.利用极限的四则运算法则 :
极限四则运算法则的条件是充分而非必要的 ,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件 ,满足条件者。方能利用极限四则运算法则进行求之。不满足条件者 ,不能直接利用极限四则运算法则求之。但是,井非不满足极限四则运算法则条件的函数就没有极限 ,而是需将函数进行恒等变形 ,使其符合条件后 ,再利用极限四则运算法则求之。而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。 例 1
求 lim( x 2 3x + 5).
x→ 2
解: lim( x 2 3x + 5) = lim x 2 lim 3x + lim 5
= (lim x) 2 3 lim x + lim 5
= 2 2 3 2 + 5 = 3.
x→2 x →2 x →2 x →2 x →2 x →2 x →2
2.利用洛必达法则
洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。一般用在求导后为零比零或无穷比无穷的类型。
利用洛必达求极限应注意以下几点:
设函数f(x)和F(x)满足下列条件:
(1)x→a时,lim f(x)=0,lim F(x)=0;
(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;
(3)x→a时,lim(f'(x)/F'(x))存在或为无穷大
则 x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x))
例1:
1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2
xsinx = 2xsin(x/2)cos(x/2)
原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x
对分子分母同时求导(洛必达法则)
(tgx)' = 1 / (cosx)^2
(x)' = 1
原式 = lim 1/(cosx)^2
当 x -->0 时,cosx --->1
原式 = 1
3.利用两个重要极限:
应用第一重要极限时 ,必须同时满足两个条件:
① 分子、分母为无穷小 ,即极限为 0 ;
② 分子上取正弦 的角必须与分母一样。
应用第二重要极限时 ,必须同时满足四个条件:
①带有“1”;
② 中间是“+ ”号 ;
③“+ ”号后面跟无穷小量 ;
④指数和“+ ”号后面的数要互为倒数。
例1:
求lim(arcsinx/x),x趋于0
解A.令x=sint,则当t 趋于0时,x趋于0,且arcsinx=t
所以 B.lim(arcsinx/x),x趋于0.=lim(t/sint),t趋于0=1
4.利用等价无穷小代换定理
利用此定理求函数的极限时 ,一般只在以乘除形式出现时使用。若以和或差形式出现时,不要轻易代换 ,因为经此代换后 ,往往会改变无穷小之比的阶数。要用好等价无穷小代换定理 ,必须熟记一些常 用的等价无穷小 。
例1
lim√(1-cosx)/tanx
=lim-√2sin(x/2)/tanx
=lim-√2/2x/x
=-√2/2
lim√(1-cosx)/tanx
=lim√2sin(x/2)/tanx
=lim√2/2x/x
=√2/2
因为lim√(1-cosx)/tanx≠lim=√(1-cosx)/tanx
所以极限不存在
5.柯西收敛准则
数列{Xn}收敛的充分必要条件是对于任意给定的正数ε存在着这样的正整数N使得当m>N,n>N时就有|Xn-Xm|<ε这个准则的几何意义表示,数列{Xn}收敛的充分必要条件是:该数列中足够靠后的.任意两项都无限接近。
例1
证明:xn=1-1/2+1/3-1/4+......+ [(-1)^(n+1)]/n 有极限
证:
对于任意的m,n属于正整数,m>n
|xn-xm|=| [(-1)^(n+2)]/(n+1)+......+[(-1)^(m+1)]/m |
当m-n为奇数时 |xn-xm|=| [(-1)^(n+2)]/(n+1)+......+[(-1)^(m+1)]/m |
<1/n(n+1)+1/(n+1)(n+2)+......+1/(m-1)m
=(1/n-1/m)→0
由柯西收敛原理得{xn}收敛
当m-n为偶数时 |xn-xm|=| [(-1)^(n+2)]/(n+1)+......+[(-1)^(m+1)]/m |
<1/n(n+1)+1/(n+1)(n+2)+......+1/(m-2)(m-1)-1/m
=(1/n-1/(m-1)-1/m)→0
由柯西收敛原理得{xn}收敛
综上{xn}收敛,即{xn}存在极限
6.利用函数连续性:
(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)
描述函数的一种连绵不断变化的状态,即自变量的微小变动只会引起函数值的微小变动的情况。确切说来,函数在某点连续是指:当自变量趋于该点时,函数值的极限与函数在该点所取的值一致。
例1
设 f(x)=xsin 1/x + a,x<0,b+1,x=0,x^2-1,x<0,试求:
当a,b为何值时,f(x)在x=0处的极限存在?
