以下是小编帮大家整理的《能被3整除的数的特征》教学反思,本文共12篇,仅供参考,欢迎大家阅读。
篇1:能被3整除的特征教学反思
能被3整除的特征教学反思
本节课采用“引导学习”的方法进行教学,有以下鲜明的特点:1.调动了大部分学生学习的积极性、主动性,让他们参与数学知识形成的全过程2、把数学知识的传授、数学思想方法的渗透、学生学习方法的指导、学生的思维训练和数学能力的培养有机地结合起来, 教学效果比较好。成功之处:受2和5的倍数特征的影响,学生在概括3的倍数时,也会很自然地寻找个位上的数的特征,通过观察发现这些数的个位上的数有的是3的倍数,有的.不是3的倍数,于是产生认知冲突。再次观察,形成新的猜想,各位上的数的和是3的倍数,利用这一结论,验证整个教学过程,突出学生的自主探索,使学生在观察――猜想――推翻猜想――再观察――再猜想――验证的过程中,概括出3的倍数。但是,还有极个别后进生只限于眼睛看,嘴巴不动,缺乏学习的积极性,课后应该多辅导他们。
篇2:“能被3整除的数的特征 ”教学反思
这节课采用“引导学习”的方法进行教学,有以下鲜明的特点:1.调动了大部分学生学习的积极性、主动性,让他们参与数学知识形成的全过程,从而确保了学生在学习中的主体地位。2.、在整个教学过程中立足于科学地引导学生的逻辑思维,辅导学生学会研究一类数学问题的方法,指导学生掌握解题的技能技巧。3.、把数学知识的传授、数学思想方法的渗透、学生学习方法的指导、学生的思维训练和数学能力的培养有机地结合起来, 教学效果比较好。
但是,还有极个别后进生只限于眼睛看,嘴巴不动,缺乏学习的积极性,课后应该多辅导他们。
篇3:《能被3整除的数的特征》教学反思
本课的教学内容,是在教学“能被2、5整除的数的特征”后进行的。由于判断一个数能否被2、5整除,只要看这个数的个位即可;而判断一个数能否被3整除,则要看这个数各个数位的数字之和能否被3整除,与前面的有所不同,要使学生理解并掌握它,还是有难度的。可以说是一个难点。本节课教学时,主要从以下几点进行:
一、激趣、育智
上课开始,将学号引入课堂,不仅营造了一个轻松、快乐、融洽的课堂氛围,也增强了学生注意听讲、认真学习的动力。现代教学论认为:学习即为知识的同化和异化。通过引入学号、任意摆数,结合了学习和生活实际,使学生能够按照他们喜欢的方式学习知识。本节课通过操作、观察、演示等方式,引导学生进行比较、分析、综合、猜测,逐步培养学生能够有条理地进行思考。
二、猜想、合作探究
小学生受年龄特征和知识水平的影响,猜想和推测更具有偶然性和随意性。学生猜想“失败”,需要教师从感情上予以关注,更重要的是师生互动走出误区,帮助学生利用现实情境“做”数学。本课在学生猜想未果的情况下,教师利用两组由相同数字所组成的不同的三位数,学生通过观察、讨论,终于找到了能被3整除的数的特征,培养了学生的求异性与灵活性。要探索知识的'未知领域,合作学习不失为一条有效的途径。在本课中,能被3整除的数的特征,是学生共同合作探究的成果。同时,练习的开放设计也培养了学生的探索意识和分析、概括、协作能力。
篇4:“能被3整除的数的特征”教学反思
“能被3整除的数的特征”,是在学生已学过能被2、5整除的数的特征的基础上进行教学的。学生自己发现规律比较困难,容易受原来思维定势的影响。需要教师适时加以引导。
在教学中,我根据本班学生的实际,采取这样的教学形式:
一、根据学生好奇的特点,以奇引趣,促使学生乐学。
课一开始,教师请学生报数,老师迅速判断出它能否被3整除,学生对老师的判断半信半疑,也被老师料事如神的本领所折服,大脑中便产生“老师为什么能这样快地判断出来”的疑问,使学生萌发强烈的求知欲望,迫切想知道这种判断方法,从而激发了学生的学习热情。
二、打破常规,引导学生从多角思考问题,培养创新意识。
学生容易受以前学过知识影响,马上说出个位上是3、6、9的数能被3整除,而这个发现不攻自破,学生会马上列举出13、26、49等好多这类数不符合该发现。学生此时感觉问题不是这么简单,老师适时引导:你们能不能从其他角度想一想、试一试,到底能被3整除的数有什么特点呢?学生被老师的启发所感染,积极地参与到讨论之中去。
三、鼓励学生,放飞自己的思维,会有异想不到的收获。
