下面是小编为大家整理的四种命题,本文共11篇,如果喜欢可以分享给身边的朋友喔!

篇1:四种命题
教学目标
(1)理解四种命题的概念;
(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;
(3)理解一个命题的真假与其他三个命题真假间的关系;
(4)初步掌握反证法的概念及反证法证题的基本步骤;
(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;
(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;
(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力.
教学重点和难点
重点:四种命题之间的关系;难点:反证法的运用.
教学过程设计
篇2:四种命题
一、导入新课
【练习】 1.把下列命题改写成“若 则 ”的形式:
(l)同位角相等,两直线平行;
(2)正方形的四条边相等.
2.什么叫互逆命题?上述命题的逆命题是什么?
将命题写成“若 则 ”的形式,关键是找到命题的条件 与结论 .
如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题.
上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”.
值得指出的是原命题和逆命题是相对的.我们也可以把逆命题当成原命题,去求它的逆命题.
3.原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.
学生活动:
口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.
设计意图:
通过复习旧知识,打下学习否命题、逆否命题的基础.
二、新课
【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?
【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题.
【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?
学生活动:
口答:若一个四边形不是正方形,则它的四条边不相等.
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.把其中一个命题叫做原命题,另一个命题叫做原命题的否命题.
若用 和 分别表示原命题的条件和结论,用┐ 和┐ 分别表示 和 的否定.
【板书】原命题:若 则 ;
否命题:若┐ 则┐ .
【提问】原命题真,否命题一定真吗?举例说明?
学生活动:
讲论后回答:
原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真.
原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真.
由此可以得原命题真,它的否命题不一定真.
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性.
教师活动:
【提问】命题“同位角相等,两条直线平行”除了 能构成它的逆命题和否命题外,还可以不可以构成别的命题?
学生活动:
讨论后回答
【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题.
教师活动:
【提问】原命题“正方形的四条边相等”的逆否命题是什么?
学生活动:
口答:若一个四边形的四条边不相等,则不是正方形.
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题.
原命题是“若 则 ”,则逆否命题为“若 则 .
【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?
学生活动:
讨论后回答
这两个逆否命题都真.
原命题真,逆否命题也真.
教师活动:
【提问】原命题的真假与其他三种命题的真
假有什么关系?举例加以说明?
【总结】1.原命题为真,它的逆命题不一定为真.
2.原命题为真,它的否命题不一定为真.
3.原命题为真,它的.逆否命题一定为真.
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性.
教师活动:
三、课堂练习
1.设原命题是“若 ,则 ”,写出它的逆命题、否命题与逆否命题,并分别判断它们的真假.
学生活动:
笔答:
逆命题“若 ,则 ”.逆命题是假命题.
否命题“若 ,则 ”.否命题是假命题.
逆否命题“若 ,则 ”.逆否命题是真命题.
教师活动:
2.设原命题是“当 时,若 ,则 ”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假.
学生活动:
笔答
逆命题“当 时,若 ,则 ”.
否命题“当 时,若 ,则 ”.否命题为真.
逆否命题“当 时,若 ,则 ”.逆否命题为真.
设计意图:
通过练习巩固由原命题构成否命题、逆否命题及判断它的真假的能力.
教师活动:
【总结】“当 时”是大前提,写其他命题时应该将“当 时”写在前面.原命题的条件是 ,结论是
“ ”的否定是“ ”,而不是“ ”,同样“ ”的否定是“ ”,而不是“ ”.
【投影】
3.填图
1.若原命题是“若 则 ”,其它三种命题的形式怎样表示?请写在方框内?
学生活动:笔答
教师活动:
2.根据上图所给出的箭头,写出箭头两头命题之间的关系?举例加以说明?
学生活动:讨论后回答
设计意图:
通过学生自己填图,使学生掌握四种命题的形式和它们之间的关系.
教师活动:
四、小结
四种命题的形式和关系如下图:
由原命题构成道命题只要将 和 换位就可以.由原命题构成否命题只要 和 分别否定为 和 ,但 和 不必换位.由原命题构成逆否命题时不但要将 和 换位,而且要将换位后的 和 否定·
原命题为真,它的逆命题不一定为真.
原命题为真,它的否命题不一定为真.
原命题为真,它的逆否命题一定为真.
因为互为逆否命题同真同假,所以讨论四种命题的真假性只讨论原命题和逆否命题中的一个,逆命题和否命题中的一个,只讨论两种就可以了,不必对四种命题形式—一加以讨论.