当a,b为何值时,f(x)在x=0处连续?
注:f(x)=xsin 1/x +a, x< 0
b+1, x=0
X^2-1, x>0
解:f(0)=b+1
左极限:lim(x→0-) f(x)=lim(x→0-) (xsin(1/x)+a)=0+a=a
左极限:lim(x→0+) f(x)=lim(x→0+) (x^2-1)=0-1=-1
f(x)在x=0处连续,则lim(x→0-) f(x)=lim(x→0+) f(x)=f(0),
所以a=-1=b+1,
所以a=-1,b=-2
7.利用等价无穷小量代换求极限
tanxsinx例 8 求极限lim. x0sinx3
解 由于tanxsinxsinx1cosx,而 cosx
x2
sinx~xx0,1cosx~x0,sinx3~x3x02
故有
x2
xtanxsinx11. limlimx0x0cosxsinx3x32
注 在利用等价无穷小量代换求极限时,应注意只有对所求极限式中相乘或相除的因式才能用等价无穷小量替代,而对极限式中的相加或相减部分则不能随意替代,如在例题中,若因有tanx~xx0,sinx~xx0,而推出
limtanxsinxxxlim0, x0x0sinx3sinx3
则得到的式错误的结果.
附 常见等价无穷小量
x2
sinx~xx0,tanx~xx0,1cosx~x0, 2
arcsinx~xx0,arctanx~xx0,ex1~xx0,
ln1x~xx0,1x1~xx0.
8 利用洛比达法则求极限
0洛比达法则一般被用来求型不定式极限及型不定式极限.用此种方法求极限要求在0
点x0的空心领域U
例1
求极限lim0x0内两者都可导,且作分母的函数的导数不为零. 1cosx. xtan2x
xx解 由于lim1cosxlimtan2x0,且有
1cosx'sinx,tan2x'2tanxsec2x0,
由洛比达法则可得
lim1cosx xtan2x
xlisinx 22tanxsexc
cos3xlimx21. 2
9.利用定义求极限
1.f'xlimxx0fxfx0, xx0
fx0hfx0. h2.f'x0limh0
其中h是无穷小,可以是xxxx0,x的函数或其他表达式.
例1
求极限x0p0,q0.
0 分析 此题是x0时型未定式,在没有学习导数概念之前,常用的方法是消去分母0
中的零因子,针对本题的特征,对分母分子同时进行有理化便可求解.但在学习了导数的定义式之后,我们也可直接运用导数的定义式来求解.
解 令f
xg
x 则
x0fxf0
lim x0gxg0x0
f'0g'0p. q
10. 利用归结原则求极限
归结原则设f在U0x0;'内有定义,limfx存在的充要条件是:对任何含于xx0
U0x0;'且以x0为极限的数列xn,极限limfxn都存在且相等. n
例1 11求极限lim12. nnn
x1分析 利用复合函数求极限,令ux12x
x1解 令ux12x
nnnx2x1,vxx1求解. xx2x1,vxx1则有 xlimuxe;limvx1,
由幂指函数求极限公式得
vx11lim12limuxe, xxxxx
篇3:复合函数定义域求法
复合函数定义域
若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B}综合考虑各部分的x的取值范围,取他们的交集。
求函数的定义域主要应考虑以下几点:
⑴当为整式或奇次根式时,R的值域;
⑵当为偶次根式时,被开方数不小于0(即≥0);
⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;
⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。
⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
⑹分段函数的定义域是各段上自变量的取值集合的并集。
⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求
⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。
⑼对数函数的真数必须大于零,底数大于零且不等于1。
⑽三角函数中的切割函数要注意对角变量的限制。
复合函数常见题型
