欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

几何形体计算公式小学数学公式

时间:2023-09-17 09:09:44 其他范文 收藏本文 下载本文

以下是小编为大家整理的几何形体计算公式小学数学公式,本文共9篇,仅供参考,欢迎大家阅读。

几何形体计算公式小学数学公式

篇1:几何形体计算公式小学数学公式

小学数学几何形体周长、面积、体积计算公式

1、长方形的周长=(长+宽)×2C=(a+b)×2

2、正方形的周长=边长×4C=4a

3、长方形的面积=长×宽S=ab

4、正方形的面积=边长×边长S=a.a=a

5、三角形的面积=底×高÷2S=ah÷2

6、平行四边形的面积=底×高S=ah

7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2

8、直径=半径×2d=2r半径=直径÷2r=d÷2

9、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr

10、圆的面积=圆周率×半径×半径

[几何形体计算公式小学数学公式]

篇2:小学数学公式计算公式

小学数学公式计算公式

数量关系式:

1, 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数

2, 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数

3, 速度×时间=路程 路程÷速度=时间 路程÷时间=速度

4, 单价×数量=总价 总价÷单价=数量 总价÷数量=单价

5, 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6, 加数+加数=和 和-一个加数=另一个加数

7, 被减数-减数=差 被减数-差=减数 差+减数=被减数

8, 因数×因数=积 积÷一个因数=另一个因数

9, 被除数÷除数=商 被除数÷商=除数 商×除数=被除数

和差问题的公式:

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题:

和÷(倍数-1)=小数

小数×倍数=大数

(或者 和-小数=大数)

差倍问题:

差÷(倍数-1)=小数

小数×倍数=大数

(或 小数+差=大数)

植树问题:

1 非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2 封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

盈亏问题:

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题:

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

追及问题:

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

流水问题:

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

浓度问题:

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

利润与折扣问题:

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣〈1)

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

面积,体积换算:

(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米

(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米

(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米

(4)1公顷=10000平方米 1亩=666。666平方米

(5)1升=1立方分米=1000毫升 1毫升=1立方厘米

重量换算:

1吨=1000 千克

1千克=1000克

1千克=1公斤

人民币单位换算

1元=10角

1角=10分

1元=100分

时间单位换算:

1世纪=1 1年=12月

大月(31天)有:1\3\5\7\8\10\12月

小月(30天)的有:4\6\9\11月

平年2月28天, 闰年2月29天

平年全年365天, 闰年全年366天

1日=24小时 1时=60分

1分=60秒 1时=3600秒

篇3:大班数学教案《感知几何形体》

大班数学教案《感知几何形体》

活动目标:

1.通过操作,感知立方体与平面图形之间的关系,了解正方体的特征。

2.能开动脑筋设计制作教具。

3.培养幼儿比较和判断的能力。

4.发展幼儿逻辑思维能力。

5.引发幼儿学习的兴趣。

活动准备:

1.正方体积木若干、同样大小的白色及彩色的正方形纸若干。

2.制作礼盒的平面图形若干、正方体的插片若干。

3.胶水及彩色水笔。

活动过程:

1.分组操作,感知正方体的特征

第一组:做礼品盒。用画有6个一样大的正方形的图形纸,动手动脑做成礼品盒。

第二组:做数学角教具。“数一数,这块积木有几个一样大的正方形的面,就拿这样的正方形的`纸,在每张正方形的纸上写1个数字或符号(+、一、×),写好贴在积木的每一个面上,供数学教学游戏用”。

第三组:让积木变漂亮。“这些积木旧了,你们数一数它们有几个什么形状、大小是怎样的面?”“请你选用大小、形状一样的彩色纸,把积木贴起来。”

第四组:插积木。用插片插出一个正方体。2.教师引导幼儿介绍自己的小制作

(1)“礼品盒是什么形状的?数数看,它有几个面,大小是怎么样的?是什么形状的面?”

(2)“你们给数学角做的教具是什么形状的?它有几个什么形状的、大小是怎样的面?每个面有几个数字?”“用你们做的玩具,合在一起给小朋友出一道算术题好吗?”

