欢迎来到千学网!
您现在的位置:首页 > 实用文 > 证明

证明二重极限不存在

时间:2023-08-12 08:27:47 证明 收藏本文 下载本文

下面是小编为大家推荐的证明二重极限不存在,本文共8篇,欢迎大家分享。

证明二重极限不存在

篇1:证明二重极限不存在

证明二重极限不存在

证明二重极限不存在

如何判断二重极限(即二元函数极限)不存在,是二元函数这一节的难点,在这里笔者对这一问题不打算做详细的讨论,只是略谈一下在判断二重极限不存在时,一个值得注意的问题。由二重极限的定义知,要讨论limx→x0y→y0f(x,y)不存在,通常的方法是:找几条通过(或趋于)定点(x0,y0)的特殊曲线,如果动点(x,y)沿这些曲线趋于(x0,y0)时,f(x,y)趋于不同的值,则可判定二重极限limx→x0y→y0f(x,y)不存在,这一方法一般人都能掌握,但是在找一些特殊曲线时,是有一定技巧的,不过不管找哪条曲线,这条曲线一定要经过(x0,y0),并且定点是这条曲线的非孤立点,这一点很容易疏忽大意,特别是为图方便,对于型如limx→x0y→y0f(x,y)g(x,y)的极限,在判断其不存在时,不少人找的曲线是f(x,y)-g(x,y)=0,这样做就很容易出错。例如,容易知道limx→0y→0x+yx2+y2=0,但是若沿曲线x2y-(x2+y2)=0→(0,0)时,所得的结论就不同(这时f(x,y)→1)。为什么会出现这种情况呢?仔细分析一下就不难得到答案

2

若用沿曲线,( ,y)一g( ,y)=0趋近于( ,y0)来讨论,一0g ,Y 。。可能会出现错误,只有证明了( ,)不是孤立点后才不会出错。[关键词】二重极限;存在性;孤立点[中图分类号]o13 [文献标识码]A [文章编号]1673-38780l__0l02__02 如何判断二重极限(即二元函数极限)不存在。是二元函数这一节的难点,在这里笔者对这一问题不打算做详细的讨论。只是略谈一下在判断二重极限不存在时。一个值得注意的问题。由二重极限的定义知,要讨论limf(x,y)不存在,通常x―’10 y―’y0 的方法是:找几条通过(或趋于)定点(xo,Yo)的特殊曲线,如果动点(x,Y)沿这些曲线趋于(xo,Y。)时,f(x,Y)趋于不同的.值,则可判定二重极限limf(x,Y)不存在,这一方I―’10 r’Y0 法一般人都能掌握,但是在找一些特殊曲线时,是有一定技巧的,不过不管找哪条曲线,这条曲线一定要经过(xo,Y。),并且定点是这条曲线的非孤立点,这一点很容易疏忽大意,特别是为图方便,对于型如2 的极限,在判卜’Io g x,Y y―・y0 断其不存在时,不少人找的曲线是f(x,y)一g(x,y):0,这样做就很容易出错。

3

当沿曲线y=-x+x^2趋于(0 0)时,极限为 lim (-x^2+x^3)/x^2=-1;

当沿直线y=x趋于(0 0)时,极限为 lim x^2/2x=0。故极限不存在。

4

x-y+x^2+y^2

f(x,y)=――――――――

x+y

它的累次极限存在:

x-y+x^2+y^2

l i m l i m ―――――――― =-1

y->0x->0 x+y

x-y+x^2+y^2

l i m l i m ―――――――― =1

x->0y->0 x+y

当沿斜率不同的直线y=mx,(x,y)->(0,0)时,易证极限不同,所以它的二重极限不存在。

篇2:证明极限不存在

证明极限不存在

二元函数的极限是高等数学中一个很重要的内容,因为其定义与一元函数极限的定义有所不同,需要定义域上的点趋于定点时必须以任意方式趋近,所以与之对应的证明极限不存在的方法有几种.其中有一种是找一种含参数的方式趋近,代入二元函数,使之变为一元函数求极限.若最后的极限值与参数有关,则说明二重极限不存在.但在证明这类型的.题目时,除了选y=kx这种趋近方式外,许多学生不知该如何选择趋近方式.本文给出证明一类常见的有理分式函数极限不存在的一种简单方法.例1[1]证明下列极限不存在:(1)lim(x,y)→(0,0)x4y2x6+y6;(2)lim(x,y)→(0,0)x2y2x2y2+(x-y)2.证明一般地,对于(1)选择当(x,y)沿直线y=kxy=kx趋近于(0,0)时,有lim(x,y)→(0,0)x4y2x6+y6=limx→0k2x6(1+k6)x6=k21+k6.显然它随着k值的不同而改变,故原极限不存在.对于(2)若仍然选择以上的趋近方式,则不能得到证明.实际上,若选择(x,y)沿抛物线y=kx2+x(k≠0)(x,y)→(0,0)趋近于(0,0),则有l..

2

是因为定义域D={(x,y)|x不等于y}吗,从哪儿入手呢,请高手指点

沿着两条直线 y=2x

y=-2x 趋于(0,0)时

极限分别为 -3 和 -1/3 不相等

极限存在的定义要求 延任何过(0,0)直线求极限时 极限都相等

篇3:证明极限不存在

lim(x^2-5y^2) / (x^2+3y^2)

=lim(x^2+3y^2) / (x^2+3y^2) - 8y^2 / (x^2+3y^2)

=1-lim8 / [(x/y)^2+3]

因为不知道x、y的大校

所以lim (x 和y)趋向于无穷大 (x^2-5y^2) / (x^2+3y^2)

篇4:证明极限不存在

4

如图用定义证明极限不存在~谢谢!!

反证法

若存在实数L,使limsin(1/x)=L,

取ε=1/2,

在x=0点的任意小的邻域X内,总存在整数n,

①记x1(n)=1/(2nπ+π/2)∈X,有sin[1/x1(n)]=1,

②记x2(n)=1/(2nπ-π/2)∈X,有sin[1/x2(n)]=-1,

使|sin[1/x1(n)]-L|<1/3,

和|sin[1/x2(n)]-L|<1/3,

同时成立。

即|1-L|<1/2,|-1-L|<1/2,同时成立。

这与|1-L|+|-1-L|≥|(1-L)-(-1-L)|=2发生矛盾。

所以,使limsin(1/x)=L 成立的实数L不存在。

篇5:如何证明极限不存在

如何证明极限不存在

如何证明极限不存在

反证法

若存在实数L,使limsin(1/x)=L,

取ε=1/2,

在x=0点的任意小的邻域X内,总存在整数n,

①记x1(n)=1/(2nπ+π/2)∈X,有sin[1/x1(n)]=1,

②记x2(n)=1/(2nπ-π/2)∈X,有sin[1/x2(n)]=-1,

使|sin[1/x1(n)]-L|<1/3,

和|sin[1/x2(n)]-L|<1/3,

同时成立。

即|1-L|<1/2,|-1-L|<1/2,同时成立。

这与|1-L|+|-1-L|≥|(1-L)-(-1-L)|=2发生矛盾。

所以,使limsin(1/x)=L 成立的实数L不存在。

反证法:

一个数列{an}极限存在,另一个数列{bn}极限不存在

假设两数列之和{cn}的极限存在,那么bn=cn-an极限也存在(两个数列和的极限等于两个数列极限的和)

矛盾

所以原命题成立

令y=x, lim(x,y)趋于(0,0)xy/x+y

=lim(x趋于0)x^2/(2x)=0

令y=x^2-x,lim(x,y)趋于(0,0)xy/x+y

= lim(x趋于0) x^3-x^2/ x^2 =-1

两种情况极限值不同,故原极限不存在

2答案: 首先需要二项式定理:

(a+b)^n=∑ C(i=0 C i=n)n i a^(n-i) * b^i (式一)

用数学归纳法证此定理:

n=1 (a+b)^1 a^(1-0)*b^0+a^(1-1)*b^1

a+b

故此,n=1时,式一成立。

设n1为任一自然数,假设n=n1时,(式一)成立 ,即:

