以下是小编为大家整理的多车型翻车机系统优化设计论文,本文共3篇,希望对您有所帮助。
篇1:多车型翻车机系统优化设计论文
多车型翻车机系统优化设计论文
1、多车型翻车机系统在港口的应用及问题
1.1多车型翻车机系统在港口的应用
经过发展后的现代化多车型翻车机在实际操作工作中的应用越来越广泛,其起到的作用来越来越重要。特别是对我国港口在大型大宗货物运输装卸方面,其重要程度不言而喻。像目前港口的大宗松散货物的运输装卸,多采取倾倒的方式来对其进行卸车,在这种情况下的卸车的效率是比较高的。随着翻车机系统的不断发展,其设备机器和规模也越来越庞大。随之而来的改变就是翻车机的结构构造和卸车方式上的不同。目前翻车机有多种不一样的机型和种类。主要有KFJ—1型侧倾式翻车机;M2型转子式翻车机;C型转子式翻车机等。现代化的转子式多车型翻车机主要为齿轮来进行的转动。目前多用于生产规模较大的物流运输公司,特别是港口在卸载大宗货物方面,起到了不可替代的作用。但是,受限于发展技术水平的影响,其相关的一些设计技术还不完善,所以,我国港口在卸载货物物料的时候,速度不能得到保障,有时候还得一定程度上借助于人力劳力的帮助。翻车机它是翻车机系统的主体,在整个翻车机卸载系统中,如何发挥其最大效果关键是取决于翻车机的内部构成及结构设计。
1.2多车型翻车机系统在港口应用中的问题
首先,因为多车型翻车机这种超大型的机械设备机体比较大,同时结构也相当复杂,再加上不少港口的机械设备更新不及时,使用的多是过于陈旧的机械设备,就比如说转子式驱动翻车机,它就是采用的钢丝绳来进行传动,虽然整体来看结构比较简单、轻便,但是其中的钢丝绳容易磨损、使用寿命也比较短,不利于工作运行效率的'提高。其次,我们也都知道港口的地理位置,由于其特殊的天气状况等自然气象环境,像一些性能并不是很好的机械设备,则会非常容易造成伤害、磨损、腐蚀等现象。例如南京的浦口码头,以前经常会发生一些机械故障。因为有的翻车机入口坡度比较大,一般的机车已经无法顶送。但是,后来经过研究技术人员的优化改造,开发出了———铁牛推送装置。
2、关于多车型翻车机系统的优化设计方面的探究
2.1多车型翻车机电动力系统的优化设计
翻车机系统主要有三套性能在各方面都不一样的机器系统设备。它们是翻车机驱动;推车机驱动;定位车驱动。在设计方面应该加强注重系统的性能设计和控制。上一部分在问题中也提到了“铁牛推送装置”,铁牛推送装置在港口作业中比较普遍,作业方式多样化,相比较于传统的单一的机车顶送作业方式,使作业效率得到极大的提高和改善。
2.2对多车型翻车机作业工艺过程中检测装置的设计进行优化
为了更好地满足定位车在翻卸过程中不摘钩的翻车机车型工艺,以便更好的来保证定位车和其它车厢之间的联接,所以应当在检测装置等方面不理想的部分进行合理的优化及其工艺改造。
2.3多车型翻车机控制系统的优化设计
根据我国的在多车型翻车机作业的模式的认识上,可以知道翻车机系统应用的具体子系统:Con-troILogix控制器;上位机系统;用户操作站点;Flex远程控制网络等。这些都是最基本的条件,也是翻车机系统进行工作的前提。为了能更好地提高其系统的运行效率,通过研究翻车机相关控制系统的设计,更有助于系统整体对多车型翻车机的控制操作。
3、结束语
多车型翻车机是在适应人类社会生产力发展的需求下而出现的。它取代了以往在卸载货物的运用人力劳力的作业情况,它的出现极大的改善了在高速发展的经济社会中生产力的生产环境。但是,随着对更高效的自动化作业的要求,对待多车型翻车机系统设计方面还需要不断的技术改造。仅仅对翻车机的机身进行改造的话是远远不行的,要想更好地适应翻车机系统的自动化高效工作的要求,就必须在翻车机系统整体性能上就行优化设计,以便保证其高效运行。
篇2:大型机组电厂除灰渣系统设计优化与节能降耗论文
进入新世纪,“节能”已经突破了传统的节约电能,逐渐演化为一种全新的“能”,主要涉及到电能、水能、土地资源,有时候还涉及到投资与运行检修等方面。本文主要从广义方面展开研究,希望能够不断优化设计,实现节能降耗的目标。
1常规除湿渣系统
