小编在这里给大家带来五年级数学《带分数假分数的互化和作业》教案设计,本文共14篇,希望大家喜欢!

篇1:五年级数学《带分数假分数的互化和作业》教案设计
五年级数学《带分数假分数的互化和作业》教案设计
教学目标:巩固带分数假分数的`互化
教学过程:
1.买了个蛋糕,即是买了多少个蛋糕?
2.教师可利用以下提问,引导学生作答:分母的2代表什么?(每个蛋糕分为2等份)分子的5代表什么?(占了5份)
这个是哪一类型的分数?
它的数值是大于1,还是小于1?(大于1)
3.教师出示圆形教案
1个蛋糕代表
2个蛋糕代表
个蛋糕代表
所以,=
4.教师把化椤
5.=5÷2=
6.请学生把化为带分数。
7.教师可利用以下提问,引导学生作答:
这个共有蛋糕多少份?(10份)
每几份可合成一个蛋糕?(3份)
10份中包含多少个3份?(10÷3)
8.学生讨论假分数化为带分数后,分母有]有改变。为什么?(分母不变;每份的大小不变)
9、独立完成作业
10、讲评作业。
篇2:五年级数学下册《假分数和带分数的互化》教学反思
五年级数学下册《假分数和带分数的互化》教学反思
1.在教学本课知识时,要注意引导学生在自主探索的基础上进行交流,在交流中掌握把假分数化成整数或带分数的方法。教学把假分数化成整数时,关键要把握两点:一是让学生先独立思考把假分数化成整数的方法,再让学生交流是怎样想的。二是要组织学生观察能化成整数的假分数,让学生对能化成整数的假分数的'特点有明晰的认识。
2.学生把假分数化成带分数不是很准确,引导学生用分子除以分母的方法进行转化,引导学生明确除得的商是带分数的整数部分,余数是带分数的分子,而分母不变。但在把假分数化成整数和带分数的速度和熟练程度上不宜提过高要求,学生掌握方法就可以,以后做的多了,自然就熟练了。
篇3:五年级数学《假分数化成整数或带分数》教案设计
五年级数学《假分数化成整数或带分数》教案设计
教学目标:
1、知道带分数是假分数,是整数与真分数合成的数
2、会把假分数化成整数或带分数,会进行分数与小数的互化
3、使学生经历假分数化成整数或带分数,分数与小数互化的探索过程,进一步发展数感。
4、培养良好的学习习惯,树立学好数学的信心。
教学重、难点:会把假分数化成整数或带分数,会进行分数与小数的互化。
教学过程:
一、谈话导入
同学们还记得假分数吗?举几个例子,教师随机补充
1、有意识地把假分数分成2类(一类是能化成整数,另一类是不能化成整数的)
二、教学例7
1、根据学生实际举例进行教学(设计的时候就用书上的例子进行)
2、出示假分数
==()=()
①同学们想想,把这些假分数化成整数分别是多少?
②把自己的想法在小组里交流交流
③交流方法:
④小结:在刚才的交流中,能够化成整数的假分数的分子分母有什么特点?
⑤归纳特点:能化成整数的假分数,它的分子一定是分母的倍数,是几倍化成整数就是几?
⑥小练习:A
B你能举几个能化成整数的.假分数
3、教学带分数
①同学们在刚才距离的过程当中,还有这一部分的假分数能化成整数吗?(指着黑板上剩下的另一部分假分数)例如
②交流:不能化成整数的假分数,可以化成一个整数和一个分数合起来的分数,例如:可以分成和,写成1,想这样的分数叫带分数,读作:一又三分之一
③教学=1,让学生在数轴上看一看,进一步理解假分数,带分数的联系。
④老师随机板书,写几个带分数让学生读一读
4、教学例8
①怎样把化成带分数
②学生尝试计算,教师巡视
③交流方法:A可能是画图的
B可能是计算的,可分成8个和3个,8个等于2,在加上就是2。
④读一读这个带分数
⑤教师介绍用除法计算来转化:=11÷4=2
⑥小结方法:请同学们想想怎样用除法直接把假分数化成整数或带分数。
⑦完成书上47页练一练
三、练习
1、完成练习九第1、3题
学生尝试练习,教师讲评有错误的题目,找出原因进行修正。
2、完成练习九的第2题
①先审题
②尝试练习
③说说为什么想到用这个分数来分析
④改写成带分数
⑤交流
3、完成练习九的第4题
①先让学生看懂题意:0-1之间平均分成3份,每一份是,3个就是1,往后一格就是4个==1
②学生尝试填写其他空格
③交流
4、布置课堂作业
完成练习九的第5题
四、总结
今天学习了什么,有哪些收获?