(a+b)^n1=∑ C(i=0 C i=n1)n1 i a^(n1-i) * b^i (式二)

则,当n=n1+1时:

式二两端同乘(a+b)

[(a+b)^n1]*(a+b)=[∑ C(i=0 C i=n1)n1 i a^(n1-i) * b^i]*(a+b)

= (a+b)^(n1+1)= ∑ C(i=0 C i=(n1+1))(n1+1) i a^((n1+1)-i) * b^i ( 据乘法分配律)

因此二项式定理(即式一成立)

下面用二项式定理计算这一极限:

(1+1/n)^n (式一)

用二项式展开得:

(1+1/n)^n = 1^n+(n/1)(1/n)+[(n(n-1))/(2*1)]*(1/n)^2+[(n(n-1)(n-2))/(3*2*1)]*(1/n)^3 + … +[(n(n-1)(n-2) …3)/((n-2)(n-1) … 2*1)]*(1/n)^(n-2)+ [(n(n-1)(n-2) …3*2)/((n-1)(n-2)(n-1) … 2*1)]*(1/n)^(n-1)+ [(n(n-1)(n-2) …3*2*1)/(n(n-1)(n-2)(n-1) … 2*1)]*(1/n)^n

由于二项展开式系数项的分子乘积的最高次项与(1/n)的次数相同,而系数为1,因此,最高次项与(1/n)的相应次方刚好相约,得1,低次项与1/n的相应次方相约后,分子剩下常数,而分母总余下n的`若干次方,当n - +∞,得0。因此总的结果是当n - +∞,二项展开式系数项的各项分子乘积与(1/n)的相应项的次方相约,得1。余下分母。于是式一化为:

(1+1/n)^n =1+1+1/2!+1/3!+1/4!+1/5!+1/6!+ … + 1/n! (式二)

当n - +∞时,你可以用计算机,或笔计算此值。这一数值定义为e。

篇6:定义证明二重极限

定义证明二重极限

定义证明二重极限

就是说当点(x,y)落在以(x0,y0)点附近的一个小圈圈内的时候,f(x,y)与A的差的绝对值会灰常灰常的接近。那么就说f(x,y)在(x0,y0)点的极限为A

关于二重极限的定义,各类数学教材中有各种不同的表述,归纳起来主要有以下三种:定义1设函数在点的某一邻域内有定义(点可以除外),如果对于任意给定的正数。,总存在正数,使得对于所论邻域内适合不等式的一切点P(X,y)所对应的函数值都满足不等式那末,常数A就称为函数当时的极限.定义2设函数的定义域为是平面上一点,函数在点儿的任一邻域中除见外,总有异于凡的属于D的点,若对于任意给定的正数。,总存在正数a,使得对D内适合不等式0<户几卜8的一切点P,有不等式V(P)一周<。成立,则称A为函数人P)当P~P。时的'极限.定义3设函数X一人工,”的定义域为D,点产人工。,人)是D的聚点,如果对于任意给定的正数。,总存在正数8,使得对于适合不等式的一切点P(X,…ED,都有成立,则称A为函数当时的极限.以上三种定义的差异主要在于对函数的前提假设不尽相同.定义1要求人X,…在点P入x。,汕)的某去心邻域内有定义,而定义2允许人工,y)在点P。(X。,入)的任一去心邻域内都有使人X,y)无定义的点,相应地,定义I要求见的去心邻域内的点P都适合/(P)一A卜

利用极限存在准则证明:

(1)当x趋近于正无穷时,(Inx/x^2)的极限为0;

(2)证明数列{Xn},其中a>0,Xo>0,Xn=[(Xn-1)+(a/Xn-1)]/2,n=1,2,…收敛,并求其极限。

1)用夹逼准则:

x大于1时,lnx>0,x^2>0,故lnx/x^2>0

且lnx1),lnx/x^2<(x-1)/x^2.而(x-1)/x^2极限为0

故(Inx/x^2)的极限为0

2)用单调有界数列收敛:

分三种情况,x0=√a时,显然极限为√a

x0>√a时,Xn-X(n-1)=[-(Xn-1)+(a/Xn-1)]/2<0,单调递减

且Xn=[(Xn-1)+(a/Xn-1)]/2>√a,√a为数列下界,则极限存在.

