下面小编为大家整理了百分数应用题,本文共10篇,欢迎阅读与借鉴!
篇1:百分数应用题
百分数应用题
1、六年级有男生20人,女生25人。
(1)、男生人数是女生人数的百分之几?女生人数是男生人数的百分之几?
(2)、男生人数比女生人数少百分之几?女生人数比男生人数多百分之几?
2、公园里有杨树36棵,柳树60棵。杨树棵树比柳树少百分之几?柳树棵树比杨树多百分之几?
3、一件衣服原价230元,现降价30元出售,降价了百分之几?
4、师傅加工零件180个,比徒弟多30个,多了百分之几?
5、学校十月份用电276度,比九月份节约了24度,节约了百分之几?
6、把一块边长2m的正方形玻璃切割成一个最大的圆形,面积比原来减少了百分之几?
7、一个长方体木料的长、宽、高分别是5cm、4cm、3cm,如果把它锯成一个最大的.正方体,体积减少了百分之几?
8、一辆汽车从甲地出发,6小时后到达乙地。原路返回时只用了5小时,时间减少了百分之几?速度提高了百分之几?
9、一个圆的半径是5cm,如果半径增加20%,面积会增加百分之几?
10、A品牌电脑现价2700元,比原价降低了300元;B品牌电脑现价3800元,比原价降低了400元,,哪种品牌的电脑下降的百分比多?
篇2:百分数应用题和答案
⑴ 求一个数是另一个数的几分之几(或百分之几):
分数(百分数)应用题的基本类型之一。求一个数是另一个数的几分之几(或百分之几),是求它们之间的倍数关系,用分率(百分率)表示。
解题规律:一个数与另一个数作比较,以另一个数为标准量,作除数;与它作比较的数为比较量,作被除数。即
比较量÷标准量 = 分率(百分率)
例1:某工厂有男工800人,女工500人,男工是女工的几分之几?女工是男工的几分之几?
800÷500 = 8/5 500÷800 = 5/8
答:男工是女工的8/5倍,女工是男工的5/8。
例2:某工厂有男工800人,女工500人,男工比女工多百分之几?女工比男工少百分之几?
(800 - 500)÷500 = 60% (800 - 500)÷800 = 37.5%
答:男工比女工多60%,女工比男工少37.5%.
例3:某校七月份用去办公费600元,比六月份节约了150元,节约了百分之几?六月份比七月份多用了百分之几?
150÷(600 + 150)= 150÷750 = 0.2 = 20%
150÷600 = 0.25 = 25%
答:七月份比六月份节约20%,六月份比七月份多用25%.
⑵ 求一个数的几分之几(或百分之几)是多少:
分数(百分数)应用题的基本类型之一。已知一个数,求这个数的几分之几(或百分之几)是多少,是已知标准量,求比较量的问题。
解题规律:标准量×分率(百分率)= 比较量
例1:一条路长500米,已经修了全长的3/5,修了多少米?
500×3/5 = 300(米)
答:修了300米。
例2:一条路长500米,已经修了全长的'60%,还剩多少米没修?
500×(1 – 60%)= 500×40% = 500×0.4 = 200(米)
答:还有200米没修。
例3:玩具厂原计划六一节前夕生产电子玩具1500件,实际比计划多生产1/15,实际生产电子玩具多少件?
1500×(1 + 1/15)= 1500×16/15= 1600(件)
答:实际生产电子玩具1600件。
⑶ 已知一个数的几分之几(或百分之几)是多少,求这个数。
分数(百分数)应用题的基本类型之一。已知一个数的几分之几(或百分之几)是多少,求这个数,是已知比较量,求标准量的问题。
解题规律:比较量÷分率(百分率)= 标准量
例1:某校有三好学生96人,占全校学生总人数的24%,全校有学生多少人?
96÷24% = 96÷0.24 = 400(人)
答:全校有学生400人.
例2:某钢厂今年产钢60000吨,比去年增产1/4,去年产钢多少吨?
60000÷(1 + 1/4)= 60000÷ 5/4= 48000(吨)
答:去年产钢48000吨。
例3:一种商品,现在成本160元,比原来降低了5/9,原来成本多少元?
160÷(1 -5/9)= 160÷ 4/9= 360(元)
答:原来成本360元.
成数问题:有关成数计算的应用题,叫做成数问题。成数问题的类型与百分数问题一样,在计算方法上,也常把成数化成百分数,然后进行计算。解题途径与百分数问题相同。
篇3:百分数应用题答案
1、某化肥厂今年产值比去年增加了 20%,比去年增加了500万元,今年道值是多少万元?