在学生已经总结出能被3整除的数的规律时,我让学生再想一想,看有没有更好的途径,能快速判断一个比较大的数能否被3整除,因为老师判断的都是较大的数,为什么速度那样快呢?一定有更快的办法。经过一番实践,新的方法很快问世:可以先去掉3的倍数,再加其它的数字,看和能否被3整除;或在加的过程中,加出3的倍数就把该数扔掉,再继续加,看最后结果能否被3整除。没想到孩子们愿意做的事,你给他们充足空间,会收到异想不到的收获。
四、和学生和睦相处,更有利于学生参与学习活动。
本节课的最大特点是,师生配合密切,教师与学生平等相处,学生无拘无束,他们可以任意地想,尽情地说,思维不受任何羁绊,能够轻松愉快地投入到学习过程中来。从课的一开始,到探讨规律,到练习发展,师生配合得恰到好处。
篇5:能被3整除的数的特征教学反思
能被3整除的数的特征教学反思
“能被3整除的数的特征”,是在学生已学过能被2、5整除的数的特征的基础上进行教学的。学生自己发现规律比较困难,容易受原来思维定势的影响。需要教师适时加以引导。
在教学中,我根据本班学生的实际,采取这样的教学形式:
一、根据学生好奇的特点,以奇引趣,促使学生乐学。
课一开始,教师请学生报数,老师迅速判断出它能否被3整除,学生对老师的判断半信半疑,也被老师料事如神的本领所折服,大脑中便产生“老师为什么能这样快地判断出来”的疑问,使学生萌发强烈的求知欲望,迫切想知道这种判断方法,从而激发了学生的学习热情。
二、打破常规,引导学生从多角思考问题,培养创新意识。
学生容易受以前学过知识影响,马上说出个位上是3、6、9的数能被3整除,而这个发现不攻自破,学生会马上列举出13、26、49等好多这类数不符合该发现。学生此时感觉问题不是这么简单,老师适时引导:你们能不能从其他角度想一想、试一试,到底能被3整除的.数有什么特点呢?学生被老师的启发所感染,积极地参与到讨论之中去。
三、鼓励学生,放飞自己的思维,会有异想不到的收获。
在学生已经总结出能被3整除的数的规律时,我让学生再想一想,看有没有更好的途径,能快速判断一个比较大的数能否被3整除,因为老师判断的都是较大的数,为什么速度那样快呢?一定有更快的办法。经过一番实践,新的方法很快问世:可以先去掉3的倍数,再加其它的数字,看和能否被3整除;或在加的过程中,加出3的倍数就把该数扔掉,再继续加,看最后结果能否被3整除。没想到孩子们愿意做的事,你给他们充足空间,会收到异想不到的收获。
四、和学生和睦相处,更有利于学生参与学习活动。
本节课的最大特点是,师生配合密切,教师与学生平等相处,学生无拘无束,他们可以任意地想,尽情地说,思维不受任何羁绊,能够轻松愉快地投入到学习过程中来。从课的一开始,到探讨规律,到练习发展,师生配合得恰到好处。
篇6:小学数学《能被3整除数特征》说课稿
小学数学《能被3整除数特征》说课稿
一、教材分析
本节课主要学习能被3整除的数的特征,是在学生学习了约数和倍数的意义,掌握了能被2、5整除的数的基础上进行的教学。此知识是分解质因数,求最大公约数,最小公倍数的重要基础,同时也为今后学习约分、通分做好准备。依据《课程标准》倡导任务型教学模式,即让学生在教学活动中参与和完成真实的教学任务,从中体验学习的快乐。我设计了如下教学目标和教学重难点:
1.教学目标
数学课程标准指出,基础教育阶段数学课程的总体目标是以学生的身心发展规律为基础,改善学生的学习方式,关注学生对数学的`情感和态度,以促进人的终身发展。基于以上认识,以及对教学内容的分析和教材特点,我将教学目标定为:
(1)知识目标:使学生初步掌握能被3整除的数的特征,会判断一个数能否被3整除。
(2)能力目标:培养学生自主探索的能力,合作学习的品质。
(3)情感目标:让学生在探索发现过程中感受到生活中丰富的数学知识和体验到成功的乐趣,并培养学生学习数学的信心。
2.教学重点和难点
根据以上对教学内容和教学目标的分析以及小学生学习数学的特点,我认为掌握能被3整除的数的特征是本课的重点及难点。
二、说教法
根据新课程以人为本的理念以及以上对教学目标的分析,我主要采用以下几种教学方法:
1.小组合作学习法
小组合作学习是新课程积极倡导的有效学习方式之一,有效的小组合作学习可以加大学生的实践量,提高学生运用数学的能力,促进互相帮助,培养团队意识。
2.情境教学法
为了激发学生想学的愿望,我利用情景教学法,设计报数等游戏,创设有趣的学习氛围,调动学生学习的积极性,充分发挥学生的主体作用,增加学生学习数学的兴趣。
3.鼓励法