教师活动:
五、作业
1.阅读课本 四种命题.
2. 四种命题,练习(31页)1、2,练习(32页)1、2
3.习题 1、2、3、4
第二课时:反证法
一、导入新课
【提问】初中我们学过反证法,你能回答出用反证法证明命题的一般步骤吗?
学生活动:
口答:
(l)假设命题的结论不成立,即假设结论的反面成立;
(2)从这个假设出发,经过推理论证,得出矛盾;
(3)由矛盾判定假设不正确,从而肯定命题的结论正确.
设计意图:
复习旧知识,为学习反证法铺平道路.
教师活动:
【导入】同学们对反证法这种间接证法不像学过的直接证法如综合法、分析法那样熟悉,感到抽象、难懂,让我们举出一例对反证法加以介绍.
我们年级有367名学生,请你证明这些学生中至少有两个学生在同一天过生日.
这个问题若用直接证法来解决是有困难的,我们可以运用反证法.
运用反证法证明这个问题首先是根据“至少有两个学生在同一天过生日”的反面是“任何两个学生都不在同一天过生日”,也就是反设“假设任何两个学生都不在同一天过生日”,从这个反设出发就会推出这367人就会有不同的367天过生日,这就出现了与一年只有365天(闰年366天)的矛盾.产生这个矛盾的来源是由于开始的反设,因此反设不成立,这样得出了“至少有两个学生在同一天过生日”的结论.
设计意图:
以生活中的实际例子拉近学生与反证法的距离,激发学生的学习兴趣.
【板书】反证法证题的步骤:
1.反设; 2.归谬; 3.结论
【例】用反证法证明:圆的两条不是直径的相交弦不能互相平分.
已知:如图,在⊙O中,弦 AB、CD相交于 P点,且 AB、CD不是直径.
求证:弦AB、CD不被P点平分.
【设问】用反证法证明这道题如何进行反设?怎样进行归谬?
【引导讨论】“弦AB、CD不被P点平分”的反面是“弦AB、CD被P点平分”,因而反设是“假设弦AB、CD被P点平分”.
学生活动:
思考后分组讨论,互相补充.
设计意图:
在关键处设问,激励学生探究精神,提高运用反证法的能力.
教师活动:
由于P点不是圆心O,连结OP,由垂径定理的推论得 , ,这样过P点有两条直线与OP都垂直,与垂线的性质矛盾.
结论是“弦AB、CD不被P点平分”成立.
这道题用反证法证明还有一个方法.
连结 AD、BD、BC、AC·
【提问】用反证法证明怎样反设?怎样归谬?
反设仍是“弦AB、CD能被P点平分”.
学生活动:
讨论后回答
因为 ,所以四边形ABCD是平行四边形,而圆内接平行四边形必是矩形,则其对角线AB、CD必是圆O的直径,这与假设矛盾,所以结论“弦AB、CD不被P点平分”成立·
设计意图:
让学生进一步体会在反证法中如何进行反充、归谬.
教师活动:
【练习】用反证法证明 不是有理数
证明:假设 是有理数,则 可表示为 ( , 为自然数,且互质)
两边平方,得
①
由①知 必是2的倍数,进而 必是2的倍数.
令 代入①式,得
②
由②知, 必是2的倍数, 和 都是2的倍数,则 、 不互质,与假定 、 互质相矛盾, 不是有理数.
设计意图:
巩固练习.
教师活动:
【例】用反证法证明:如果 ,那么 .
【剖析】运用反证法证明这道题时,怎样进行反设? 的反面是否仅有 ?
证明:假设 不小于 ,则或者 ,或者
当 ,因为 ,所以
在 的两边都乘以 得
,
在 的两边都乘以 得
,
所以
这与假设 矛盾,所以 不成立.
当 时可得到 ,这与假设 矛盾.
综上所述,所以
设计意图:
通过对例题的剖析,使学生掌握如何在反证法中反设和归谬.
教师活动:
三、课堂练习
用反证法证明:
已知:锐角三角形ABC中
求证:
证明:假设 ,则
因为 ,所以 , .这样可推出 是钝角三角形或直角三角形,这与假设 是锐角三角形矛盾.所以
设计意图:
进一步提高运用反证法证题的能力.
四、小结
反证法证题的步骤:
(1)反设;(2)归谬;(3)结论.