设数列极限为A,Xn和X(n-1)极限都为A.

对原始两边求极限得A=[A+(a/A)]/2.解得A=√a

同理可求x0<√a时,极限亦为√a

综上,数列极限存在,且为√

(一)时函数的极限:

以 时 和 为例引入.

介绍符号: 的意义, 的直观意义.

定义 ( 和 . )

几何意义介绍邻域 其中 为充分大的正数.然后用这些邻域语言介绍几何意义.

例1验证 例2验证 例3验证 证 ……

(二)时函数的极限:

由 考虑 时的极限引入.

定义函数极限的“ ”定义.

几何意义.

用定义验证函数极限的基本思路.

例4 验证 例5 验证 例6验证 证 由 =

为使 需有 为使 需有 于是, 倘限制 , 就有

例7验证 例8验证 ( 类似有 (三)单侧极限:

1.定义:单侧极限的定义及记法.

几何意义: 介绍半邻域 然后介绍 等的几何意义.

例9验证 证 考虑使 的 2.单侧极限与双侧极限的关系:

Th类似有: 例10证明: 极限 不存在.

例11设函数 在点 的某邻域内单调. 若 存在, 则有

= §2 函数极限的性质(3学时)

教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:

我们引进了六种极限: , .以下以极限 为例讨论性质. 均给出证明或简证.

二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.

1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性( 不等式性质 ):

Th 4若 和 都存在, 且存在点 的空心邻域,使 , 都有 证 设 = ( 现证对 有 )

]:若在Th 4的条件中, 改“ ”为“ ”, 未必就有 以 举例说明.

5.迫敛性:

6.四则运算性质:( 只证“+”和“ ”)

(二)利用极限性质求极限: 已证明过以下几个极限:

(注意前四个极限中极限就是函数值 )

这些极限可作为公式用. 在计算一些简单极限时, 有五组基本极限作为公式用,我们将陆续证明这些公式.

利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.

例1( 利用极限 和 )

例2例3]:关于 的有理分式当 时的极限.

例4 [ 利用公式 ]

例5例6例7

篇7:极限不存在三种情况

极限存在与否的判断

1、结果若是无穷小,无穷小就用0代入,0也是极限。

2、若是分子的极限是无穷小,分母的极限不是无穷小,答案就是0,整体的极限存在。

3、如果分子的极限不是无穷小,而分母的极限是无穷小,答案不是正无穷大,就是负无穷大,整体的.极限不存在。

4、若分子分母各自的极限都是无穷小,那就必须用罗毕达方法确定最后的结果。

篇8:极限 定义证明

极限 定义证明

极限 定义证明

趋近于正无穷,根号x分之sinx等于0

x趋近于负1/2,2x加1分之1减4x的平方等于2

这两个用函数极限定义怎么证明?

x趋近于正无穷,根号x分之sinx等于0

证明:对于任意给定的ξ>0,要使不等式

|sinx/√x-0|=|sinx/√x|<ξ成立,只需要

|sinx/√x|^2<ξ^2,即sinx^2/x<ξ^2(∵x→+∞),则x>sinx^2/ξ^2,

∵|sinx| ≤1∴只需不等式x>1/ξ^2成立,

所以取X=1/ξ^2,当x>X时,必有|sinx/√x-0|<ξ成立,

同函数极限的定义可得x→+∞时,sinx/√x极限为0.

x趋近于负1/2,2x加1分之1减4x的平方等于2

证明:对于任意给定的ξ>0,要使不等式

|1-4x^2/2x+1-2|=|1-2x-2|=|-2x-1|=|2x+1|<ξ成立,只

需要0<|x+1/2|<ξ/2成立.所以取δ=ξ/2,则当0<|x+1/2|<δ时,必有

|1-4x^2/2x+1-2|=|2x+1|<ξ,

由函数极限的定义可得x→-1/2时,1-4x^2/2x+1的极限为2.