2、果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10 ,这时有苹果多少箱?
3、一件商品,原价比现价少百分之20,现价是1028元,原价是多少元?
4、教育储蓄所得的利息不用纳税。爸爸为笑笑存了三年期的教育储蓄基金,年利率为5.40%,到期后共领到了本金和利息22646元。爸爸为笑笑存的教育储蓄基金的本金是多少?
5、服装店同时买出了两件衣服,每件衣服各得120元,但其中一件赚20%,另一件陪了20%,问服装店卖出的两件衣服是赚钱了还是亏本了?
6、爸爸今年43岁,女儿今年11岁,几年前女儿年龄是爸爸的20%?
6、比5分之2吨少20%是( )吨,( )吨的30%是60吨。
7、一本200页的书,读了20%,还剩下( )页没读。甲数的40%与乙数的50%相等,甲数是120,乙数是( )。
8、某工厂四月份下半月用水5400吨,比上半月节约20%,上半月用水多少吨?
9、张平有500元钱,打算存入银行两年.可以有两种储蓄办法,一种是存两年期的,年利率是2.43%;一种是先存一年期的',年利率是2.25%,第一年到期时再把本金和税后利息取出来合在一起,再存入一年.选择哪种办法得到的税后利息多一些?
10、小丽的妈妈在银行里存入人民币5000元,存期一年,年利率2.25%,取款时由银行代扣代收20%的利息税,到期时,所交的利息税为多少元?
11、一种小麦出粉率为85%,要磨13.6吨面粉,需要这样的小麦_____吨。
参考答案
1、今年产值是3000万元
2、这时有苹果440箱(原来有苹果400箱)
3、原价是822.40元
4、存的本金是19488.81元
5、卖出这两件衣服赔了10元钱
6、3年前女儿年龄是爸爸的20%
7、0.32吨;200吨
8、还剩下160页;乙数是96
9、上半月用水6750吨
10、第一种方法得到的税后利息多一些(19.44元;18.16元)
11、所交利息税为22.5元
12、需要这样的小麦16吨
延伸阅读:浅析分数、百分数应用题的解法
分数、百分数应用题一般称为分率应用题,同学们对解答这类应用题时一般都感到困难,大家怎样掌握解答这类问题的方法呢?同学们不妨从以下两点入手。
一、确定单位“1”的量是解题的关键
分率应用题的解答关键是确定单位“1”的量,因此要求同学们抓住关键词找出单位“1”的量,找单位“1”的量有两种方法。。
1.根据分数的实际意义,确定单位“1”的量。
例如,学校运来一批面粉,用去2/3,正好是10吨,这批面粉有多少吨?2/3的实际意义是把这批面粉看作单位“1”,平均分成3份,用去了其中的2份,所以这批面粉是单位“1”的量。
2.搞清哪两个量相比,确定单位“1”的量。
例如,一项工程,计划投资15万元,实际节约了20%,实际投资多少万元?同学们可以先想想:“谁比谁节约20%”,当大家弄清是“实际比计划节约了20%”,也就弄清计划投资是单位“1”的量。
二、理清数量关系是解题的重要环节。理清数量关系有两种方法
1.分析关键句的含义,弄清数理关系
上面例子里的关键句是“实际节约20%”,分析这句话的含义是:实际投资相当于原计划的(1-20%),单位“1”的量是原计划,再根据分数乘法的意义,列出关系式:原计划投资×(1-20%)=实际投资
2.运用线段图把数量关系表示出来
有些较复杂的分率应用题,若采用线段图,就能更直观地理清数量关系。
(1)列出关系式是解题的依据。分析数量关系式后再采取“一找”、“二看”、“三列式”的方法列出数量关系,这题基本上就能解答出来。
“一找”是抓住关键句找出单位“1”的量。“二看”单位“1”的量是否已知。求什么?“三列式”(1)已知单位“1”的量求分率,用比较量÷单位“1”的量。
(2)己知单位“1”的量和分率求比较量,用单位“1”的量×比较量对应的分率。(3)求单位“1”的量,用比较量÷比较量的对应分率。
篇4:百分数应用题及答案
1、某化肥厂今年产值比去年增加了 20%,比去年增加了500万元,今年道值是多少万元?
2、果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10 ,这时有苹果多少箱?
3、一件商品,原价比现价少百分之20,现价是1028元,原价是多少元?