有效的课堂活动需要评价手段的支持,有效的活动评价方式是实施有效活动的保障,所以,我的课堂评价主要以鼓励性评价为主。另外,课上恰当的使用激励性评语和赠送小礼物的方法让学生渴望成功的心理得到满足,这也是激励学生积极投身数学学习的一个最简单而有效的方法。
篇7:“创造”的教与学――《能被9整除数的特征》教学案例
“创造”的教与学――《能被9整除数的特征》教学案例
义务教育阶段的数学课程,不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学的理解,增进学好数学的信心。 学习数学的唯一正确方法是实行“再创造”,也就是由学生本人把要学的东西自己去发现或创造出来;教师的任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生。一、“创造”的教数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。教师是数学学习的组织者、引导者与合作者。 教材中对于“能被3整除数的特征”的归纳是通过找余数与这个数数位上的数字之间的关系来进行总结的,而任意一个自然数除以3只有余数0、1、2这三种情况。在教学过程中,学生很难通过余数发现与自然数的数位上数字的关系。因此,教师想到了如果先研究“能被9整除数的特征”的特征呢?任意一个自然数除以9有余数0、1、2、……6、7、8九种情况,与所研究的自然数的数位上的数字更容易建立关系,有利于学生的观察与理解。 虽然“能被9整除的数的特征”是教材中没有涉及的部分,但是却能很好的帮助学生通过借助能被9整除数的特征,以及3和9之间的关系,去理解能被3整除数的特征。分散了知识点的难度,同时也渗透了知识间的内在联系。二、“创造”的学《新课程标准》提出:“动手实践,自主探索与合作交流是学生学习数学的重要方式。数学学习活动应是一个活泼的、主动的和富有个性的过程”。这一理念不仅告诉我们创新意识和实践能力紧密想随,而且要使学生的探索经历和获取新发现的体验成为数学学习的重要途径。1.设“井”激趣数学的学习方式不能再是单一的、枯燥的,以被动听讲和练习为主的方式,它应该是一个充满生命力的过程。【片断一】出示:87602860、51001758、65064345、85992639师:老师这里有几位同学家的.电话号码。问:每个电话号码都是一个八位数,这四个数中哪些能被2整除?你怎么判断的?哪些能被5整除?判断的依据是什么? 生答:87602860、51001758能被2整除,个位上是0、2、4、6、8的数能被2整除;87602860、65064345这两个数能被5整除,个位上是0或5的数能被5整除。问:哪些数能被9整除呢?你有什么办法吗?生:① 看个位,认为85992639能被9整除。② 算,可以口算、笔算,大数目可以用计算器帮助。③ 各数位上的数字和能否被9整除 师:同学们说了这么多种发法,那就用你们想到的方法来找找看哪些数能被9整除。 生:对这四个数进行验证,得出51001758能被9整除。 交流想法:能被9整除的数看个位是不成立的,85992639不能被9整除;如果身边没有计算工具,算起来很不方便;如果各数位上的数字和能被9整除,这个数就能被9整除。这个方法比较好,很快捷。生质疑:看“各数位上的数字和能否被9整除”这个方法对于每个数都成立成立吗?为什么成立呢? 在课上,同学们受“能被2或5整除数的特征”经验的影响,在验证、讨论的过程中,许多不正确的结论被一一否定,而只留下把“各数位上的数字相加求和,看和与9的关系”的方法。这个方法学生们找不到反例,但又迫切的想了解为什么?这样不仅抑制了前面所学知识的负迁移,同时又激发学生的学习欲望。 当学生意识到了“各数位上的数字相加求和,看和与9的关系”这个方法时,发现、解决问题的过程就有了目标,为最终问题的解决提供一个可能的方向。创设问题情境,把静态的知识结论转化为动态的探索对象,使学生在经历类似于数学家的探索创造过程中,激发探索意识,养成探索习惯,提高再创造的能力。2.追根溯源“学习任何知识的最佳途径是有学生自己去发现。因为这种发现,理解最深,也最容易掌握其中的内在规律联系。” 让学生自己去体验,用自己的思维方式去探究,这就是一个再创造的过程。如果离开了学生的学习活动,学生的发展就会落空。 