注意,用定义证明X走近于某一常数时的极限时,关键是找出那个绝对值里面X减去的那个X0.

记g(x)=lim[f1(x)^n+...+fm(x)^n]^(1/n),n趋于正无穷;

下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。

不妨设f1(x)趋于a;作b>a>=0,M>1;

那么存在N1,当x>N1,有a/M<=f1(x)

注意到f2的极限小于等于a,那么存在N2,当x>N2时,0<=f2(x)

同理,存在Ni,当x>Ni时,0<=fi(x)

取N=max{N1,N2...Nm};

那么当x>N,有

(a/M)^n<=f1(x)^n<=f1(x)^n+...fm(x)^n

所以a/M<=[f1(x)^n+...+fm(x)^n]^(1/n)

对n取极限,所以a/M<=g(x)N时成立;

令x趋于正无穷,

a/M<=下极限g(x)<=上极限g(x)<=b;

注意这个式子对任意M>1,b>a都成立,中间两个极限都是固定的数。

令M趋于正无穷,b趋于a;

有a<=下极限g(x)<=上极限g(x)<=a;

这表明limg(x)=a;

证毕;

证明有点古怪是为了把a=0的情况也包含进去。

还有个看起来简单些的方法

记g(x)=lim[f1(x)^n+...+fm(x)^n]^(1/n),n趋于正无穷;

g(x)=max{f1(x),....fm(x)};

然后求极限就能得到limg(x)=max{a1,...am}。

其实这个看起来显然,但对于求极限能放到括号里面,但真要用极限定义严格说明却和上面的证明差不多。

有种简单点的方法,就是

max{a,b}=|a+b|/2+|a-b|/2 从而为简单代数式。

多个求max相当于先对f1,f2求max,再对结果和f3求,然后继续,从而为有限次代数运算式,

故极限可以放进去。

2

一)时函数的极限:

以 时 和 为例引入.

介绍符号: 的意义, 的'直观意义.

定义 ( 和 . )

几何意义介绍邻域 其中 为充分大的正数.然后用这些邻域语言介绍几何意义.

例1验证 例2验证 例3验证 证 ……

(二)时函数的极限:

由 考虑 时的极限引入.

定义函数极限的“ ”定义.

几何意义.

用定义验证函数极限的基本思路.

例4 验证 例5 验证 例6验证 证 由 =

为使 需有 为使 需有 于是, 倘限制 , 就有

例7验证 例8验证 ( 类似有 (三)单侧极限:

1.定义:单侧极限的定义及记法.

几何意义: 介绍半邻域 然后介绍 等的几何意义.

例9验证 证 考虑使 的 2.单侧极限与双侧极限的关系:

Th类似有: 例10证明: 极限 不存在.

例11设函数 在点 的某邻域内单调. 若 存在, 则有

= §2 函数极限的性质(3学时)

教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:

我们引进了六种极限: , .以下以极限 为例讨论性质. 均给出证明或简证.

二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.

1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性( 不等式性质 ):

Th 4若 和 都存在, 且存在点 的空心邻域,使 , 都有 证 设 = ( 现证对 有 )

]:若在Th 4的条件中, 改“ ”为“ ”, 未必就有 以 举例说明.

5.迫敛性:

6.四则运算性质:( 只证“+”和“ ”)

(二)利用极限性质求极限: 已证明过以下几个极限:

(注意前四个极限中极限就是函数值 )

这些极限可作为公式用. 在计算一些简单极限时, 有五组基本极限作为公式用,我们将陆续证明这些公式.

利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.

例1( 利用极限 和 )

例2例3]:关于 的有理分式当 时的极限.

例4 [ 利用公式 ]

例5例6例7

2

外国诗歌——不存在的国土

极限作文600字

垂直极限观后感

《垂直极限》观后感

读《极限人生》有感

挑战极限叙事作文

电影垂直极限观后感

极限中考满分作文

《垂直极限》优秀观后感

面对极限作文600字

《证明二重极限不存在(共8篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档