(ⅰ)已知f(x)定义域为A,求f[g(x)]的定义域:实质是已知g(x)的范围为A,以此求出x的范围。
(ⅱ)已知f[g(x)]定义域为B,求f(x)的'定义域:实质是已知x的范围为B,以此求出g(x)的范围。
(ⅲ)已知f[g(x)]定义域为C,求f[h(x)]的定义域:实质是已知x的范围为C,以此先求出g(x)的范围(即f(x)的定义域);然后将其作为h(x)的范围,以此再求出x的范围。
篇4:复合函数定义域求法
若函数=的定义域是B,=()的定义域是A,则复合函数=[()]的定义域是
D={|∈A,且()∈B}综合考虑各部分的x的取值范围,取他们的交集。
求函数的定义域主要应考虑以下几点:
⑴当为整式或奇次根式时,R;
⑵当为偶次根式时,被开方数不小于0(即≥0);
⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;
⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。
⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
⑹分段函数的定义域是各段上自变量的取值集合的并集。
⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求
⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。
⑼对数函数的真数必须大于零,底数大于零且不等于1。
⑽三角函数中的切割函数要注意对角变量的限制。
篇5:复合函数定义域求法
一、复合函数的定义:设y是u的函数,即y=f(u),u是x的函数,即u=g(x),且g(x)的值域与f(u)的定义域的交集非空,那么y通过u的联系成为x的函数,这个函数称为由y=f(u),u=g(x)复合而成的复合函数记作y=f[g(x)],其中u称为中间变量。
二、对高中复合函数的通解法——综合分析法
1、解复合函数题的关键之一是写出复合过程
例1:指出下列函数的复合过程。
(1)y=√2-x2 (2)y=sin3x (3)y=sin3x
解:(1) y=√2-x2是由y=√u,u=2-x2复合而成的。
(2)y=sin3x是由y=sinu,u=3x复合而成的。
(3)∵y=sin3x=(sinx)-3
∴y=sin3x是由y=u-3,u=sinx复合而成的。
2、解复合函数题的关键之二是正确理解复合函数的定义。
看下例题:例2:已知f(x+3)的定义域为[1、2],求f(2x-5) 的定义域。
经典误解1:解:f(x+3)是由y=f(u),u=g(x)=x+3复合而成的。
F(2x-5)是由y=f(u2),u2=g(x)=2x-5复合而成的。
由g(x),G(x)得:u2=2x-11 即:y=f(u2),u2=2x-11
∵f(u1)的定义域为[1、2]
∴1≤x﹤2
∴-9≤2x-11﹤-6
即:y=f(u2)的定义域为[-9、-6]
∴f(2x-5)的定义域为[-9、-6]
经典误解2:解:∵f(x+3)的定义域为[1、2]
∴1≤x+3﹤2
∴-2≤x﹤-1
∴-4≤2x﹤-2
∴-9≤2x-5﹤-7
∴f(2x-5)的定义域为[-9、-7]
注:通过以上两例误解可得,解高中复合函数题会出错主要原因是对复合函数的概念的理解模棱两可,从定义域中找出“y”通过u的联系成为x的函数,这个函数称为由y=f(u),u=g(x)复合而成的复合函数,记作y=f[g(x)],其中u称为“中间变量”。从以上误解中找出解题者易将f(x+3)的定义域理解成(x+3)的取值范围,从而导致错误。而从定义中可以看出u仅仅是中间变量,即u既不是自变量也不是因变量。复合函数的定义域是指y=f(u),u=g(x)中u=g(x)中的x的取值范围,即:f(x+3)是由f(u),u=x+3复合而成的复合函数,其定义域是x的取值范围。
正确解法:解:f(x+3)是由y=f(u1),u1=x1+3(1≤x﹤2)复合而成的。
f(2x-5)是由y=f(u2),u2=2x2-5复合而成的
∵1≤x1﹤2
∴4≤u1﹤5
∴4≤u2﹤5
∴4≤2x2-5﹤5
∴2≤x2﹤5
∴f(2x-5)的定义域为[2、5]
结论:解高中复合函数题要注意复合函数的分层,即u为第一层,x为第二层,一、二两层是不可以直接建立关系的,在解题时,一定是同层考虑,不可异层考虑,若异层考虑则会出现经典误解1与2的情况。