判断一个数能否被9整除,不能只从一个数的某一位上的数来判断,必须把这个数各个数位上的数相加求和,如果和能被9整除,这个数就能被9整除。这一结论与能被2、5整除的数的特征相比而言不容易被发现,不容易理解。因此,就把重点放在了“说理”上,不仅要使学生知其然,还要使他们知其所以然。 在分析推理能被9整除的数的特征的过程中,充分重视学生的年龄、心理特点,利用他们已有的知识基础,分层次逐步进行研究。【片断二】⑴先引领学生集体先对整十数和整百数进行分析,找出整十数与9、整百数与99的关系,作为认识任意自然数能否被9整除数的特征的基础和突破口;问:10能被9整除吗?你怎么知道的?20、30呢?答:10÷9=1…1,所以10不能被9整除,可以把10写成10=9×1+1。20÷9=2…2,所以20不能被9整除,可以把20写成20=9×2+2。30÷9=3…3,所以30不能被9整除,可以把30写成30=9×3+3。生发现:①整十数都可以写成9乘几加几的形式。 ②余数正好是整十数十位上的数。问:那判断整十数能否被9整除有更简单的方法吗?答:直接看整十数十位上的数字。过渡:整十数能否被9整除的我们会了,那整百数呢? 问:100能被9整除吗?呢? 你又发现了什么?答:100不能被9整除,因为100÷9=11…1,所以100去掉1个99还余1。100可以写成99×1+1。200不能被9整除,因为200÷9=22…2,所以200去掉2个99还余2。200可以写成99×2+2。发现:余数与整百数百位上的数字相同。问:要很快的判断出整百数能被否被9整除看什么?生:看整百数的百位就可以了。 ⑵再小组合作把几百几十的数变成几个百、几个十的组合形式,与9和99建立联系,分散难点,初步归纳能被9整除数的特征;问:100能被9整除吗?80能被9整除吗?180呢?你能用前面的知识,小组合作研究为什么吗?小组探究:因为,180 100=99×1 + 1 80= 9×8 + 8 能被9整除 1+8=9 能被9整除 所以,180能被9整除。 发现:余数和与这个数的数位上的数字和是相同的,所以可以看这个数的数位上的数字和。 ⑶最后当学生发现这种暗含的关系后,他们可以把任意一个自然数变成由几个百、几个十、几个一的组合形式,与9和99建立联系,重视学生从具体到抽象,从一般中概括推力出结论的能力的培养。问:这有一个三位数216,你能马上判断出它能被9整除吗?怎么判断的?答:能。2+1+6=9能被9整除,216能被9整除。通过观察拆分之后的余数,学生发现余数和与所给数的数位上的数字和相同,所以可以直接看所给数的各个数位上的数字和能否被9整除。在这节课结束的时候,学生根据自己的理解、用自己的语言归纳出了“能被9整除的数的特征”。 课上学生有了充分的从事数学活动的时间和空间,在自主探索、亲身实践、合作交流的氛围中,解除困惑,更清楚的明确自己的思想,并有机会分享自己和他人的想法,在亲身体验和探索中认识数学,解决问题,理解和掌握基本的数学知识、技能和方法。在合作交流、与人分享和独立思考的氛围中,倾听、质疑、说明、推广而直至感到豁然开朗。篇8:“创造”的教与学-《能被9整除数的特征》教学案例
“创造”的教与学-《能被9整除数的特征》教学案例
义务教育(www.35d1.com-上网第一站35d1教育网)阶段的数学课程,不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学的理解,增进学好数学的信心。 学习数学的唯一正确方法是实行“再创造”,也就是由学生本人把要学的东西自己去发现或创造出来;教师的任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生。一、“创造”的教数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。教师是数学学习的组织者、引导者与合作者。 教材中对于“能被3整除数的特征”的.归纳是通过找余数与这个数数位上的数字之间的关系来进行总结的,而任意一个自然数除以3只有余数0、1、2这三种情况。在教学过程中,学生很难通过余数发现与自然数的数位上数字的关系。因此,教师想到了如果先研究“能被9整除数的特征”的特征呢?任意一个自然数除以9有余数0、1、2、……6、7、8九种情况,与所研究的自然数的数位上的数字更容易建立关系,有利于学生的观察与理解。 