4、教育储蓄所得的利息不用纳税。爸爸为笑笑存了三年期的教育储蓄基金,年利率为5.40%,到期后共领到了本金和利息22646元。爸爸为笑笑存的教育储蓄基金的本金是多少?
5、服装店同时买出了两件衣服,每件衣服各得120元,但其中一件赚20%,另一件陪了20%,问服装店卖出的两件衣服是赚钱了还是亏本了?
6、爸爸今年43岁,女儿今年11岁,几年前女儿年龄是爸爸的20%?
6、比5分之2吨少20%是( )吨,( )吨的30%是60吨。
7、一本200页的书,读了20%,还剩下( )页没读。甲数的40%与乙数的50%相等,甲数是120,乙数是( )。
8、某工厂四月份下半月用水5400吨,比上半月节约20%,上半月用水多少吨?
9、张平有500元钱,打算存入银行两年.可以有两种储蓄办法,一种是存两年期的,年利率是2.43%;一种是先存一年期的,年利率是2.25%,第一年到期时再把本金和税后利息取出来合在一起,再存入一年.选择哪种办法得到的`税后利息多一些?
10、小丽的妈妈在银行里存入人民币5000元,存期一年,年利率2.25%,取款时由银行代扣代收20%的利息税,到期时,所交的利息税为多少元?
11、一种小麦出粉率为85%,要磨13.6吨面粉,需要这样的小麦_____吨。
参考答案
1、今年产值是3000万元
2、这时有苹果440箱(原来有苹果400箱)
3、原价是822.40元
4、存的本金是19488.81元
5、卖出这两件衣服赔了10元钱
6、3年前女儿年龄是爸爸的20%
7、0.32吨;200吨
8、还剩下160页;乙数是96
9、上半月用水6750吨
10、第一种方法得到的税后利息多一些(19.44元;18.16元)
11、所交利息税为22.5元
12、需要这样的小麦16吨
篇5:分数、百分数应用题
分数、百分数应用题整理和复习教学内容:九年义务教育六年制小学数学第十二册第84~87(苏教版)教学目的:1、通过复习使学生把稍复杂的分数和百分数应用题的有关知识系统化。 2、使学生牢固掌握分数和百分数应用题的基本数量关系和解题方法。 3、使学生能够比较灵活地运用这些知识正确解答稍复杂的分数、百分数应用题,提高学生独立解决实际问题的能力。 4、培养学生认真审题和学会联系实际的良好学习习惯。教学重点:综合运用所学知识解答分数、百分数应用题教具准备:电脑、课件。教学过程 :一、导入 师:同学们,这节课让我们一起来对分数、百分数应用题进行整理和复习。(板书课题)二、复习运走一批货物的25%提问:看到这个带有分率的条件句,你知道了什么?你还能联想到什么?还有吗?三、新课教学1、教学例题(1)出示线段图水彩画: 蜡笔画: 师:看到这幅线段图你能提出哪些有关分数的问题?① 蜡笔画比水彩画多几分之几?师:怎样列式?板书:(80-50)÷50=②水彩画比蜡笔画少几分之几?师:怎样列式?板书:(80-50)÷80=(2)归纳小结师:同学们提的这两个问题用一句话概括,它们都表示求什么?板书:求一个数比另一个数多或少几分之几。师:请同学们小结一下这样的题我们用什么方法解答?求一个数比另一个数多(或少)几分之几就是相差量除以单位“1”的量。2、教学较复杂的分数、百分数应用题。(1)用已知条件和问题编应用题。师:同学们,刚才我们已经复习了“求一个数比另一个数多(或少)几分之几”的题应该怎样解答,下面就让我们把求出的两个分率运用在实际中来练习一下吧!蜡笔画有80幅 水彩画有50幅水彩画比蜡笔画少3/8 蜡笔画比水彩画多60%水彩画有多少幅? 蜡笔画有多少幅? 师:同学们请你从蓝、红两组条件中各选择一个条件,配上一个合适的问题,编出4道不同的分数应用题,并说说它们应该怎样列式解答?(小组讨论)学生编,屏幕显示:①蜡笔画有80幅,水彩画比蜡笔画少3/8,水彩画有多少幅?②水彩画有50幅,蜡笔画比水彩画多60%,蜡笔画有多少幅?③蜡笔画有80幅,蜡笔画比水彩画多60%,水彩画有多少幅?④水彩画有50幅,水彩画比蜡笔画少3/8,蜡笔画有多少幅?(2)对比4道应用题。