(3)“这些五颜六色的积木真漂亮!数数看,一块积木用了几张什么形状的、大小是怎样的纸贴好的?你们把积木摞在一起吧。”

(4)“插了这么多积木,它们是什么形状的?插好一块积木需要用几块插片?插片的大小一样吗?一共有多少块积木?能用这些积木搭成一个大正方体吗?试试看。”

篇4:几何形体乐园大班教案

几何形体乐园大班教案

活动目标:

1、让幼儿不受大小,颜色,摆放位置的干扰,正确辨认几何形体,并分类。

2、通过游戏认识生活中的几何形体,体验游戏的'的愉悦感。

3、体验数学集体游戏的快乐。

4、让幼儿体验数学活动的乐趣。

活动准备:

1、课件,

2、幼儿玩具,

3、生活中物品,

4、练习卡片,

5、音乐律动。

活动过程:

一、热身,音乐律动《公共汽车》

师:老师收到了几何形体乐园的园长,给小朋友们发来的邀请函,请小朋友们去那里参观,老姐我们的小气车来了,请小朋友们上车,我们出发了。(播放音乐)

二、导入:情境导入(构建区和拼插区玩具混放)

师:不知道是哪位小朋友,玩完玩具没收拾好,请小朋友帮忙那收拾好,分分类摆放整齐。

提问:

1、小朋友们是怎么分类的?

2、构建区有哪些形体?(长方体,正方体,球体)三、练习:师:几个形体乐园的园长要和小朋友玩闯关的游戏,小朋友们有信心通关吗?过全关有奖品哦(勇士小勋章和一件形体礼物)1、第一关,课件,请幼儿观察图画上有哪些形体,并统计数量。(长方体,正方体,球体,圆柱体)2、第二关,生活中物品,老师说出一种形体,幼儿快速的找出行对应的物品,(可多次练习)并统计数量

3、第三关,练习卡,老师出示课件,幼儿根据课件提示在练习卡上练习(几何形体乐园练习片1、2)

小结:师:恭喜小朋友们过关,一会老师会发小勋章和礼物,现在老师要问小朋友,

1,我们今天到哪里参观了?(几何形体乐园)

2、在乐园里我们认识了什么几何形体?(正方体,长方体,球体,圆柱体)

活动延伸:

1、发现勇士勋章,和几何形体小礼物。

2、家庭小任务,回家和爸爸妈妈一起找家中有哪些几何形体?并统计数量。(每位小朋友一张统计表格)活动结束:师:小朋友们玩得开心吗?跟几何形体乐园的园长再见,请小朋友们上车,我们要回家了!(播放开始音乐律动)

篇5:几何形体的联想的说课稿

几何形体的联想的说课稿

各位领导老师:

大家好!我说课的内容是七年级下册第九课《几何形体的联想》的内容。

教材分析

本课是九年义务教育初中阶段美术课程中最新设计的创新思课,属于“设计应用”学习领域。在课程标准的课程性质部分首先指出,“美术课程以对视觉形象的感知、理解和创造为特征”,“学生在美术学习中积累视觉、触觉和其他感官的经验、发展感知能力、形象思维能力、表达和交流能力”。本课据此设计,意在促进学生对形象的感知、理解和创造,开发学生形象思维能力,依托学生熟悉的几何形体,引导学生进行兴味的联想和创意,进而将创意用绘画的形式表达出来。

学情分析

针对初一学生十四五岁的年龄特点,已经有能力认识立体的几何形体,再加上学生对素描的学习很感兴趣,本课的学习对培养学生造型表现能力非常有必要。

教学目标

1、认识几何形体,掌握其结构特点。

2、掌握形体变化的基本规律,发挥想象力,把几何形体组合变化组成画面。

3、结合生活实际,思考身边周围事物由哪些几何形体组成。

教学重难点

1、认识并了解各种几何体,掌握其结构。

2、能够从具体的形象概括为抽象形体,掌握其形体变化的规律。

3、能够对身边的事物进行分析,回归于生活。

教法学法:示范、欣赏、观摩、自主体验。

教具学具:

教具:课件、白板、水彩笔 学具:素描纸、铅笔、橡皮 教学过程

一、导入

复习了上节课教学内容素描几何体锥形的内容,巩固了素描的五大调子的知识。分析了几张锥形结构的图片,内容包括自然风光-山、建筑、包装-瓜子袋、家具、工业设计-灯泡、水壶、灯罩、陶艺,为了使学生关注现实生活。