虽然“能被9整除的数的特征”是教材中没有涉及的部分,但是却能很好的帮助学生通过借助能被9整除数的特征,以及3和9之间的关系,去理解能被3整除数的特征。分散了知识点的难度,同时也渗透了知识间的内在联系。二、“创造”的学《新课程标准》提出:“动手实践,自主探索与合作交流是学生学习数学的重要方式。数学学习活动应是一个活泼的、主动的和富有个性的过程”。这一理念不仅告诉我们创新意识和实践能力紧密想随,而且要使学生的探索经历和获取新发现的体验成为数学学习的重要途径。1.设“井”激趣数学的学习方式不能再是单一的、枯燥的,以被动听讲和练习为主的方式,它应该是一个充满生命力的过程。【片断一】出示:87602860、51001758、65064345、85992639师:老师这里有几位同学家的电话号码。问:每个电话号码都是一个八位数,这四个数中哪些能被2整除?你怎么判断的?哪些能被5整除?判断的依据是什么? 生答:87602860、51001758能被2整除,个位上是0、2、4、6、8的数能被2整除;87602860、65064345这两个数能被5整除,个位上是0或5的数能被5整除。问:哪些数能被9整除呢?你有什么办法吗?生:① 看个位,认为85992639能被9整除。② 算,可以口算、笔算,大数目可以用计算器帮助。③ 各数位上的数字和能否被9整除 师:同学们说了这么多种发法,那就用你们想[1] [2] [3]
篇9:《能被3整除的数的特征》优秀教学设计
《能被3整除的数的特征》优秀教学设计
教学内容:苏教版小学数学教材第十册第41页“能被3整除的数的特征”,“练一练”及练习七6~9题。
教学目标:1.知道能被3整除的数的特征,会迅速判断一个数能否被3整除。
2.结合认知教学,注意培养学生的观察能力、抽象概括能力,进行初步的逻辑思维训练。
教学过程:
一、习旧
1、游戏:听数打手势(判断能被2、5整除的数)。
投影出示:这个数若能被2整除,则出示左手2个指;若能被5整除,则出示右手5指;若能同时被2、5整除,则出示两只手。
145160723758209646000
2、问:你是根据什么来作判断的?
师:我们判断一个数能否被2或5整除,是根据这个数个位上的数字来作出判断的。
二、授新
1、口算:算出下面各数除以3的商。
2105112335410521627108129
2、激疑。
(1)师:以上各数都能被3整除。你能从各数的个位上找出什么特征吗?(这些数个位上从0~9各数都有,没什么特征。)其他数位呢?(也找不出什么特征。)
(2)老师把上面任一数的各位的数字交换位置,如:216-261-162-126-612-621,请同学们检验一下变换后的.数还能被3整除吗?其他的数,同学们自己再找一两个变换数位,看调换数位后的数是否仍能被3整除。
师:变换后的数还是能被3整除,说明这里边就有奥秘了,什么奥秘呢?
揭示课题:能被3整除的数。(板书)
3、分析
师:一个自然数的值,有数码及数码在哪一个数位这两方面决定。从上面一个数如能被3整除,交换数位上的数后仍能被3整除,可以知道能否被3整除与数码在哪个“数位”上无关,而是由所有的“数码”决定的。
4、探索。
(1)用3根小棒摆数。
①师投影示范,如:把1根小棒放在数位表的个位上,再把2根小棒放在百位上,这个数是201,201/3=67;……
②生摆棒、记数,除以3,再记下结果。
百十个
┃┃┃
小结:用3根小棒摆出的数都能被3整除,摆出的数的各位上数的和就是小棒根数3。┃┃┃
③你能用3根小棒摆出不能被3整除的数吗?(学生试摆,不能。)
(2)用同样的方法让学生用6根、9根小棒摆数,得到与上面同样的结果。
百十个
(3)再让学生用5根、8根、7根、4根、2根小棒摆数,看能不能摆出一个被3整除的数。
通过刚才摆棒、计算,你发现了什么?
小结:凡是用3根、6根、9根小棒摆出来的数都能被3整除,用5根、8根、7根、4根、2根小棒摆出的数都不能被3整除。
5、试练。
(1)听数,摆棒,判断能否被3整除。
15631002531233
(2)听数,不摆棒,判断能否被3整除。
3212072518036
问:你没有摆棒,是怎样判断出这个数能被3整除的呢?(只要把一个数各位上的数加起来,看和能不能被3整除。)
6、阅读课文,理解课文。
(1)学生小声阅读课文。
(2)揭示方框中的结果(板书)。问:这里的“和”可能是些什么数?