师:同学们请你观察一下①、②两道题,它们都是用什么方法解答的?为什么?生:它们都用乘法解答,因为它们都表示已知一个数求它的.几分之几是多少?(板书)师:③、④两道题又有什么共同点呢?生:它们都表示已知一个数的几分之几是多少,求这个数。都用除法解答。(板书)师:这两道用除法解答的题你还可以用什么方法解答?(请学生口述方程解法)师:同学们,这4道题中有分数应用题,也有百分数应用题,它们有什么相同点和不同点?四、练习1、请学生完成练习纸上的题。(集体订正)蔬菜商店运来黄瓜210千克,运来的西红柿占黄瓜重量的2/3,运来西红柿多少千克?学校合唱队有39人,是舞蹈队人数的3/5,舞蹈队有多少人?六(1)班男生有15人,男生与女生人数的比是4:5,女生有多少人?五、巩固练习1、翻版游戏。师:同学们,你想知道翻版的背面是什么吗?请你为每张翻版上的题列出算式。1234(1)仓库里有15吨钢材。第一次用去总数的20%,第二次用去总数的1/2,还剩多少吨钢材?(2)仓库里有15吨钢材,第一次用去总数的20%,第二次用去1/2吨。还剩多少吨钢材?(3)光明制鞋厂四月份实际生产鞋26000双,实际比计划多生产1300双。实际完成了计划的百分之几?(4)某体操队有60名男队员,男队员比女队员少1/5,男队员比女队员少多少人?(每做对一道题翻版就露出画的一部分。)同学们,下面让我们用所学的知识来了解我们的祖国。(屏幕出示中国地图)师:你知道“西部大开发”都有哪些城市吗?(出示几个“西部大开发”的城市名称)师:这里有几座“西部大开发”的城市,你想了解一下哪座城市?(根据学生的选择,展开与各个城市有关的题目)(1)同学们,布达拉宫是西藏的象征,它气势雄伟壮观。布达拉宫的长比高多240米,高比长短2/3,你知道布达拉宫有多高吗?(2)“天下黄河富宁夏”,黄河每年过宁夏的流量大约为325亿吨。全区上半年用了其中的25%,下半年用了其中的35%,你能求出下半年比上半年多用多少黄河水吗?(3)陕西的兵马俑被称作“世界八大人造奇迹”之一,其中步兵俑占陶俑总数的2/5,其它陶俑比步兵俑多1600件,你能求出兵马俑中陶俑的总数吗?(4)新疆是我国的西北边疆,那里夏至日照时间为18小时,使得出产的瓜果特别香甜,到了冬至日照时间缩短到9小时,你能求出日照时间缩短了百分之几吗?六、小结师:这节课你有哪些收获?七、作业 :完成课堂作业 题。八、动脑筋一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,这时距离乙地还有94千米。甲、乙两地的公路长多少千米?
篇6:其他教案-分数、百分数应用题
分数、百分数应用题
[学习目标]
1、掌握分数、百分数应用题的结构特点和解题方法,会解
答一至三步计算的分数、百分数应用题,会有条理地说
明它们的思路,会按照题目的具体情况选择简便的解答
方法,能应用所学的知识解决生活中的一些简单的实际
问题。
2、知道百分数在实际中的应用,并会解答有关的实际问题。
[重点、难点]
1、正确判断作为单位“1”的量是学习的重点。
2、百分数的应用是学习的重点。
3、在发芽率的公式中为什么要乘以100%是学习的难点。
4、在工程问题中,用“1”表示工作总量,用单位时间
内完成工作总量的几分之几表示工作效率,是学习
的难点。
5、有条理地说明解题思路是学习的难点。
第一课时:10、30
一、复习分数乘法的意义
一个数乘以分数就是求这个数的几分之几。
如:
二、要解决的`问题
1、求一个数的几分之几(百分之几)
2、已知一个数的几分之几,求这个数。
如:(1)15的 是多少?
(2)已知一个数的 是12,这个数是多少?
三、应用
例1、一条公路长2400米,已修了全长的 ,还剩
下多少米?
分析:根据题意,已修了全长的 ,是把全长(2400米)看作“单位1”,未修的路程是全长的(1- ),要求还剩下多少米就是求2400米的(1- )是多少。
答:还剩下960米。
例2、修路队要修一条公路,已修了1440米,正好占
全长的 ,还要修多少米?