篇4:五年级数学下学期《整数,假分数和带分数的互化练习》教学设计
教学目标:使学生加深理解真分数和假分数的意义;能够比较熟练的进行假分数与带分数、整数的互化.
教学重点:加深理解真分数和假分数的意义.
教学难点:综合运用所学知识.
教学课型:练习课
教具准备:课件
教学过程:
一、基本练习
1、判断下列分数哪些是真、假、带分数[课件1]
2/38/513/2435/223/18156/7
2、把下面的假分数化成整数或带分数.[课件2]
36/1812/524/448/1564/1650/29
3、用分数表示商、能化成带分数的化成带分数.[课件3]
15÷1635÷1827÷29132÷35
4、把下面的分数按照从大到小的顺序排列起来.[课件4]
27/8326/731/722/825/9
5、填数.[课件5]
3=/87=()/16=()/12=18/()
9=()/85=()/74=4/()=24/()
6、把下面的带分数化成假分数.[课件6]
248712
二、综合练习
1、P105.4
2、P105.5
§弄清楚0~1;1~2;2~3……都被平均分成了四份.
3、P106.8
(1)提问:题中是要把什么数化成什么数
(2)板述:把整数或带分数化成分数部分是假分数的带分数、必须从整数中或原带分数的整数部分拿出1来进行改写.
4、P106.11
提问:依题目要求、想想首先应确定哪个分数为什么
三、全课总结、深化认识
今天我们学了什么知识对于分数的知识你还想掌握些什么
四、家作
P106.6、7、9、10
篇5:五年级数学下学期《整数,假分数和带分数的互化练习》教学设计
把整数或带分数化成分数部分是假分数的带分数、必须从整数中或原带分数的整数部分拿出1来进行改写.
3、分数的基本性质
篇6:带分数假分数的互化和作业 教案教学设计(北师大版五年级上册)
第21课时
教学内容:
教学目标:巩固带分数假分数的互化
教学过程:
1. 媽媽买了 个蛋糕,即是买了多少个蛋糕?
2. 教师可利用以下提问,引导学生作答:分母的2代表什么?(每个蛋糕分为2等份)分子的5代表什么?(占了5份)
这个是哪一类型的分数?
它的数值是大于1,还是小于1?(大于1)
3. 教师出示圆形教案
1个蛋糕代表
2个蛋糕代表
个蛋糕代表
所以, =
4. 教师把 化為 。
5. = 5 ÷ 2=
6. 请学生把 化为带分数。
7. 教师可利用以下提问,引导学生作答:
这个共有蛋糕多少份?(10份)
每几份可合成一个蛋糕?(3份)
10份中包含多少个3份?(10 ÷ 3)
8. 学生讨论假分数化为带分数后,分母有沒有改变。为什么?(分母不变;每份的大小不变)
9、独立完成作业
10、讲评作业。
第22课时
教学内容:练习三
教学目标:1、进一步理解分数、真分数、假分数、带分数的意义,。
2、巩固比较分数大小的方法。
3、 进一步理解分数与除法的关系,并利用关系解决实际问题。
教学重点:进一步理解分数与除法的关系,并利用关系解决实际问题。
教学过程:
一、复习
1、举例说说分数的意义。
2、说说什么叫真分数、假分数、带分数?
3、说说分数与除法的关系。
二、巩固练习
1、学生独立填写1、2后,说说自己的思考方法。
(4/5、1/5)(4/12、8/12)(3/6、3/6)(3/7、4/7)
重点说说写出涂色部分后空白部分你是怎样思考的?
2、先让学生独立填填后,再说说比较分数大小比较是怎样思考的?
1/4=1/4 2/8〈2/3
重点说说2/8和2/3是怎样比较的?
3、先引导学生解决第1个问题,学生根据题意收集有关信息,再根据分数的意义后分数与除法的关系解决问题。引导学生说说还能用分数表示什么?主要用分数进行交流,感受分数与生活的联系,教师要组织学生展开充分交流。
4、举例说说假分数和带分数之间互化的方法,然后独立解决第5题。
5、先独立完成第6题,然后说说比较方法。
6、先独立完成第7题,然后说说思考方法。
三、实践活动:观察年历,独立完成,交流还能提出用分数表示的哪些问题?