运用反证法在归谬中所导出的矛盾可以是与已知条件的矛盾,也可以是与某个公理、定理的矛盾,也可以是证明过程中自相矛盾.
五、作业
1.阅读课本 四种命题中“反证法”部分
2. 四种命题中“反证法”练习1、2.
3.习题 5、6
4.用反证法证明:在 中,AB、BC、AC不全相等,那么 、 、 中至少有一个大于
证明:假设 、 、 都大于 ,即 , ,
因为AB、BC、AC不全相等,所以上面三式中不能同时取等号,这样有 .与定理“三角形内角和为 ”矛盾,因此结论 、 、 中至少有一个大于 成立.
篇3:中考命题四种模式
句子题
命题方式探微:
句子题,即作文题目是一个句子。
由于句子题本身包涵着相对完整的意思,只要细心梳理其结构,便可领会题目规定的大体要求。
一般情况下,句子充当题目的现象多出现在记叙性文体中,说明性和议论性的文体中相对少些。
篇4:中考命题四种模式
短语题
命题方式探微:
短语题就是题目以短语形式出现,如“一件小事”、“激动人心的时刻”、“用心看世界”、“风雪路上”、“我学会了关心别人”等。
一般来说,在单字题、双字题的前面或后面添加上适当的修饰或补充成分,就变成了短语题。
篇5:中考命题四种模式
双字题
命题方式探微:
所谓“双字题”,指文题是两个字的词语。
这类文题写作范围较大,题旨有时不够明朗,比如,“蜡烛”、“习惯”、“幸福”、“攀登”等。
双字题虽然审题对象集中而明确,但由于提供的审题信息相对较少,因此也容易让考生产生偏读甚至是误读,所以对题目的准确审读便成为写好此类作文的关键。
篇6:中考命题四种模式
单字题
命题方式探微:
所谓“单字题”,就是指文题是一个字,比如,名词单字题“书”、“路”、“桥”,动词单字题“读”、“问”、“看”,形容词单字题“忙”、“杂”、“新”,等等。
单字题的写作范围明确,降低了作文的审题难度,但也增加了考生审题时犯错误的机会,所以要慎重审题。
篇7:上学期 1.7 四种命题
教学目标
(1)理解四种命题的概念;
(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;
(3)理解一个命题的真假与其他三个命题真假间的关系;
(4)初步掌握反证法的概念及反证法证题的基本步骤;
(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;
(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;
(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力.
教学重点和难点
重点:四种命题之间的关系;难点:反证法的运用.
教学过程 设计
第一课时:四种命题
一、导入 新课
【练习】 1.把下列命题改写成“若 则 ”的形式:
(l)同位角相等,两直线平行;
(2)正方形的四条边相等.
2.什么叫互逆命题?上述命题的逆命题是什么?
将命题写成“若 则 ”的形式,关键是找到命题的条件 与结论 .
如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题.
上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”.
值得指出的是原命题和逆命题是相对的.我们也可以把逆命题当成原命题,去求它的逆命题.
3.原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.
学生活动:
口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.
设计意图:
通过复习旧知识,打下学习否命题、逆否命题的基础.
二、新课
【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?
【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题.
【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?
学生活动:
口答:若一个四边形不是正方形,则它的四条边不相等.
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.把其中一个命题叫做原命题,另一个命题叫做原命题的否命题.
若用 和 分别表示原命题的条件和结论,用┐ 和┐ 分别表示 和 的否定.
【板书】原命题:若 则 ;
否命题:若┐ 则┐ .
【提问】原命题真,否命题一定真吗?举例说明?
学生活动:
讲论后回答:
原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真.
原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真.
由此可以得原命题真,它的否命题不一定真.
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性.
教师活动:
【提问】命题“同位角相等,两条直线平行”除了 能构成它的逆命题和否命题外,还可以不可以构成别的命题?
学生活动:
讨论后回答
【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题.
教师活动:
【提问】原命题“正方形的四条边相等”的逆否命题是什么?
学生活动:
口答:若一个四边形的四条边不相等,则不是正方形.
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题.
原命题是“若 则 ”,则逆否命题为“若 则 .
【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?
学生活动:
讨论后回答
这两个逆否命题都真.
原命题真,逆否命题也真.
教师活动:
【提问】原命题的真假与其他三种命题的真
假有什么关系?举例加以说明?
【总结】1.原命题为真,它的逆命题不一定为真.