分析:已修的正好占全长的 ,是把全长看作“单位1”,
已修的1440米是 对应的数量,可以求出全长。已修了占全长的 ,那么未修的占全长的(1- ),要求出还要修多少米才完成任务,就是求全长的(1- )是多少?
答:还要修960米才完成任务。
练习:分课时总复习P98 Ex1:5、6、7、8
P98 Ex2、Ex4
作业 :P99 Ex6:1、2
篇7:百分数应用题三教案
百分数应用题(三)教案
教学内容:百分数的应用(三)教材第28、29页 教学目标: 1.利用百分数的意义列出方程解决实际问题。 2.提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。 教学重点:列方程解决百分数方面的实际问题。 教学难点:根据题意找出等量关系。 教学过程: 一.引入 师:通过前面的学习,我们知道百分数与生活有着十分紧密的联系。请同 学们想一想,你能给大家说一些生活中用到百分数的事例吗?(让学生自 由说一说)。板书课题:百分数的应用(三) 二.新知探究 1。创设情境,获取信息 出示笑笑的妈妈记录的家庭消费情况统计表。通过前面的学习,我们知道 百分数与生活有着十分紧密的联系。请同学们想一想,你能给大家说一些 生活中用到百分数的事例吗?(让学生自由说一说) 下表是笑笑的妈妈记录的家庭消费情况: 年份 1985年 1995年 食品支出总额占家庭总支出的百分比 65% 58% 50% 其他支出总额占家庭总支出的百分比 35% 42% 50% 1、你能给大家说说表格所表示的意思吗? 2、根据表中数据,你有什么发现? 3、教师提出问题: 1985年食品支出比其他支出多210元。你知道这个家庭的总支出是多少元 吗? 4、你准备怎样解答这个问题?(小组讨论) ※ 你觉得直接列式方便吗?为什么? 5、展示解答过程 解:设这个家庭1985年的总支出是X 65% X - 35% X = 210 30% X = 210 X = 700 6、如果20 食品支出占家庭总支出的50%,旅游支出占家庭总支出的 10%,两项支出一共是5400元,这个家庭的总支出是多少元? ※ 学生独立解决 ※ 教师评价 7、教师介绍《恩格尔系数》的有关知识: 19世纪,德国统计学家恩格尔阐明了一个规律:随着家庭收入增加,收入中用于食品方面的支出百分比将逐渐减小,反映这一规律的系数被称为恩格尔系数。其公式为: 恩格尔系数(%)=食品支出总额÷家庭消费支出总额×100% 国际上常常用恩格尔系数来衡量一个国家和地区人民生活水平的情况。恩格尔系数在60%以上为贫穷,50%~60%为温饱,40%~50%为小康,30%~40%为富裕,低于30%为最富裕。 三.练习提高 完成练一练的第1至5题 在完成第5题时为学生提供有关《空气质量的标准》的`资料。让学生对空气质量有所了解。同时渗入有关环保教育。 四.总结: 通过这节课的学习,你学会了什么? 【教学反思】本课呈现的是笑笑的妈妈记录的家庭消费情况统计表。让学生了解有关生活中百分数的知识,以激发学生学习的兴趣,认识到数学应用的广泛性。在教学中,利用教材提出的“各项支出与总支出的关系”,使学生从中了解百分数与生活的关系。从数据的变化,让学生体会到我们国家的经济不断发展,我们生活水平的不断提高。了解《恩格尔系数》,会用恩格尔系数公式来衡量一个国家和一个地区人民生活水平。因为学生己有了百分数的知识基础,对于解答这题我让学生自己讨论,由于讨论的问题和数据都来自于学生,这样就使百分数更具有实际意义,学生的学习兴趣和积极性也有所提高了,同时,在讨论交流中,拓展了学生的思维,让学生综合应用所学的知识解决实际问题。在这节课中让学生从表中发现数据的变化,并从中感受百分数与现实生活的密切关系,达到了很好的效果。在学生完成习题5时,为学生提供《空气质量标准》的资料,同时也渗入环保教育,让学生也明白珍惜环保多么重要。不足之处:(1)由于对班级学生不够了解,师生配合不够完美。(2)学生对列出等量关系,用方程来解答百分数问题的方法掌握得还不到位,仍需要进一步加强。篇8:百分数应用题教学设计
教学目标:
1、知识与技能:
使学生掌握稍复杂的求比一个数多(少)百分之几的另一个数是多少的应用题的解题方法,并能正确地解答这类应用题。
2、过程与方法:
教学中采用迁移类推、合作交流、自主探究的方法使学生能正确的解答稍复杂的求比一个数多(少)百分之几的另一个数是多少的应用题。
3、情感态度价值观:
感受数学与生活的联系,培养学生的应用意识和解决简单的实际问题的能力。
教学重点:
掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。
教学难点:
正确、灵活地解答这类百分数应用题的实际问题。
教学过程:
一、复习导入:出示复习题:
1、找出下列句子中的单位“1” ①桃树的棵数是梨树的75%。 ②科技书的本数是连环画的50% ③全校男生的人数是女生的98% ④桃树的棵数比梨树少25%。 ⑤科技书的本数比连环画多50% ⑥全校男生的人数比女生少2%。
2、学校图书室原有图书1400册,今年图书册数增加了25 。(1)提问:根据给出的这两个条件,你能提出什么问题?(2)你能自己解决吗?试试看。
(提示学生找出这道题目的分率句,确定单位“1”,并根据数量关系列式)
二、新授
1、教学例4出示例题:
学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?