生:可能是3、6、9、12……
师:和分别是3、6、9;如:2571,2+5+7+1=15,1+5=6。
小结:判断一个数能否被3整除,看这个数各位上的数的和能不能被3整除;如果“和”是多位数,还可以加上法一直加到一位数为止。
三、巩固
1、基本练习。
(1)练习七第6题。
(2)投影出示:下列(从51~100)各数中,能被3整除的,就请在这个数的下面画上“——”。
51525354555657585960……
919293949596979899100
填后引导学生观察:进一步看出能被3整除的数有什么特征。
2、迁移与初步的逻辑思维训练。
师:找“能被3整除的数的特征”这个方法,是否可以推广,用来找能被9整除的数?我们来试一试:
(1)下面各数能不能被9整除?能不能被3整除?
72162291298810833
(2)讨论:下面几句话说得对不对?为什么?
①凡是能被9整除的数,一定能被3整除;
②凡是能被3整除的数,一定能被9整除;
③能被3整除的数,有些能被9整除;
小结:(1)凡是能被9整除的数,一定能被3整除,因为9是3的倍数。
(2)能被3整除的数,不一定能被9整除(有些能被9整除,有些不能被9整除)。
(3)仿上面,你能说一说:“能被4整除的数”与“能被2整除的数”的关系吗?
3、综合练习。
(1)在多位数“860□4”的□里填上一个数字,使这个数能被3整除,有几种填法?
引导学生思考:8+6+4=18,18已是3的倍数,所以□里可以填0,3,6,9。
(2)下表个数若能分别被2、5、3整除,在相应空格内画“”。
3624184530275012
能被2整除
能被5整除
能被3整除
总结:能同时被2、3整除的数的位上是,而且这个数各位数的能被整除;能同时被3、5整除的数的位上是,而且这个数各位数的能被整除;能同时被2、3、5整除的数的个位上一定是,而且这个数各位数的能被整除。
篇10:能被3整除的数的教学与反思
(5)设问:观察黑板上表格中的数据,一个能被3整除的三位数,个位、十位、百位上的数字有什么特征?
(6)讨论后小结:一个能被3整除的三位数,个位、十位、百位上的数字没有可利用的特征。
2、与数字排列的顺序有无关系?
(1)在表格中自己选一组数,交换三个数字的位置,组成新的三位数,并验证。
(2)将新的三位数填入表中。
(3)讨论:验证新的三位数后,你发现了什么?
(4)小结:能被3整除的三位数,交换数字的排列顺序,得到的新的三位数,仍然能被3整除。
3、能被3整除的三位数,与各个数位上数字的“和、差、积、商”有没有关系?
师:“能被3整除的三位数”不能凭个位、十位、百位上数字的特点去判断,也与数字的排列顺序无关,那么如何找到能被3整除的`数的特征呢?大家知道,自然数之间存在着“和、差、积、商”的关系,我们是否试一试呢?
(1)四人小组合作学习,选一组数进行验证,并形成小组意见。
(2)集体讨论小组意见,并再次验证。
(3)小结初步形成结论:一个三位数,各个数位上的数的和能被3整除,这个三位数就能被3整除。这时教师在黑板上表格第三栏板书:各位上的数的和,并分别求出各组数各位上的数的和填入表中。
(三)推广验证,形成结论
1、设问:一个三位数,各位上的数的和能被3整除,这个三位数就能被3整除。那么,能被3整除的二位数、四位数、五位数是否也具有这样的特点呢?
2、请同学们先判断再验证下面各数哪些能被3整除?
57、18、375、1470、12344
3、两人小组内一人报数,一人判断。
4、归纳总结。
5、请同学们打开书本99页,看方框中的结论和我总结的一样吗?并请记住它。
(四)运用结论,巩固拓宽。
1、判断课前收集的数据,哪些能被3整除?
2、在下面每个数的□里填上一个数字,
使这个数有约数3。各有几种填法?
□74□456□
3、你今年11岁,再过几年,你的岁数能被3整除?
4、灵活运用特征判断下面各数能否被3整除。
35196327618676392
(四)小结:通过本节课的学习,你的收获什么?