教学目的:以点带面,温故知新,引入本课内容,了解其他几何形体。

二、授新课

第一环节 欣赏

1、出示法国画家塞尚的话,即一切物体的形态都可以概括为几何形体。

2、通过对石膏几何体结构的分析,认识几何体。

3、通过欣赏俄罗斯绘画大师马列维奇的《雨后乡间之晨》,了解将画中的风景用几何形体概括的方法,理解自然中的形态。另加入几幅其它作品,使学生对这一艺术形式加深映像。

第二环节 示范

人可以概括为几何形体吗?试想可以分成几部分?各类似哪种几何形体?使用白板给学生示范了用圆球或立方体概括人体。向学生说明表现方法。

第三环节 学生课堂练习。

1、画大小不同的.圆联想到圆柱。

2、画大小不同的相似长方形联想到长方体。

3、画大小不同的相似三角形联想到三棱椎。

教师查看学生作业,抓住学生的闪光点,提升、拓展知识、推出透视概念,画教室(立方体内部)中的物体,这是一个难点,引出下一课的学习点。

教学反思

教学中存在的问题:

1、教学中每一环节的连贯语不太清楚。

2、到示范和练习环节课堂秩序有些乱。

3、在示范环节有学生不能理解到位。

原因分析:

1、在表述上没仔细想,应该多提炼语言。

2、学生的注意力仅仅可维持20分钟左右。

3、学生年龄及个体差异,在以后的教学中多多引导。

篇6:小学数学公式

1、长方形的周长=(长+宽)×2 C=(a+b)×2

2、正方形的周长=边长×4 C=4a

3、长方形的面积=长×宽 S=ab

4、正方形的面积=边长×边长 S=a.a= a

5、三角形的面积=底×高÷2 S=ah÷2

6、平行四边形的面积=底×高 S=ah

7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

10、圆的面积=圆周率×半径×半径 ?=πr

11、长方体的表面积=(长×宽+长×高+宽×高)×2

12、长方体的体积 =长×宽×高 V =abh

13、正方体的表面积=棱长×棱长×6 S =6a

14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a

15、圆柱的侧面积=底面圆的周长×高 S=ch

16、圆柱的表面积=上下底面面积+侧面积

S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch

17、圆柱的体积=底面积×高 V=Sh

V=πr h=π(d÷2) h=π(C÷2÷π) h

18、圆锥的体积=底面积×高÷3

V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3

19、长方体(正方体、圆柱体)的体

1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数

2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数

3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度

4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价

5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6、加数+加数=和 和-一个加数=另一个加数

7、被减数-减数=差 被减数-差=减数 差+减数=被减数

8、因数×因数=积 积÷一个因数=另一个因数

9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数

小学数学图形计算公式

1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a

2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a

3 、长方形

C周长 S面积 a边长

周长=(长+宽)×2

C=2(a+b)

面积=长×宽

S=ab

4 、长方体

V:体积 s:面积 a:长 b: 宽 h:高

(1)表面积(长×宽+长×高+宽×高)×2

S=2(ab+ah+bh)

(2)体积=长×宽×高

V=abh

5 三角形

s面积 a底 h高

面积=底×高÷2

s=ah÷2

三角形高=面积 ×2÷底

三角形底=面积 ×2÷高

6平行四边形

s面积 a底 h高

面积=底×高

s=ah

7 梯形

s面积 a上底 b下底 h高

面积=(上底+下底)×高÷2

s=(a+b)× h÷2

8 圆形

S面积 C周长 ∏ d=直径 r=半径

(1)周长=直径×∏=2×∏×半径

C=∏d=2∏r

(2)面积=半径×半径×∏

9 圆柱体

v:体积 h:高 s;底面积 r:底面半径 c:底面周长

(1)侧面积=底面周长×高

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径

10 圆锥体

v:体积 h:高 s;底面积 r:底面半径

体积=底面积×高÷3

总数÷总份数=平均数

和差问题

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者 和-小数=大数)

差倍问题

差÷(倍数-1)=小数

小数×倍数=大数

(或 小数+差=大数)

植树问题

1 非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2 封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

追及问题

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

流水问题

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣<1)