请小组合作,完成下面几个问题:
(1)、增加的12%是谁的12%?单位“1”是谁?(2)、数量关系是什么?
(3)、怎么列式计算解决这个问题(有几种方法)?第一种:1400+1400×12%
第二种:1400×(1+12%)
=1400+168
=1400×112%
=1568(册)
=1568(册)
答:现在图书室有1568册图书。
2、通过这道题的学习,你明白了什么?
(求一个数的几分之几和求一个数的百分之几,都要用乘法计算)
3、师生共同归纳总结比一个数多(少)百分之几的应用题的解题方法。
4、巩固练习:完成“做一做”第
1、2题。
三、拓展练习
某校六(1)班有男生20人,女生比男生少10%,六(1)班一共有多少人?
四、课堂小结:
通过本节课的学习,你认为解决这类应用题的关键是什么?
五、板书设计:
百分数应用题
例4:学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?
第一种:1400+1400×12%
第二种:1400×(1+12%)
=1400+168
=1400×112%
=1568(册)
=1568(册)
答:现在图书室有1568册图书。
教学反思
本部分内容是“求比一个数多(少)百分之几的数是多少”的应用题,它是在学生会求一个数比另一个数多(少)几分之几的基础上学习的,与“求比一个数多(少)几分之几”的应用题相似,只是相应的分率转换成了百分率。因此,在复习上,我安排了与例题较为相似的分数应用题,以旧引新,做好充分的迁移准备,通过对题目的改变,让学生了解二者的联系。因为题型及解题方法几乎都相同,学生学起来也较为容易。
在教学过程中,我注重做好了这几点:注重数量分析;抓重点,突破难点,鼓励学生用不同的解法,提高学生灵活的思维能力;精讲多练,有层次;联系密切联系生活实际,使学生感悟到百分数的应用非常广泛,学好百分数可以解决很多生活问题,提高学生的学习兴趣;学生的错题能够及时的反馈探索并纠正。
如果下次再上这节课,要改进的地方有:
1、讲授新课时,先让学生去讨论问题所表示的含义,再和同桌或四人小组画图研究解决问题方法,再让学生尝试解答,注意发掘有创造性解法。
2、解答后再由学生代表展示、交流自己的解题思路,通过交流,进一步使学生理解数量间的关系。
3、对于有创造性解法,给予表扬、鼓励。
4、探索算法的时候,多给学生一些时间去讨论,探索加深对数量关系的理解。效果会更好些。
5、出示一些一题多变的练习,提高学生的审题能力和辨别能力。这样训练可能效果更棒!
篇9:百分数应用题教学设计
教材分析:
这部分内容是求一个数是另一个数的百分之几的应用题的发展。它是在求比一个数多(少)几分之几的分数应用题的基础上进行教学的。这种题实际上还是求一个数是另一个数的百分之几的题,只是有一个数题目里没有直接给出来,需要根据题里的条件先算出来。通过解答比一个数多(少)百分之几的应用题,可以加深学生对百分数的认识,提高百分数应用题的解题能力。
学情分析:
用线段图表示题目的数量关系有助于学生理解题意、分析数量关系。再通过“想”帮助学生弄清,要求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数是原计划造林公顷数的百分之几。然后鼓励学生寻找不同的解决方法,这样既开拓了学生的解题思路,又可以发展学生的思维能力。不断的改变题中的问题,使学生进一步加深对这类百分数应用题的认识,看到题里条件和问题之间的`内在联系,同时也促进了学生逻辑思维能力的发展。
教学目标:
1.认识“求比一个数多(少)百分之几”的应用题的结构特点。
2.理解和掌握这类应用题的数量关系、解题思路和解题方法。
教学重点:
掌握“求比一个数多(少)百分之几”的应用题的解题方法,正确解答。
教学难点:理解这类应用题的数量关系、解题思路和解题方法。
教学过程:
一、复习。
1、说出下面各题中表示单位“1”的量,并列出数量关系式。
(1)男生人数占总人数的百分之几?