篇6:复合函数定义域求法
一、求高中复合函数定义域的题型
题型一:单对单,如:已知f(x)的定义域为[-1,4],求f(x+2)的定义域。
题型二:多对多,如:已知f(x+3)的定义域为[1、2],求f(2x-5)的定义域。
题型三:单对多,如:已知f(x)的定义域为[0、1],求f(2x-1)的定义域。
题型四:多对单,如:已知f(2x-1)的定义域为[0、1],求f(x)的定义域。
注:通解法——综合分析法的关键两步:
第一步:写出复合函数的复合过程。
第二步:找出复合函数定义域所真正指代的字母(最为关键)
下面用综合分析法解四个题型
题型一:单对单:
例3:已知f(x)的定义域为[-1、4],求f(x2)的定义域。
第1步:写出复合函数的复合过程:
f(x2)是由y=f(u),u=x22复合而成的。
(由于要同层考虑,且u与x的取值范围相同,故可这样变形)
f(x)是由y=f(u),u=x1复合而成的。
∴f(x)的定义域为[-1、4]
第2步:找出复合函数定义域的真正对应
∴-1≤x1﹤4
即-1≤u﹤4
又∵u=x22
∴-1≤x22﹤4
(x2是所求f(x2)的定义域,此点由定义可找出)
∴-2﹤x2﹤2
∴f(x2)的定义域为(-2,2)
结论:此题中的自变量x1,x2通过u联系起来,故可求解。
题型二:多对多:
如例6:已知f(x+3)的定义域为[1、2],求f(2x-5)的定义域。
解析:多对多的求解是比较复杂的,但由解题型三与题型四的结论:
已知 f(x)的定义域,可求出y=f[g(x)]的定义域”
已知y=f[g(x)]的定义域,可求出f(x)的定义域
可以推出f(x)与y=f[g(x)]可以互求。
若y1=f(x+3),y2=f(2x-5),
同理,已知y1=f(x+3)的定义域,
故,
这里f(x)成为了联系y1=f(x+3),y2=f(2x-5)的一个桥梁,
其作用与以上解题中u所充当的作用相同。
所以,在多对多的题型中,可先利用开始给出的复合函数的定义域先求出f(x),再以f(x)为跳板求出所需求的复合函数的定义域,具体步骤如下:
第一步:写出复合函数的复合过程:
f(x+3)是由y=f(u)u=x+3复合而成的。
f(2x-5)是由y2=f(u)u=2x-5复合而成的。
∴4≤x+3≤5
∴4≤u≤5
设:函数y3=(u),u=x
∴y3=f(x)的定义域为[4、5]
第三步:通过桥梁f(x)进而求出y2=f(2x-5):
f(x) 是由y3=f(u),u=x复合而成的
∵4≤x≤5
∴4≤u≤5
∴4≤2x-5≤5
∴ ≤x2≤5
∴f(2x-5)的定义域为:[5]
小结:实际上,此题也可以u为桥梁求出f(2x-5), 详参照例2的解法。
题型三:单对多:
例4:已知f(x)的定义域为[0,1],求f(2x-1)的定义域。
第1步:写出复合函数的复合过程:
f(x)是由y=f(u),u=x1复合而成的。
f(2x-1)是由y=f(u),u=2x2-1复合而成.
第2步:找出复合函数定义域的真正对应:
∵0≤x1≤1
∴0≤u≤1
∴0≤2x2-1≤1
∴x2≤1
∴f(2x-1)的定义域为[,1]
结论:由此题的解答过程可以推出:已知f(x)的定义域可求出y=[g(x)]的定义域。
题型四:多对单:
如:例5:已知f(2x-1)的定义域为[0、1],求f(x)的定义域。
第1步:写出复合函数的复合过程:
f(2x-1)是由f(u),u=2x1-1复合而成的。
f(x)是由f(u),u=x2复合而成的。
第2步:找出复合函数定义域对应的真正值:
∵0≤x1≤1
∴0≤2x1≤2
∴-1≤2x1-1≤1
∴-1≤u≤1
∴-1≤x2≤1
∴f(x)的定义域为[-1、1]
结论:由此题的解答过程可以推出:已知y=f[g(x)]的定义域可求出f(x)的定义域。
小结:通过观察题型一、题型三、题型四的解法可以看出,解题的关键在于通过u这个桥梁将x1与x2联系起来解题。
二、将以上解答过程有机转化为高中的标准解答模式。
如:例7:已知函数y=f(x)的定义域为[0、1],求函数y=f(x2+1)的定义域。
解:∵函数f(x2+1)中的x2+1相当于f(x)中的x(即u=x2+1,与u=x)
∴0≤x2+1≤1
∴-1≤x2≤0
∴x=0
∴定义域为{0}
小结:本题解答的实质是以u为桥梁求解。