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

时间单位换算

1世纪=1 1年=12月

大月(31天)有:135781012月

小月(30天)的有:46911月

平年2月28天, 闰年2月29天

平年全年365天, 闰年全年366天

1日=24小时 1时=60分

1分=60秒 1时=3600秒积=底面积×高 V=Sh

第一部分: 概念

1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:(2+4)×5=2×5+4×5

6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8、什么叫方程式?答:含有未知数的等式叫方程式。

9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数

0除外),分数的大小不变。

20、一个数除以分数,等于这个数乘以分数的倒数。

21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

22、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

23、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

24、比例的基本性质:在比例里,两外项之积等于两内项之积。

25、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

26、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y

28、百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

29、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。

30、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

31、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

32、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

33、要学会把小数化成分数和把分数化成小数的化发。

34、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)

35、互质数: 公约数只有1的两个数,叫做互质数。

36、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

37、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

38、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)

39、最简分数:分子、分母是互质数的分数,叫做最简分数。

40、分数计算到最后,得数必须化成最简分数。

41、个位上是0、2、4、6、8的数,都能被2整除,即能用2进行

42、约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。

43、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。

44、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

45、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

46、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

47、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

48、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

49、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414

50、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如圆周率:3. 141592654

51、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……

52、什么叫代数? 代数就是用字母代替数。

53、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c

第二部分:定义定理

一、算术方面

1.加法交换律:两数相加交换加数的位置,和不变。

2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第

三个数相加,和不变。

3.乘法交换律:两数相乘,交换因数的位置,积不变。

4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。

6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。

7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8.方程式:含有未知数的等式叫方程式。

9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15.分数除以整数(0除外),等于分数乘以这个整数的倒数。

16.真分数:分子比分母小的分数叫做真分数。

17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

18.带分数:把假分数写成整数和真分数的形式,叫做带分数。

19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20.一个数除以分数,等于这个数乘以分数的倒数。

21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

第三部分:几何体

1.正方形

正方形的周长=边长×4 公式:C=4a

正方形的面积=边长×边长 公式:S=a×a

正方体的体积=边长×边长×边长 公式:V=a×a×a

2.正方形

长方形的周长=(长+宽)×2 公式:C=(a+b)×2

长方形的面积=长×宽 公式:S=a×b

长方体的体积=长×宽×高 公式:V=a×b×h

3.三角形

三角形的面积=底×高÷2。 公式:S= a×h÷2

4.平行四边形

平行四边形的面积=底×高 公式:S= a×h

5.梯形

梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷2

6.圆

直径=半径×2 公式:d=2r

半径=直径÷2 公式:r= d÷2

圆的周长=圆周率×直径 公式:c=πd =2πr

圆的面积=半径×半径×π 公式:S=πrr

7.圆柱

圆柱的侧面积=底面的周长×高。 公式:S=ch=πdh=2πrh

圆柱的表面积=底面的周长×高+两头的圆的面积。 公式:S=ch+2s=ch+2πr2

圆柱的总体积=底面积×高。 公式:V=Sh

8.圆锥

圆锥的总体积=底面积×高×1/3 公式:V=1/3Sh

三角形内角和=180度。

平行线:同一平面内不相交的两条直线叫做平行线

垂直:两条直线相交成直角,像这样的两条直线,

我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

第四部分:计算公式

数量关系式:

1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数

2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数

3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度

4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价

5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6、加数+加数=和 和-一个加数=另一个加数

7、被减数-减数=差 被减数-差=减数 差+减数=被减数

8、因数×因数=积 积÷一个因数=另一个因数

9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数

******************************************************

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者 和-小数=大数)

差倍问题

差÷(倍数-1)=小数

小数×倍数=大数

(或 小数+差=大数)

******************************************************

植树问题:

1 非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2 封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

******************************************************

盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

******************************************************

相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

******************************************************

追及问题

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

******************************************************

流水问题

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

******************************************************

浓度问题:

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

******************************************************

利润与折扣问题:

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣<1)

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

******************************************************

面积,体积换算

(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米

(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米

(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米

(4)1公顷=10000平方米 1亩=666.666平方米

(5)1升=1立方分米=1000毫升 1毫升=1立方厘米

******************************************************

重量换算:

1吨=1000 千克

1千克=1000克

1千克=1公斤

******************************************************

人民币单位换算

1元=10角

1角=10分

1元=100分

******************************************************

时间单位换算:

1世纪=100年 1年=12月

大月(31天)有:135781012月

小月(30天)的有:46911月

平年2月28天, 闰年2月29天

平年全年365天, 闰年全年366天

1日=24小时 1时=60分

1分=60秒 1时=3600秒

篇7:小学数学公式

几何公式

►长方形的周长=(长+宽)×2

C=(a+b)×2

长方形的面积=长×宽

S=ab

►正方形的周长=边长×4

C=4a

正方形的面积=边长×边长

S=a.a=a

►三角形的面积=底×高÷2

S=ah÷2

三角形的内角和=180度

►平行四边形的面积=底×高

S=ah

►梯形的面积=(上底+下底)×高÷2

S=(a+b)h÷2

►直径=半径×2(d=2r)

半径=直径÷2(r=d÷2)

圆的周长=圆周率×直径=圆周率×半径×2

C=πd =2πr

圆的面积=圆周率×半径×半径

S=πr×r

►长方体的体积=长×宽×高

V=abh

长方体(或正方体)的体积=底面积×高

V=abh

►正方体的体积=棱长×棱长×棱长

V=aaa

►圆柱的侧面积:圆柱的侧面积等于底面的周长乘高

S=ch=πdh=2πrh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积

S=ch+2s=ch+2πr×r

圆柱的体积:圆柱的`体积等于底面积乘高

V=Sh

►圆锥的体积=1/3底面×积高

V=1/3Sh

单位换算

-

►1公里=1千米=1000米

1米=10分米

1分米=10厘米

1厘米=10毫米

►1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米

►1立方米=1000立方分米

1立方分米=1000立方厘米

1立方厘米=1000立方毫米

►1吨=1000千克

1千克=1000克=1公斤=2市斤

►1公顷=10000平方米

1亩=666.666平方米

►1升=1立方分米=1000毫升

1毫升=1立方厘米

►1元=10角

1角=10分

1元=100分

►1世纪=100年

1年=12月

大月(31天)有:1\3\5\7\8\10\12月

小月(30天)的有:4\6\9\11月

平年2月28天,闰年2月29天

平年全年365天,闰年全年366天

1日=24小时

1时=60分=3600秒

1分=60秒

数量关系

-

►每份数×份数=总数

总数÷每份数=份数

总数÷份数=每份数

►1倍数×倍数=几倍数

几倍数÷1倍数=倍数

几倍数÷倍数=1倍数

►速度×时间=路程

路程÷速度=时间

路程÷时间=速度

►单价×数量=总价

总价÷单价=数量

总价÷数量=单价

►工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

►加数+加数=和

和-一个加数=另一个加数

►被减数-减数=差

被减数-差=减数

差+减数=被减数

►因数×因数=积

积÷一个因数=另一个因数

►被除数÷除数=商

被除数÷商=除数

商×除数=被除数

特殊问题

-

►相遇问题:

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

►追及问题:

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

►流水问题:

(1)一般公式:

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

(2)两船相向航行的公式:

甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度

(3)两船同向航行的公式:

后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度

►浓度问题:

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

►利润与折扣问题:

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣<1)

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-5%)

►工程问题:

工作效率×工作时间=工作总量

工作总量÷工作时间=工作效率

工作总量÷工作效率=工作时间

1÷工作时间=单位时间内完成工作总量的几分之几

1÷单位时间能完成的几分之几=工作时间

篇8:小学数学公式

数量关系计算公式

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

4、工效×时间=工作总量

5、加数+加数=和

6、一个加数=和-另一个加数

7、被减数-减数=差

8、减数=被减数-差

9、被减数=减数+差

10、因数×因数=积

11、一个因数=积÷另一个因数

12、被除数÷除数=商

13、除数=被除数÷商

14、被除数=商×除数

15、有余数的除法:被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

1公里=1千米

1千米=1000米

1米=10分米

1分米=10厘米

1厘米=10毫米

1平方米=100平方分米

1平方分米=100平方厘米

几何公式

1.正方形

正方形的周长=边长×4 公式:C=4a

正方形的面积=边长×边长 公式:S=a×a

正方体的体积=边长×边长×边长 公式:V=a×a×a

2.长方形

长方形的周长=(长+宽)×2 公式:C=(a+b)×2

长方形的面积=长×宽 公式:S=a×b

长方体的体积=长×宽×高 公式:V=a×b×h

3.三角形

三角形的面积=底×高÷2 公式:S= a×h÷2

4.平行四边形

平行四边形的面积=底×高 公式:S= a×h

5.梯形

梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷2

6.圆

直径=半径×2 公式:d=2r

半径=直径÷2 公式:r= d÷2

圆的周长=圆周率×直径 公式:c=πd =2πr

圆的面积=半径×半径×π 公式:S=πrr

7.圆柱

圆柱的侧面积=底面的周长×高 公式:S=ch=πdh=2πrh

圆柱的表面积=底面的周长×高+两头的圆的面积 公式:S=ch+2s=ch+2πr2

圆柱的总体积=底面积×高 公式:V=Sh

8.圆锥

圆锥的总体积=底面积×高×1/3 公式:V=1/3Sh

9.三角形内角和=180度

算术概念

1.加法交换律:两数相加交换加数的位置,和不变。

2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3.乘法交换律:两数相乘,交换因数的位置,积不变。

4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。

7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8.方程式:含有未知数的等式叫方程式。

9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。

10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15.分数除以整数(0除外),等于分数乘以这个整数的倒数。

16.真分数:分子比分母小的分数叫做真分数。

17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

18.带分数:把假分数写成整数和真分数的形式,叫做带分数。

19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20.一个数除以分数,等于这个数乘以分数的倒数。

21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

22.分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

23.分数相乘法则:用分子的积做分子,用分母的积做分母。

24.什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

25.什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

概念儿歌

1.乘法口诀儿歌

一只青蛙一张嘴,两只眼睛四条腿。

两只青蛙两张嘴,四只眼睛八条腿。

三只青蛙三张嘴,六只眼睛十二条腿。

四只青蛙四张嘴,扑嗵扑嗵跳下水。

2.年月日的儿歌

一三五七八十腊(12月)。

三十一天永不差。

四六九冬(11月)三十整。

二月特殊不可忘。

平年二月二十八。

闰年二月把一加。

3.认识时间的儿歌

时针走过数字几,表示时间几时多。

要问多了多少分,请你仔细看分针。

时针和分针

小小表盘圆又圆,时针分针跑圈圈。

分针长,时针短,一个快来一个慢。

分针跑完一满圈,时针刚跑一小段。

4.一个数除几位数儿歌

先看被除数最高位,高位不够多一位。

除到被除数哪一位,商就写在哪一位。

不够商1就写0,商中头尾算数位。

余数要比除数小,这样运算才算对。

5.小数加减法儿歌

计算小数加减法,关键对齐小数点。

用0补齐末位,便可进行加减。

6.四则混合运算儿歌

通览全题定方案,细看是否能简便。

从左到右脱式算,先乘除来后加减。

括号依次小中大,先算里面后外面。

横式计算竖检验,一步一查是关键。

7.解应用题儿歌

题目读几遍,从中找关键。

先看求什么,再去找条件。

合理列算式,仔细来计算。

一题求多解,单位莫遗忘。

结果要验算,最后写答案。

8.四舍五入法儿歌

四舍五入方法好,近似数来有法找。

取到哪位看下位,再同5字作比较。

是5大5前进1,小于5的全舍掉。

等号换成约等号,使人一看就明白。

9.运算顺序歌诀

打竹板,响连天,各位同学听我言。

今天不把别的表,四则运算聊一聊。

混合试题要计算,明确顺序是关键。

同级运算最好办,从左到右依次算。

两级运算都出现,先算乘除后加减。

遇到括号怎么办?小括号里算在先。

中括号里后边算,次序千万不能乱。

每算一步都检验,又对又快喜心间。

10.多位数读法歌

读数要从高位起,哪位是几就读几。

每级末尾如有零,不必读出记心里。

其他数位连续零,只读一个记仔细。

万级末尾加读“万”,亿级末尾加读“亿”。

读数规则永牢记。

11.多位数写法歌

写数要从高位起,哪位是几就写几。

哪一位上无单位,用“0”顶位要牢记。

12.多位数大小比较歌

位数不同比大小,位数多的大,位数少的小。

位数相同比大小,高位比起就知道。

13.有关凑“十”法的

看到9想到1,看到8想到2。

看到7想到3,看到6想到4。

看到大数加小数,先把两数换位置。

10的分成。

9和1,真淘气。

7、3、8、2也调皮。

吹6升4 (6象哨子,4象小旗)。

小手小手真伶俐(让生摇动双手,象把10分成5和5)。

14.植树问题

小朋友,张开手,五只手指人人有,

手指之间几个空,请你仔细瞅一瞅。

商中间或末位有0的除法

我是0,本事大,除法运算显神通。

不够商1我来补。有了空位我就坐。

别人要想把我除,常胜将军总是我。

15.珠算读写数

小小珠算真神奇,读数写数最容易。

四位一级是关键,读写都从高位起。

级前中0读一个,级末有0不读起。

亿级万级仿个级,读完后面加单位。

一级一级往下写,珠不靠梁0占位。

16.多位数的大小比较

多位数大小看位数,位数多的数就大;