教学反思:“能被3整除数的数”一课,能体现新的教育理念、教育思想。仔细分析,有以下几个特点:
1、确立了基本技能目标和发展性目标并重的教学目标。
本节课不仅重视学生掌握能被3整除数的特征,并能运用特征进行正确判断,同时十分重视学生学习过程的体验和方法的渗透,让学生通过“猜测——验证——提出新的假设——验证”的探索过程来发现知识,获得结论,并感悟方法。
2、理性处理教材,使教学内容生活化。
教科书只是提供了学生学习活动的基本线索。教学中,教师要充分发挥主观能动性,创造性的使用教科书,本节课重新设计例题,通过用“0——9”十个数字组成能被整除的三位数让学生探索特征,这样处理使教学内容有较强的灵活性,促进了学生思维的发展。教学内容生活化不仅能激发学生兴趣,产生亲切感,而且使学生认识到现实生活中蕴藏着丰富的数学问题。开课时收集的数据一方面激发了学生学习的兴趣,同时也缩短了教师和学生的距离,课后“你再长几岁,这个岁数就能被3整除”这一开放题富有情趣,给学生留下了深刻的印象。
3、着力改变学生的学习方式。
学习方式的转变是本节课的主要特色。本节课始终以自主探索、合作交流为主要的学习方式,让学生通过自主选教学内容,举例验证等独立思考和小组讨论等合作探究活动,获得教学知识、感悟方法。如在课的第二阶段,设计三个层次的教学活动,让学生充分探索、讨论、交流,使学生真正成为学习的主人。第一层通过学生猜测、举例、选数字组数,使学生产生两次认知冲突;第二层通过交换三位数数字的位置,仍然没能发现特征,产生第三次认知冲突;第三层次通过计算各位上的数的“和、差、积、商”使结论逐渐显露。这一过程不仅培养了学生探究精神,磨练了意志,同时也使学生品尝了成功的喜悦。
4、合理定位教师角色,营造民主、和谐的学习氛围。
课堂教学中只有摆正了师生关系,才可能使学生得到发展。本节课学生始终是数学学习的主人,教师是数学学习的组织者、引导者和合作者。可以从以下两方面看出:一是从师生活动的时间分配上,二是从分层探究、有针对性的适当引导上。这节课从开始到结束,气氛始终处在民主、和谐之中,生活化的学习材料、平等的师生关系和开放的探究方式,有力地支撑了这节课的氛围。
篇11:能被3整除的数的教学与反思
一、教学内容
苏教版九年义务教育六年制小学教学第十册第46-47页及练习八中的有关练习题。
二、教学目标
1、知识目标:掌握能被3整除数的特征。
2、技能目标:能运用“被3整除的数”的特征判断一个数能否被3整除。
3、情感目标:培养学生自主搜索的能力,合作学习的品质。让学生感受生活中蕴藏着丰富的数学知识。
三、教学重点、难点
探索“能被3整除的数”的特征。
四、教学过程
(一)收集数据,提出问题。
1、调查收集有关信息:全校人数、有几个年级、多少个班级、本班学生数、男生人数、本市邮政编码、你家的门牌好码、学校的电话号码、你今年几岁。
教师根据学生回答将以上数据板书。
2、设问:如果单纯将这些数据看成一个个数,请判断哪些数能被2整除,哪些数能被5整除,你是怎样判断的?
3、提出问题,导入新课。个位上是0、2、4、6、8的数能被2整除,个位上是0或者5的数能被5整除。那么,能被3整除的数有什么特征呢?
教师板书课题:能被3整除的数
(二)自主探索,合作学习,初步形成结论
1、能否只看个位、十位、百位上的数字?
(1)猜一猜:“能被3整除的数”有什么特征?请举例说明。
(2)根据学生猜测讨论:个位上是0、3、6、9的数能被3整除吗?