(2)故事书的本数相当于连环画本数的百分之几?
(3)实际产量是计划产量的百分之几?
2、只列式,不计算。
(1)140吨是60吨的百分之几?
(2)260吨是40吨的百分之几?
3、一个乡去年原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?
【教学过程说明:通过复习,为旧知识向新知识迁移做好必要的准备:①明确题目中哪个量是单位“1”;②求一个数是另一个数(也就是单位“1”)的百分之几的数量关系及解题模式。】
二、探究新知:
1、出示例3:
一个乡去年原计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?
2、讨论:
(1)这道题与上面的复习题相比较,相同的地方是什么?什么发生了变化?
【教学过程说明:从题目对比中引导学生找出异同点,通过不同点,引入新知,构建新知。】
板书课题:较复杂的百分数应用题
(2)出示线段图:
提问:
①题目问题:“实际造林比原计划多百分之几”指的是什么?
②应该把谁看作单位“1”?哪一个量和单位“1”量比较?
③要求“实际造林比计划多百分之几”可以理解成“一个数是另一个数的百分之几”吗?你能说说?
④根据“求一个数是另一个数的百分之几?”用什么方法计算?
⑤那要先解决什么问题?
【教学过程说明:在已有知识的基础上,引导学生理解题意,将问题转化为实际造林比原计划多出的面积是原计划的造林面积的百分之几,弄清题目中的数量关系。】
(3)学生独立列式解答,教师巡回辅导,注意观察学生列式有没有不同。
列式解答:
(14-12)÷12
=2÷12
≈0.167
=16.7%
答:实际造林比原计划多16.7%。
如果发现有不同的解法,引导学生想一想:这道题目还有其它解法吗?学生小组讨论,使学生认识到,原计划造林数量看作单位“1”,例3还可以有以下解法:
14÷12-1≈1.167-1=0.167=16.7%
答:实际造林比原计划多16.7%。
【教学过程说明:在理解题意,弄清数量关系的基础上,让学生独立解题,并鼓励学生用不同方法解,学生可以从中体验解题思路的多样性。】
(4)独立练习
我校在创建规范化学校中,队部室进行装修,计划投入0.4万元,实际投入0.5万元,实际投入超过计划百分之几?
3、思考:如果例3中的问题改成;“原计划造林比实际造林少百分之几?”该怎样解答?
问:与例三相比较,又什么不同?
引导学生讨论、分析:
①解答百分数应用题时,要弄清楚谁与谁比,比的标准不同,单位“1”也不同。解题时要注意找准谁是单位“1”。
②由于比的标准不同,甲比乙多百分之几,乙并不比甲少相同的百分之几。
学生独立列式解题:
①(14-12)÷14②1-12÷14【教学过程说明:鼓励学生
=2÷14≈1-0.857综合运用所学知识和技能
≈0.143=1-85.7%解决问题,发展实践能力
=14.3%=14.3%和创新精神。】
答:原计划造林比实际造林少14.3%。
小结:
(1)找准单位“1”量,和“哪一个量”与单位“1”量进行比较。(2)依据“求一个数是另一个数的百分之几”进行解答。
三、巩固练习
1、分析下列问题,指出所求问题是什么量与什么量比,把哪一个量看做单位“1”。
(1)今年比去年增产百分之几?
(2)男生比女生少百分之几?
(3)一种商品,降价了百分之几?
2、选择题。
果园里有荔枝树50棵,苹果树比荔枝树多10棵,苹果树比荔枝树多百分之几?
A.50÷10B.10÷50
C.(50+10)÷50D.(50-10)÷50
3、做一做
某工厂九月份用水800吨,十月份用水700吨。十月份比九月份节约用水百分之几?
四、小结
解答较复杂的百分数应用题时:
1.找出谁是单位“1”。
2.由问题找出谁与谁比(数量关系)。
3.依据“求一个数是另一个数的百分之几”进行解答。
篇10:求百分数应用题及答案
求百分数应用题及答案
1. 一桶汽油用去15千克,还剩下25千克,用去的汽油占这桶油的百分之几?