四、作业:实践活动出数学报,并说说各栏目所占篇幅约占这张报纸的几分之几
篇7:五年级数学整数、带分数化成假分数教案
五年级数学整数、带分数化成假分数教案
教学目标
1、理解并掌握把整数、带分数化成假分数的方法,能正确地把整数、带分数化成假分数。
2、通过这两节课的计算,让学生体验形式与实质的关系,进行初步的辩证唯物主义观点的教育。
教学重点、难点
重点、难点:正确地把整数、带分数化成假分数。
教具、学具准备
教学过程
一、复习铺垫
1、把下面假分数化成整数或带分数
3/351/516/47/716/3
9/521/7121/1170/716/1
2、在括号里填上适当的数
1=/31=()/41=()/9
二、教学新知
1、教学例4。
把1化成分母分别是2、3、4、5的分数。
(1)读题、理解题意后失声共同分析
1个圆可以分成2个1/2、3个1/3、4个1/4、5个1/5。
也就是:1=2/21=3/31=4/41=5/5所以1=2/2=3/3=4/4=5/5
(2)口答1=()/()=()/()=()/()=......
小结:1可以化成分母是任意自然数的假分数。
同理:整数可以化成分母是任意自然数的假分数。
2、教学例5。
(1)出示例5,读题理解题意,弄清题目要求。(所化的假分数的分母为3,必须把单位“1”平均分成3份。)
(2)边观察分析填数
()/3()/3()/3()/3
1234
看直线图,填上适当的数(3/3、6/3、9/3、12/3)。说出这些分数的分数单位是多少?各有几个这样的分数单位?
从以上可以看出,1里面有3个1/3,2里面有(3×2)个1/3,那么4里面有()1/3。
2=3×2/3=6/34=3×4/3=12/3
(3)把2和4化成分母是5的假分数。
(4)观察以上整数化成假分数的.式子归纳。
整数化成假分数,用指定的分母作分母,用()和()相乘的积作分子。
2=3×2/3=6/3
指定分母
(5)练一练:
①口答:8=()/76=()/310=()/5
2=()/77=()/14=()/12=()/1
观察最后3题小结,任何自然数可以化成分母是1的假分数。
②课本P89第一题。
3、教学例6。
把2又3/4化为假分数。
(1)读题后,学生思考、试做。
(2)出示图例观察分析,验证。
2里面有(4×2)个1/4,在加上3个1/4,一共是(4×2+3)个1/4,就是11个1/4(11/4)
(3)2又3/4=4×2+3/4=11/4
看式子归纳:带分数化成假分数,用原来的分母作分母,用()和()相乘的积,在加上原来的()作分子。
(4)练一练:
①课本P89页第二题。
②课本P89页第三题。
三、练习反馈。
1、把各组数化成分母相同的假分数。
3又1/7和42又5/8和1
2、比较6和15/2的大小。
A、四人小组讨论,你用什么方法进行比较。
B、讨论后再练习。
C、反馈不同的方法。
D、归纳:两个数相比较,可以把它们同时化为假份数后进行比较,也可以化成整数、带份数进行比较。
3、比较下面各组数的大小
51/3和15/313/2、6和61/3
练习后反馈比较。
四、课堂作业
课本P89第4题(3)(4)第5题第二行。
五、课后作业《作业本》
在教学过程中,我结合图形,较直观地让学生理解整数、带分数化成假分数的算理,并最终归纳出方法。所以学生掌握得比较扎实,课堂上气氛活跃,发言积极。
篇8:五年级数学整数、带分数化成假分数教案
教学内容:整数、带分数化成假分数
教学目标:
1、理解并掌握把整数、带分数化成假分数的方法,能正确的把整数、带分数化成假分数。
2、通过这两节课的计算,让学生体验形式与实质的关系进行初步的辨证唯物主义观点的教育。
教学过程:
一、复习
假分数化成整数、带分数的过程。
二、引入新课
例4把1化成分母是2、3、4、5的分数
分析:一个圆可以分成2个1/2,3个1/3,4个1/4,5个1/5。所以1=2/2=3/3=4/4=5/5
结论:把整数”1“平均分成2份,
1可以表示分子、分母是任意自然数,而且分子和分母相同的假分数。
例5把2和4分别化成分母是3的假分数