(3)从0——9十个数字中选3个,组成一个能被3整除的三位数。
(4)反馈数据:教师根据学生回答将数据填入下表。
选的数字
篇12:五年级数学《能被3整除的数的特征》教学设计
五年级数学《能被3整除的数的特征》教学设计
教学目标
(1)使学生掌握能被3整除的数的特征、并能正确判断一个数能否被3整除。
(2)培养学生观察、分析、探求规律的能力。
教学重点、难点
重点:掌握能被3整除的数的特征是重点。
难点:判断一个数能否被3整除是难点。
教具、学具准备
教学过程
备注
一、复习引入,揭示课题
1、请学生分别说出一个与生活密切相关的数,如电话号码、牌照号码、人数、钱数等。教师选择其中几个板书,如:7234698、6403105、3210、734、5816、72等。
2、说说这些数中哪些能被2整除,哪些能被5整除。
学生回答后再问:你是怎么判断的?(根据个位上的数字判断)
3、问:如果要判断一个数能不能被3整除,请说说你自己的想法。
(如果学生提出看个位上的数,就马上组织讨论。如果学生不提出这个观点,教师可在适当的时机提出:判断一个数能否被3整除,是不是也只要看它个位上的数就行了?再让学生在小组中展开讨论。)
小组讨论要求:
(1)小组中每个同学自己报几个能被3整除的数,供大家观察讨论。
(2)仔细观察,探求规律。
(3)各抒已见,敢于提出与别人不同的意见或补充自己的想法。
4、全班学生交流,最后得出结论:判断一个数能否被3整除不能看个位上的数。
5、揭题:今天我们一起来研究“能被3整除的数的特征”。(板书:能被3整除的数的特征)
二、动手实验,探索规律。
1、分类。
(1)请学生先在卡片“()4”中一个数字,使其成为两位数,再将这些数按能否被3整除进行分类。
能被3整除的数不能被3整除的数
235484143444647494
(2)分小组验证学生分类是否正确。
2、实验。
(1)实验(1)
A、将上面各数各个数位上的数字交换位置,得到一个新的数。
教学过程
备注
424548414344464749
B、通过观察计算,你发现了什么?请用自己的话说一说。(同桌交流)
(能被3整除的数,交换数位上的数字的位置,得到的数也能被3整除;不能被3整除的数,交换数位上的数字的位置,得到的数也不能被3整除。)
C、思考:一个数能否被3整除,跟数字所在的位置有没有关系呢?(没有)那和什么有关系呢?
(2)实验(2)
A、将组成各组数的几个数字分别相加,看看会发现什么?
2+4=64+5=912578101113
B、学生计算后交流自己的发现。
(能被3整除的数,它们各个数位上的`数字的和也能被3整除;不能被3整除的数,它们各个数位上的数字的和也不能被3整除。)
思考:一个数各个数位上的数字的和能被3整除,这个数就能被3整除吗?(初步得出结论,并引导学生进一步验证)
3、验证。
(1)请同学们拿出准备好的3根小棒摆数,一根小棒在个位表示一个1,摆在十位表示一个10,请你任意摆出一个两位数(如12、21、30),再摆出一个任意的三位数(如111、120、102、201、300),观擦一下,你发现摆出的数有什么特点?
先请同学用一句话概括自己的发现(用3根小棒摆的任意两位数、三位数都能被3整除),再讨论3是这些数的什么?(实际上是这些数各位数字的和)那刚才的那句话也可以怎么说?(得出:只要一个数各数位上数字的和是3。这个书就能被3整除)
(2)游戏:用6根小棒或9根小棒在一分钟内摆出几个山三位数(同桌合作,边摆边作好记录),观察记录下的数据,你们发现了什么?(用6根小棒摆出的任意三位数都能被3整除)那么两位数呢?四位书呢?为什么?(得出:只要一个数各数位上数字的和是6或9,这个数就能被3整除)
4、总结:请同学们根据前面的实验和游戏,用自己的话说一说怎样来判断一个数能否被3整除,再对照课本加深记忆。
三、应用规律,巩固知识
1、基本练习。
(1)判断,下面哪些数能被3整除。(课本上练一练第1题)
45517890111201
学生先独立判断,再交流是怎样判断的。
(2)同桌间互说三个能被3整除的数。
2、发展练习。
(1)在下面每个数中的“()”里填上一个数字,使这个数有约数3。“()”里有几种填法?(课本上练一练第2题)
23()51()27346()58()0
教学过程
备注
(2)你能迅速判断出下面的数能否被3整除吗?
396399817263312874219
引导学生用简便方法,即先把数字3、6、9划掉,再把凑成是3的倍数的数字划掉,最后把剩下的各位数加起来看能否被3整除。
(3)课本上练一练第4题。
四、课堂小结
1、你学会了哪些知识?你是用什么方法学会的?你还想研究什么?
2、你有什么疑问?谁能帮他解决?
五、作业《作业本》
课后反思:
“问题情境”必须贴近儿童的生活现实,这节课我设计这么情境今天,老师想请同学们做一回小老师,由你们任意选一个自然数,考考老师:它能被2或3或5整除吗?看看哪位同学能考倒老师。学生无论举出什么数都难不倒老师,心里头觉得老师太了不起、太神奇了。看到学生的兴趣被激起来了,这时老师一语道破:同学们,不是老师有什么特异功能,而是掌握了有关数学的规律,这节课我们一起来探索这个规律,好不好?让学生也来当一回小老师,这事很新鲜。本案例的“新”就充分体现在这里。正是这幕别出心裁的“考老师”情境,吊起了学生的胃口,激起了学生急于想探索数学规律的强烈欲望。
文档为doc格式