例8:已知y=f(2x-1)的定义域为[0、1],求函数y=f(x)的定义域。
解:由题意:0≤x≤1(即略去第二步,先找出定义域的真正对象)。
∴-1≤2x-1≤1(即求出u,以u为桥梁求出f(x)
视2x-1为一个整体(即u与u的交换)
则2x-1相关于f(x)中的x(即u与u的交换,
f(x)由y=f(u),u=x复合而成,-1≤u≤1,
∴-1≤x≤1)
篇7:复合函数定义域求法
总结:综合分析法分了3个步骤
写出复合函数的复合过程。 找出复合函数定义域所指的代数。 找出解题中的桥梁(u或f(x)可为桥梁)
篇8:函数极限证明
函数极限证明
函数极限证明记g(x)=lim[f1(x)^n+...+fm(x)^n]^(1/n),n趋于正无穷;
下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。
不妨设f1(x)趋于a;作b>a>=0,M>1;
那么存在N1,当x>N1,有a/M<=f1(x) 注意到f2的极限小于等于a,那么存在N2,当x>N2时,0<=f2(x) 同理,存在Ni,当x>Ni时,0<=fi(x) 取N=max{N1,N2...Nm};
那么当x>N,有
(a/M)^n<=f1(x)^n<=f1(x)^n+...fm(x)^n 所以a/M<=[f1(x)^n+...+fm(x)^n]^(1/n)
篇9:和式极限的几种求法
和式极限的几种求法
和式极限是分析学的基础和重要工具--极限的一类,也是高等教学教学中的一个难点.如何正确地分析和探求和式极限,提高论证问题解决问题的`能力是教学过程中的关键所在.本文系统阐述了和式极限的几种经典的论证和探求的方法,以典型例题为主体介绍这些求法的具体应用.
作 者:臧雨亭 李艳军 作者单位:安阳工学院 刊 名:科技信息 英文刊名:SCIENCE & TECHNOLOGY INFORMATION 年,卷(期): “”(12) 分类号:G64 关键词:和式极限 夹逼准则 定积分 无穷级数篇10:函数极限的证明
函数极限的证明
函数极限的证明(一)时函数的极限:
以 时 和 为例引入.
介绍符号: 的意义, 的直观意义.
定义 ( 和 . )
几何意义介绍邻域 其中 为充分大的正数.然后用这些邻域语言介绍几何意义.
例1验证 例2验证 例3验证 证 ……
(二)时函数的极限:
由 考虑 时的极限引入.
定义函数极限的“ ”定义.
几何意义.
用定义验证函数极限的基本思路.
例4 验证 例5 验证 例6验证 证 由 =
为使 需有 为使 需有 于是, 倘限制 , 就有
例7验证 例8验证 ( 类似有 (三)单侧极限:
1.定义:单侧极限的定义及记法.
几何意义: 介绍半邻域 然后介绍 等的几何意义.
例9验证 证 考虑使 的 2.单侧极限与双侧极限的关系:
Th类似有: 例10证明: 极限 不存在.
例11设函数 在点 的某邻域内单调. 若 存在, 则有
= §2 函数极限的性质(3学时)
教学目的:使学生掌握函数极限的基本性质。
教学要求:掌握函数极限的`基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。
教学重点:函数极限的性质及其计算。
教学难点:函数极限性质证明及其应用。
教学方法:讲练结合。
一、组织教学:
我们引进了六种极限: , .以下以极限 为例讨论性质. 均给出证明或简证.
二、讲授新课:
(一)函数极限的性质:以下性质均以定理形式给出.
1.唯一性:
2.局部有界性:
3.局部保号性:
4.单调性( 不等式性质 ):
Th 4若 和 都存在, 且存在点 的空心邻域,使 , 都有 证 设 = ( 现证对 有 )
]:若在Th 4的条件中, 改“ ”为“ ”, 未必就有 以 举例说明.
5.迫敛性:
6.四则运算性质:( 只证“+”和“ ”)
(二)利用极限性质求极限: 已证明过以下几个极限:
(注意前四个极限中极限就是函数值 )
这些极限可作为公式用. 在计算一些简单极限时, 有五组基本极限作为公式用,我们将陆续证明这些公式.
利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.
例1( 利用极限 和 )
例2例3]:关于 的有理分式当 时的极限.
例4 [ 利用公式 ]
例5例6例7
★函数课件
文档为doc格式