分析:因为1里面有3个1/3,所以2里面有(3×2)个1/3.,4里面有(3×4)个1/3。
讨论:
(1)整数化假分数,用指定的分母做分母,用整数与分母相乘的积做分子。
(2)整数可以化成分母是任意自然数的假分数。
(3)任何自然数,都可以写成分母是1的假分数,并用这个自然数做分子。
例6把二又四分之三化成假分数
分析:2里面有(2×4)个1/4,再加上3个1/4,一共是(4×2+3)个1/4,
讨论:带分数化假分数,用原来的分母做分母,用整数和原来的分母相乘的积,再加上原来的份数部分的分子,
三、巩固练习
1、练一练
比较下面每组数的大小
四、
总结归纳
1、整数化成假分数,用指定的分母做分母,用整数和指定的分母相乘的.积做分子,
2、带分数化假分数,用原来的分母做分母,用整数部分和原来的分母相乘的积,再加上原来的分数部分的分子做分子。
五、布置作业
反思:把整数、带分数化成带分数我觉得应遵从这样的教学过程:
1、首先应加强“1”的训练,强化1里面有2个1/2,3个1/3,4个1/4…………………。
2、在教学2里面有几个1/2、1/3、1/4………..。3里面有几个1/2、1/3、1/4………..让学生知道整数就有整数×分母个几分之几。
3、然后在教学带分数转化成假分数。
篇9:五年级数学假分数化成整数或带分数教案
教学内容:例7、例8以及练一练,练习九的第1~6题
教学目标
1、知道带分数是假分数,是整数与真分数合成的数。
2、会把假分数化成整数或带分数。
3、使学生经历假分数化成整数或带分数的探索过程,进一步发展数感。
篇10:五年级数学假分数化成整数或带分数教案
教学流程:
一、复习”假分数“,导入假分数化成整数的教学:
1、板书:假分数
问:怎样的.分数叫假分数?请你举例说明。(引导学生分类说)
(1)等于”1“的假分数。(分子和分母相同,不为0)
(2)分子是5的假分数。(分母是1~5,一共有5个)
(3)分母是5的假分数。(分子从5开始依次加1,说不完,说5个,然后加”......“)
2、请依次说出分母是5、分子是分母倍数的假分数。(学生说,老师板书)
5分之5,5分之10,5分之15,5分之20......
问:5分之5也就是多少?(板书:=1)
那5分之10呢?你是怎么想的?
(方法一:想除法,10÷5=2
方法二:想5分之10也就是2个5分之5,1个5分之5是1,2个5分之5就是2。
方法三:画图理解。可以用方块图,也可以用数轴等表示。......)
比较这几种方法,你认为哪种方法最容易呢?
用你喜欢的方法,算一算:5分之15和5分之20分别等于几?
指名交流所用的方法。
3、小结:这几个假分数都能化成整数,想一想,怎样的假分数能化成整数?
你能也说几个这样的假分数吗?
指名说几个这样的分数化成整数。同桌互相说一说。
小结方法:可以把分子除以分母,所得的商就是要化成的那个整数。
4、练习:p.49第1题
学生完成后指名交流。
二、假分数化成带分数的教学:
1、板书5分之14。问:这个假分数能化成整数吗?为什么?
2、探究方法:那应该怎么算?
方法一:14÷5=2......4
商2就是整数部分,余数4就是分子,分母不变。
板书该带分数。指出:这样的分数叫带分数。前面部分叫整数部分,后面是分数部分,只能是真分数。读成:2又5分之4
方法二:把5分之14改写成5分之10加5分之4。5分之10就是2,2加5分之4,加号不写,就写成2又5分之4。
3、连一练:把3分之12,6分之30,5分之8、3分之8化成整数或带分数。
指名交流。说说为什么前面两个能化成整数,后面两个只能化成带分数?
三、巩固练习:
1、(第2题)先用假分数表示下面的涂色部分,再改写成带分数。
2、(第3题)先把假分数化成带分数,再读一读。
3、(第4题)在直线上面的□里填假分数,下面的□里填带分数。
4、(第5题)填空。
5、(第6题)判断大小。要求学生依次说明判断理由。
6、检查学生的预习作业。
四、全课总结。
篇11:把整数或带分数化成假分数(人教版五年级教案设计)
教学目标
掌握把整数或带分数化成假分数的方法.