1.1两种系统方案对比分析
刮板捞渣机一级直接上渣仓(一级方案)和捞渣机-碎渣机-刮板输送机-渣仓(二级方案)进行对比,通过若干项目的技术经济对比,同时经由许多电厂的研究之后发现,如果条件准许,最好选择前者。同时还属于《除灰技规》修编所提倡的方法。具体拿600MW来说,通过前者捞渣机出力大约为60t/h,每炉对比结果如下:投资降低数额达到100万元,每年电能消耗减少数量达到11.25万kWh。对比检修成本并未获得较为准确的数据,然而,通过电厂检修工作者的意见,后者的成本相对较高。
1.2减小捞渣机高度或者长度
现阶段,600MW机组一级方案捞渣机基本上是42~50m长,极大值是66m。其长度数值的提高,投资成本随之提高。第一,锅炉下联箱水平长度主要取决于炉型,这个指标保持固定;第二,长期的实践发现,完全能够使用单渣仓,通过该方式能够降低捞渣机头部在渣仓顶部的高度,同时,应将渣仓顶部开槽使得捞渣机斜升段部分放入的型式,通过这种方式来减小捞渣机高度。
1.3将捞渣机关断门取消,减小锅炉高度
伴随捞渣机质量的改善,许多取消关断门设备已经在实践中得到检验,捞渣机检修时间明显大于锅炉大修期,这样设置关断门的作用相对较小,因此,可以将其取消。
1.4后续水处理系统的设计优化
首先,不断将水处理系统简化。利用高效浓缩机等进行处理以后,笔者认为不应再次送至捞渣机,可以输送到统一的废水进行处理;第二,就那些换热系统来说,例如换热等设备,建议取消它们。
1.5将调速装置引入到主要设备之中
由于除渣系统的工况与煤质等条件存在一定关系,引入调速装置尽管成本相对较高,然而却可以充分确保除渣设备的顺利工作,能够在长期工作中发挥非常明显的节能效果。
1.6将搅拌用水泵取消
笔者认为可以通过两个方式来进行,一是直接将水压满足搅拌水水压条件的水(进水等)向搅拌机供应,其次,要是水压无法满足相关标准,可以设置管道泵于灰库运转层搅拌水支管上,其和搅拌机联锁运行。一则可以降低投资与占地,而且还可以节约能源,此外,非常便于调节水量,节约用水。
2风冷钢带机-渣仓方案
2.1建议使用的'渣仓方案
风冷钢带机-后续机械输送系统-渣仓方案和风冷钢带机-后续气力输送系统-渣仓对比来说,前者的优势非常突出,而在大型机组里面,风冷钢带机-碎渣机-斗提机-渣仓方案的应用非常广泛。从投资、消耗能量、以及工作成本等方面进行分析,其优势突出,同时还属于《除灰技规》中建议使用的方案。
2.2干除渣方案的冷却风量的控制
按照许多电厂调试结果表明,到达炉膛的风量一定要低于锅炉总进风量的1%,要是大于该标准,那么将会在一定程度上影响到锅炉燃烧效率,鉴于此,锅炉渣量必须相对较小,否则它的冷渣效果将受到影响(现阶段,通常情况下,我国使用的大型机组每炉最大渣量往往都低于15t/h)。关于每一家设备供应商在实践中使用的其它后续降温方法,仍然需要大量的项目实践来加以验证。
2.3干渣仓的利用
对于那些使用干除渣的项目,要是省煤器灰、脱硫灰要求气力输送系统,在这种情况下,笔者认为应当将其送至干渣仓。因它们为属稀相输送,所以,它们送到干渣仓具有相对较短的距离,这样就非常方便进行输送,能够在降低输送气量,同时还能够节约能源和成本。
3除灰系统
第一,取消省煤器灰的气力输送系统;第二,尽量降低气力输送的距离;第三,科学改善仓泵与管道的配置;第四,适当降低同时运行的支管数量;第五,增设一套虚拟气灰比测量装置;第六,采用全厂集中空压机站;第七,科学设置仓泵低料位与电除尘器灰斗计数量;第八,关于热膨胀,应当科学设置固定支架的位置,利用这种方式尽量使固定支架上热膨胀力为0;第九,灰库和渣仓地面冲洗水,可排至排至沉煤池,要是实践中使用湿法脱硫,还能够通过泵把冲洗水传输到相应的脱硫浓缩池。经过浓缩处理之后和脱硫灰浆一起,经由真空皮带机进行过滤,然后排出。
4结语
综上所述,通过上文中的优化设计,并应用科学合理的节能方法,除灰渣系统能够降低投资成本,尤其是其能够降低占地面积,降低运行成本,最终使其运行效益有所提升。
参考文献:
[1]吕文杰.热电厂除灰渣系统技术改造[J].石化技术,,03:33-35.