15÷(15+25)
=15÷50
=0.3
=30%
答:用去的省油占这桶油的30%。
2.在一次射击练习中,张军命中的子弹是200发,没命中的是50发,命中率是多少?
200÷(200+50)
=200÷250
=0.8
=80%
2. 一家工厂今天职工出勤240人,缺勤10人,求今天的出勤率?
240÷(240+10)
=240÷250
=0.96
=96%
4.某糖厂七月生产552吨糖,比计划多生产72吨,超产百分之几?
72÷(552-72)
=72÷480
=0.15
=15%
5.洗衣机厂一月份计划生产洗衣机45万台,实际生产了48万台,增产了百分之几?
(48-45)÷45
=3÷45
≈0.067
=6.7%
6.一款手机原来每台450元,减价后每台300元,每台降价百分之几?
(450-300)÷450
=150÷450
≈0.333
=33.3%
7.一个生产小组生产1600个零件,验收后有4个不合格,求产品的合格率?
(1600-4)÷1600
=1596÷1600
=0.9975
=99.75%
8.纺织厂有男工人1350人,女工人1890人,女工人数比男工人数多百分之几?
(1890-1350)÷1350
=540÷1350
=0.4=40%
9.华西村今年已积肥82万吨,比原计划多积14万吨,完成计划的'几分之几?
82÷(82-14)
=82÷68
≈1.2058
=120.6%
10.学校生物小组用250粒大豆做发芽试验,结果有15粒不发芽,求种子的发芽率。
(250-15)÷250
=235÷250
=0.94
=94%
11.把20克盐溶解在80克水中,求盐水的含盐率?
20÷(20+80)
=20÷100
=20%
12.某化工厂三月份生产化肥1280吨,比计划少生产320吨,完成计划的百分之几?
1280÷(1280+320)
1/3
=1280÷1600
=0.8
=80%
13.学校食堂五月烧煤7.5吨,比四月份节省了1.5吨,节省了百分之几?
1.5÷(7.5+1.5)
=1.5÷9
=0.1666
≈16.7%
14.某工人加工一个机器零件的时间由原来的15分钟降低到10分钟,工作时间降低了百分之几?工作效率提高了百分之几?
(1)(15-10)÷15 (2)(15-10)÷10
=5÷15 =5÷10
≈0.3333 =50%
=33.3%
15.一个工厂扩建计划投资500万元,实际节约了45万元,节约投资百分之几?
45÷500=90%
16.一种收录机现在每台成本550元,比原来降低了100元,成本降低了百分之几?
100÷(550+100)
=100÷650
=0.1538
=15.4%
17.某钢铁厂八月份生产钢铁2460吨,比计划增产60吨,增产百分之几?
60÷(2460-60)
=60÷2400
=0.025
=25%
18.某工厂计划第一季度生产机器零件1820个,实际生产了2320个,增产几分之几?
(2320-1820)÷1820
=500÷1820
≈0.2747
=27.5%
19.单独做一件工作,甲要8天,比乙少用2天,甲的工作效率比乙快百分之几?
(1)甲乙的工作效率分别是8+2=10 1÷8= 1÷10=
(2)( -)÷
=÷
=0.25=25%
20.一项工程,由于采用了先进技术,只用了14.4万元,比原计划节约投资3.6万元,节约了百分之几?
3.6÷(14.4+3.6)
=3.6÷18
=0.2
=20%
21.红星机器厂设备更新后,每天生产零件2400个,比原计划多生产400个。比原计划增产百分之几?
400÷(2400-400)
2/3
=400÷2000
=0.2
=20%
22.某机关精简机构后有工作人员167人,比原来工作人员少68人。精简了百分之几?
68÷(167+68)
=68÷235
≈0.2893
=28.9%
23.甲、乙两个工程队修一条公路,甲队修了500米,甲队比乙队多修150米,乙队修的是甲队的百分之几?
(500-150)÷500
=350÷500
=70%
24.一种彩色电视机,现在每台2400元,比原来每台降价350元,降价百分之几?
350÷(2400+350)
=350÷2750
≈0.1272
=12.7%
25.王师傅生产一种机器零件,原来要8天,结果提前3天完成。工作效率提高百分之几?
(8-5)÷5
=3÷5
=60%
★百分数
文档为doc格式