教学重点
掌握把整数或带分数化成假分数的方法.
教学难点
把带分数化成假分数.
教学步骤
一、铺垫孕伏.
1.口算.
0.45÷15 1.53-0.7 0.4×0.8 4.8×0.02 0.3÷1.5
0.8-0.37 7.8+0.9 0.8×0.5 14-7.4 32+1.68
2.口答.
(1) 各表示什么意义?
(2)2个 是几分之几? 5个 是几分之几? 12个 是几分之几?
3.把下面的假分数化成整数或带分数.
教师提问: , 表示什么?(表示1与 的和)
二、探究新知.
你会把假分数化成整数或带分数,那你能把3和 化成假分数吗?今天咱们就来学习把整数或带分数化成假分数.(板书课题)
(一)教学例5.
1.例5.把1化成分母分别是2、3、4、5……的分数.
出示图片:
2.分别用分数表示出图中阴影部分.(板书)
教师提问:说说为什么这样表示?
3.分组讨论:这说明了什么?
1可以化成分母是任意分数的假分数.
4.学生举例.
(二)教学例6.
1.例6.把2和5分别化成分母是3的假分数.
2.学生分组讨论:把2化成分母是3的假分数应怎样想?
想:1里面有3个 ;2里面有(3×2)个 ,即 ,所以
3.学生试做:把5化成分母是3的假分数.
教师提问:怎样把2和5化成分母是其他数的假分数?由此你得出什么结论?
学生归纳:整数都可以化成分母是任意自然数的假分数.把整数化成假分数,用指定的分母作分母,用分母和整数的乘积作分子.
4.思考:怎样把1、2和5分别化成分母是1的假分数?
归纳总结:把一个整数化成分母是1的假分数,假分数的分子就是这个整数本身,所以整数都可以看成分母是1的分数.
5.练习.
(三)教学例7.
1.例7.把 化成假分数.
出示图片
2.分组讨论: 是由哪两部分合成的?怎样把 化成假分数?
明确: 由整数部分2和分数部分 合成.把 化成假分数时,先把整数2化成分数 ,再把它和真分数部分合起来. 是10个 , 是4个 ,合起来是14个 ,就是 ,所以 .
3.总结:把带分数化成假分数,用原来的分母作分母,用分母和整数的乘积再加上原来的分子作分子.
4.练习:把下面带分数化成假分数,写出计算过程.
三、课堂小结.
今天你学会了什么知识?
四、随堂练习.
1.在下面的括号里填上适当的数.
2.在下面的○里填上“>”、“<”或“=”.
○1 ○1 ○1 ○
○2 ○4 ○ ○
五、布置作业.
把下面的带分数化成假分数.
六、板书设计
把整数或带分数化成假分数
例5.把1化成分母分别是2,3,4,5,…的分数. 例6.把2和5分别化成分母是3的假分数.
例7.把 化成假分数.
篇12:五年级数学《分数和小数的互化复习》教案设计
五年级数学《分数和小数的互化复习》教案设计
课时课题
分母不是10、100、1000......的分数化成小数
课时
2
教学目标
(1)使学掌握任意分数化成小数的方法,并能正确到把分数化成小数。
(2)培养学生合作意识。
教学重点、难点
重点、难点:任意分数化成小数的方法。
教具、学具准备
教学过程
备 注
一、准备练习
把下面的分数化成小数。
9/101又13/10021/1000
二、导入新课
1、出示:1/2、2/5能不能化成小数?怎样化?
2、揭题:分母不是10、100、1000......的分数化成小数。
三、教学新课
1、引导学生尝试探索:怎样把1/2、2/5化成小数呢?
(1)先独立尝试,再分组讨论,说说自己的想法。
(2)各组汇报结果,说说你是怎样化的?并说出化的依据是什么?
(3)根据学生回答,教师板书。
(4)根据分数与除法的关系:
1/2=1÷2=0.52/5=2÷5=0.4
(5)根据分数的基本性质:
1/2=1×5/2×5=5/10=0.52/5=2÷2/5÷2=4/10=0.4
2、巩固练习
(1)师:同学们通过自己的.探索,得出了分数化成小数的方法,真不简单,请同学们呢把下面的分数化成小数。(用你喜欢的方法)
7/20、5/8、11/40、2又4/5、1又9/25、3又1/4
(2)请三位同学做在投影片上,其余做在作业本上,教师巡视,然后反馈、讲评。
(3)师指出:像2又4/5这样的带分数化成小数时,只要把带分数的分数部分化成小数,再与整数部分合起来书写就可以了,不必把带分数先化成假分数再化成小数。
3、教学例4。
(1)师:刚才同学们用了两种不同的方法都能把分数化成小数,现在老师这里还有两个分数要化小数,你们想一想,可以用什么办法?