位数相同看高位,高位数大数就大。

17.分数大小的比较

分数大小的比较,分子、分母要记好。

分母相同看分子,分子大的分数大;

分子相同看分母,分母大的分数小。

18.列方程解应用题

列方程解应用题,抓住关键去分析。

已知条件换成数,未知条件换字母,

找齐相关代数式,连接起来读一读。

19.计量单位对口歌

小朋友,快排队,手拉手对单位。看谁说得快又对。

人民币单位元、角、分,进率是10要牢记。

1元得10角;1角得10分,1元等于100分。

米加分米、厘米和毫米。

最大单位是千米。

1米=10分米,1分米=10厘米,1厘米=10毫米。

米和千米也相临,进率1000是特例。

吨与千克还有克,进率1000要牢记。

形体单位更容易,相临100是面积,相临1000是体积。

大单位,小单位,大小换算有规律。

从大到小乘进率,小数点向右移;从小到大除以进率,小数点向左移。

进率是10移一位,进率100移两位,进率1000移三位。……

20.分解质因数

分解质因数,方法是短除。

除数是质数,商也是质数。

表示的形式很简单:合数=质数×质数……

公约数、公倍数与互质数

公约数,公倍数,关键要把“公”记住。

公有的约数叫做公约数,公约数中最大的,就叫最大公约数。

如果公约数只有1,它们就叫互质数。

公有的倍数叫做公倍数。公倍数中最小的,就叫最小公倍数。

求法有区别,千万别失误。

短除只把除数乘,是求最大公约数。

除数和商要连乘,是求最小公倍数。

21.圆、圆柱、圆锥

圆的知识学习好,生产生活都需要。

要画圆,找定点,圆心确定圆位置,

半径决定圆大小。

同圆或等圆中,直径=2半径。

圆的周长和面积,全都离不开圆周率。

如果条件是半径,圆的周长2πr,πr2是面积。

如果条件是直径,圆的周长是πd。

圆周长乘圆柱高,是求圆柱侧面积。

圆面积乘圆柱高,是求圆柱的体积。

同底等高求圆锥,只需再乘三分之一。

篇9:《几何形体的联想》教学反思

《几何形体的联想》教学反思

本课的学习注重对形体的感受,注重培养学生观察、概括和联想创意的能力。通过解构一些形体,让学生学会透过表面理解形体内在的形态和构成。

通过对本课的教学,首先是对学生的感触,就是太低估学生的创造力和想象力了!出乎意料的是学生能将不同的几何形体组合穿插在一起,创造出不同的.形象,学生能将简单的圆、长方体等变换成椅子、动物等的形象,很让我惊讶。当然了,在装饰方面还有点欠缺。在本课的教学中主要存在以下一些问题:

1、教学中导入和主体环节衔接的连贯语不太自然,显得有点突兀。

2、在示范环节我示范的内容太多,课堂秩序显得有些乱。

3、在教学中,我讲的内容有点多,未充分给予学生一定的思考空间和发言权,小组合作学习没有得到应有的效果。

针对以上出现的问题,我在以后的教学中应做到:

1、在课下认真备课,顺教材,不断提高自己的语言表达能力,多听,多学,多练。

2、给予学生更多的思考空间,让学生去做课堂的主导者,让学生主动参与到教学活动中来。

3、注意学生的个体能力差异。示范的环节主要示范有代表性的几何形体组成,其它的一些方式如:伸缩、变形、穿插、切割等让孩子来思考、讨论,同时也能调动起学生的积极性。学生们有自己的想法,有自己的设计,教师不能限制的太多,不能禁锢他们的想象,要让他们大胆的发挥自己的想象能力。

大班数学教案《感知几何形体》

小学数学图形计算公式总结

小学数学几何教案设计

高中数学公式口诀

高二数学公式总结

高中数学公式总结

高一数学公式知识点

椭圆形面积计算公式

肥胖指数计算公式

Word如何输入数学公式

《几何形体计算公式小学数学公式(精选9篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档