[2]翟煤源.大型机组电厂除灰渣系统设计优化和节能降耗[J].山东工业技术,,19:171.
[3]汤虎,邵明勇,董德宇.大型燃煤机组锅炉底渣输送方式选型研究[J].中国电力教育,,03:144-145.
[4]王学根.600MW超临界燃煤发电机组节能降耗实践[J].能源与节能,2012,03:48-50.
篇3:浅析面向对象的多杆机构多目标多约束优化设计方法的论文
浅析面向对象的多杆机构多目标多约束优化设计方法的论文
0引言
多杆机构可以通过不同杆系的串联组合及对杆系参数的调整实现末端执行机构复杂的运动规律和运动轨迹,从而满足不同机械的结构设计要求,广泛应用于各种机械、仪表和机电一体化产品结构设计中。
多杆机构的传统杆系设计方法主要包括图解法,解析法,图谱法和模型实验法等,尤其是随着数值计算方法的发展,解析法成为各类多杆机构运动设计的一种有效方法。文献针对多杆机构末端执行机构运动存在非线性传递的问题提出了一种基于遗传算法的多杆压力机运动优化方法;文献通过对多杆系统的分级处理,借助杆系设计变量、约束函数和目标函数推导出最终的增广目标函数,从而计算得到系统的主要参数(运动参数和结构参数);文献通过建立了滑块位移,速度,加速度的数学模型,按滑块在工作行程内速度波动最小的原则建立了优化设计数学模型,最终运用复数矢量法对压力机双曲柄多杆机构进行了运动分析;文献以一种平面八连杆机构为例建立了平面多杆机构的运动分析数学模型,并利用MATLAB对其进行了优化设计和仿真分析。上述方法解决多杆机构运动设计问题的核心思想在于依赖建立能够客观反映机构运动学和动力学特性的代数解析方程(组),借助系统耦合矩阵,实现对全系统状态方程的程式化推导,通过探讨方程(组)解的形式以及方程(组)解的存在条件等方式,实现对特定结构,特定参数变化条件下系统动态性能的定性描述与比较。然而,当多杆机构给定的运动设计要求较多或较复杂,难以用数学语言对其进行模型表达时,上述多杆结构优化设计方法表现出明显的建模周期长,模型可靠性差,模型重用性差等缺点,延长了产品的设计周期,增加了产品的设计成本。
自20世纪80年代以来,诸多学者提出从系统工程角度将计算机辅助设计优化技术应用于复杂产品研发,借助多种计算机辅助设计软件实现了不同领域仿真物理模型自动向数学模型的转化,并通过综合使用数值仿真技术、优化技术、统计技术、计算机和网络技术,最终实现多目标多约束条件下,产品综合性能和整体质量的改进,极大地提高了产品的设计效率,缩短了产品的设计周期。
1多杆机构优化设计问题
具有不等式约束的多杆机构优化设计问题的数学表达模型可以概括为:
min/maxf(x)=f(x1,x2,…,xn)
s.t.Rj(x··)=gj(x1,x2,…,xm)0≤(j=1,2,…,m)
即在满足m个不等式约束gj(x)≤0的限制条件下,求使目标函数f(x)趋于最小或最大的设计变量向量x=[x1,x2,…,xn]T,(x篟n,Rn为设计变量可行域)。其中目标函数f(x)可以是给定的滑块运动要求,也可以是机构整体的动力学输出特性要求。当给定的运动要求较多或杆系较复杂时,针对多杆机构结构优化设计可以归纳为典型的多目标多约束优化问题。
1.1双曲柄滑块机构
以一种由双曲柄机构与曲柄滑块机构串联组成的六连杆机构,即双曲柄滑块机构的优化设计问题为例。双曲柄滑块机构运动原理图,由于双曲柄机构ABCD的存在,双曲柄滑块机构的滑块运动输出特性得到了有效改善。在恒速驱动条件下,2种机构滑块运动输出特性对比。在相同滑块负载条件下,2种机构驱动电机扭矩对比。
在相同驱动条件下,双曲柄滑块机构与传统曲柄滑块机构相比,两者具有相同的工作周期,且在图示工作行程内,双曲柄滑块机构滑块运动速度趋于平稳,而传统曲柄滑块机构则表现出明显的`速度波动。当上述机构应用于锻压机械传动系统,尤其是进行拉伸工艺操作时,传统曲柄滑块机构的上述运动特性极易造成拉伸件的拉裂,加剧模具的磨损。
在相同滑块负载条件下,双曲柄滑块机构与传统曲柄滑块机构相比,在图示负载作用周期内,双曲柄滑块机构驱动扭矩最大值明显小于传统曲柄滑块机构。双曲柄滑块机构上述动力学特性使其更适于作为需要实现大增力比的大型机械传动系统。