教学过程
备 注
(2)出示:把2/7、3/22化成小数。(保留三位小数)
(3)学生先独立尝试,再自学课本例4。
(4)提问:为什么前面用“=”符号,后面用“≈”符号呢?想一想,能不能用分数的基本性质来化呢?
4、巩固练习。
把下面的分数化成小数。(除不尽的保留三位小数)
5/7、2/3、7/12、1又5/9、2又4/15、4又11/18
5、小结。
(1)谁能说一说分数化小数的方法?
分数化成小数,一般要用分子除以分母。
(2)谁能说一说这里为什么要用“一般”两个字?
四、课堂小结
师:今天这节可同学们经过自己的探索,得出了分母不是10、100、1000.........的分数化小数的方法,这样我们就学会了任意分数化小数的方法,谁能总结一下。
五、作业《作业本》
根据分数与除法的关系,可以用分子除以分母的方法把分数化成小数。教学时要提醒学生注意“=”和“≈”的不同使用。
篇13:五年级下册数学《假分数化成整数或带分数》教学反思
本节课是在学习了真分数、假分数的认识和分数与除法的关系的基础上,教学把假分数化成整数或带分数。本节课分为四个环节:
一、从生活情境中导入,认识带分数;
二、探索新知,学会把假分数化成整数或带分数的化法;
三、实践应用,能灵活应用化法解决问题;
四、巩固总结。
在教学过程中,通过图形结合,让学生认识带分数的意义,会读写带分数,进而能在数轴上找到带分数相对应的点,把带分数和1比大小,从而能发现,带分数是假分数的另一种书写方式,它们之间是可以互化的'。整节课环环相扣,条理清楚,但是在教学把假分数化成带分数时没有图形结合,直接用分子除以分母,学生们能按照步骤依葫芦画瓢,但是个别学生不能真正理解它的方法,在做作业时出现了格式上的错误,需加强规范及辅导。
篇14:五年级下册数学《假分数化成整数或带分数》的教学反思
五年级下册数学《假分数化成整数或带分数》的教学反思
假分数化成整数或带分数这一内容教材先要求学生把假分数化成整数,通过观察化成整数的假分数,它们的分子与分母有什么关系?得到结论:能化成整数的假分数,分子都是分母的倍数。接着,引出话题:分子不是分母的倍数的假分数可以写成带分数,带分数就是整数与一个真分数合成的数。至此,自然产生怎样把假分数化成带分数这样的问题,就是教材安排的例题8:怎样把11/4化成带分数?。
怎样把11/4化成带分数?解决该问题的方法呈多元化趋势。⑴画图。画图的直观理解让好多学生喜爱,教材也介绍了该方法;⑵拆数。根据假分数的意义直接推想,因为4个1/4是1,8个1/4是2,11可以分成8和3,所以11/4可以看成2与3/4合成的'数,即2又3/4;⑶除法。根据分数与除法的关系,加上画图、拆数方法和分子是分母的倍数的假分数转化成整数方法的支撑,学生也尝试用除法将假分数转化成带分数,确信是可行的。除法的过程中,让学生明确除得的商是带分数的整数部分,余数是带分数的分子,而分母不变;⑷递减。11/4-4/4=7/4,7/4-4/4=3/4,所以是2又3/4;⑸倍数。找4的倍数4、8、12,11比12小1,比8大3,所以是2又3/4。
假分数转化成带分数的五种中,除法是一般的方法,也就是每个学生都要掌握的方法。但除法的方法比较抽象,理解用除法的方法将假分数转化成带分数,除了分数和除法的关系是数学依据外,离不开其他四种直观方法的支撑,例如递减、画图方法中含有除法产生的稚型, 根据假分数的意义直接推想的方法则和除法的方法明显是相通的。
既然五种方法是相通的,相互支撑的,那么就让它们一起存在吧,当然除法的方法是学生掌握的重点!
文档为doc格式