由于双曲柄滑块机构的上述特性,该机构被广泛应用于不同功能机床的传动系统,最典型的应用包括多连杆压力机的传动机构和插齿机传动机构,前者利用双曲柄滑块机构滑块加工工作行程内速度变化平稳的优点,相对传统锻压机械在相同加工效率的条件下,能够显著提高拉深工件的成形质量,同时降低模具的磨损;后者则利用相同负载条件下,双曲柄机构的加入能够显著降低系统对于驱动电机容量要求的特点,在不影响加工效率的前提下达到显著的增力效果,最大限度地提高相关加工设备的加工能力。
1.2多杆机构多目标多约束问题描述
以上述双曲柄滑块机构为例,作为多连杆压力机传动系统为适应不同加工工艺操作,不同加工材料,不同材料加工厚度对滑块加工运动轨迹的不同要求,往往需要针对特性的滑块运动轨迹对杆系结构参数进行优化设计;而作为插齿机传动机构,由于要综合考虑结构强度,齿刀寿命等因素,也需针对不同的结构增力要求对其结构参数进行优化。
如何针对不同加工应用领域,不同的功能设计要求,对同一多杆机构的尺寸参数进行优化,使其更合理地规划末端执行机构的运动学和动力学输出特性是多杆机构优化设计的核心问题。显然,上述双曲柄滑块机构针对不同加工应用领域,其优化目标侧重点不同,当双曲柄滑块机构应用于多连杆压力机时,其优化目标可以概括为:求使滑块运动输出满足特定曲线要求的连杆参数优化组合,侧重于对滑块运动学特性的优化;当双曲柄滑块机构应用于插齿机时,其优化目标则更侧重于提高双曲柄机构的增力效果,即求能够使机构输出扭矩最大化的杆系参数优化组合。
其中,M代表变量Loa,Lab,Lbc,Loc的可行域,双曲柄机构成立条件可以表述为:取最短杆为机架,且最短构件与最长构件长度之和小于或等于其他两构件长度之和,即:
Loc
Loc
Loc
Loa+Lab+Lbc-Loc-2max(Loa,Lab,Lbc,Loc)≤0
2基于Isight与ADAMS面向对象的多杆机构优化设计
通过Isight对用户建立的ADAMS参数化仿真模型的仿真分析流程进行集成和管理,借助Isight提供的多种优化搜索策略对多杆机构的多目标多约束优化问题进行求解,从而获得满足设计要求的整体优化结果。
2.1ADAMS参数化模型的建立
取双曲柄滑块机构从动曲柄水平位置为建模参考位置,利用优化参数对模型坐标点进行参数化,从而建立双曲柄滑块机构的仿真参数化模型。最终建立由杆系几何参数约束的ADAMS参数化模型。其中:α=cosLab2+Loa2+Loc2-Lbc22LoaLoa2槡+Loc()2,β=atanLocLoa()。
2.2双曲柄滑块机构优化
Isight具备试验设计方法(designofexperiment),梯度优化算法(gradientoptimization),直接搜索方法(directsearch),全局优化算法(globaloptimization)等多个优化求解模块,考虑到上述双曲柄滑块机构设计参数不多,以梯度优化算法中的NLPQL算法为例,对双曲柄滑块相关目标函数的优化问题进行求解。
NLPQL算法将目标函数以二阶泰勒级数展开,并通过把约束条件线性化的方式二次规划得到下一个设计点,然后根据2个可供选择的优化函数执行一次线性搜索,其中Hessian矩阵由BFGS公式更新,该算法具有运行稳定,数据收敛速度快的特点。
3仿真结果分析
在Isight中设置好设计变量,约束条件和优化目标后调用ADAMS模型进行批处理运算,计算过程中对每个样本点进行迭代,以双曲柄滑块机构增力特性优化流程结果为例。
在NLPQL算法作用下,设计变量在所定义的变化限制范围内逐步收敛得到所限制范围内的局部最优解。,相同负载条件下,优化后的驱动扭矩较优化之前降低了35%,达到了良好的优化效果。
4结语
本文提出了一种基于Isight与ADAMS集成的面向对象的解决多杆机构多目标多约束条件下的优化设计方法,并以一种六连杆机构为例对上述方法进行了验证。与传统解析法解决类似问题相比,上述集成优化方法能够借助计算机软件将仿真物理模型自动转化为数学模型,并通过对仿真模型参数及分析结果的有效管理,达到解决多杆机构多目标多约束问题的目的。从而使工程设计人员从繁琐的数学模型建模和求解流程中解放出来,将精力集中在设计方案的选取和评价方面,能够显著提高产品的设计效率,缩短产品设计周期。
文档为doc格式