2.原命题为真,它的否命题不一定为真.
3.原命题为真,它的逆否命题一定为真.
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性.
教师活动:
三、课堂练习
1.设原命题是“若 ,则 ”,写出它的逆命题、否命题与逆否命题,并分别判断它们的真假.
学生活动:
笔答:
逆命题“若 ,则 ”.逆命题是假命题.
否命题“若 ,则 ”.否命题是假命题.
逆否命题“若 ,则 ”.逆否命题是真命题.
教师活动:
2.设原命题是“当 时,若 ,则 ”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假.
学生活动:
笔答
逆命题“当 时,若 ,则 ”.
否命题“当 时,若 ,则 ”.否命题为真.
逆否命题“当 时,若 ,则 ”.逆否命题为真.
设计意图:
通过练习巩固由原命题构成否命题、逆否命题及判断它的真假的能力.
教师活动:
【总结】“当 时”是大前提,写其他命题时应该将“当 时”写在前面.原命题的条件是 ,结论是
“ ”的否定是“ ”,而不是“ ”,同样“ ”的否定是“ ”,而不是“ ”.
【投影】
3.填图
1.若原命题是“若 则 ”,其它三种命题的形式怎样表示?请写在方框内?
学生活动:笔答
教师活动:
2.根据上图所给出的箭头,写出箭头两头命题之间的关系?举例加以说明?
学生活动:讨论后回答
设计意图:
通过学生自己填图,使学生掌握四种命题的形式和它们之间的关系.
教师活动:
四、小结
四种命题的形式和关系如下图:
由原命题构成道命题只要将 和 换位就可以.由原命题构成否命题只要 和 分别否定为 和 ,但 和 不必换位.由原命题构成逆否命题时不但要将 和 换位,而且要将换位后的 和 否定・
原命题为真,它的逆命题不一定为真.
原命题为真,它的否命题不一定为真.
原命题为真,它的逆否命题一定为真.
因为互为逆否命题同真同假,所以讨论四种命题的真假性只讨论原命题和逆否命题中的一个,逆命题和否命题中的一个,只讨论两种就可以了,不必对四种命题形式―一加以讨论.
教师活动:
五、作业
1.阅读课本 四种命题.
2. 四种命题,练习(31页)1、2,练习(32页)1、2
3.习题 1、2、3、4
第二课时:反证法
一、导入 新课
【提问】初中我们学过反证法,你能回答出用反证法证明命题的一般步骤吗?
学生活动:
口答:
(l)假设命题的结论不成立,即假设结论的反面成立;
(2)从这个假设出发,经过推理论证,得出矛盾;
(3)由矛盾判定假设不正确,从而肯定命题的结论正确.
设计意图:
复习旧知识,为学习反证法铺平道路.
教师活动:
【导入 】同学们对反证法这种间接证法不像学过的直接证法如综合法、分析法那样熟悉,感到抽象、难懂,让我们举出一例对反证法加以介绍.
我们年级有367名学生,请你证明这些学生中至少有两个学生在同一天过生日.
这个问题若用直接证法来解决是有困难的,我们可以运用反证法.
运用反证法证明这个问题首先是根据“至少有两个学生在同一天过生日”的`反面是“任何两个学生都不在同一天过生日”,也就是反设“假设任何两个学生都不在同一天过生日”,从这个反设出发就会推出这367人就会有不同的367天过生日,这就出现了与一年只有365天(闰年366天)的矛盾.产生这个矛盾的来源是由于开始的反设,因此反设不成立,这样得出了“至少有两个学生在同一天过生日”的结论.
设计意图:
以生活中的实际例子拉近学生与反证法的距离,激发学生的学习兴趣.
【板书】反证法证题的步骤:
1.反设; 2.归谬; 3.结论
【例】用反证法证明:圆的两条不是直径的相交弦不能互相平分.
已知:如图,在⊙O中,弦 AB、CD相交于 P点,且 AB、CD不是直径.
求证:弦AB、CD不被P点平分.
【设问】用反证法证明这道题如何进行反设?怎样进行归谬?
【引导讨论】“弦AB、CD不被P点平分”的反面是“弦AB、CD被P点平分”,因而反设是“假设弦AB、CD被P点平分”.
学生活动:
思考后分组讨论,互相补充.
设计意图:
在关键处设问,激励学生探究精神,提高运用反证法的能力.
教师活动:
由于P点不是圆心O,连结OP,由垂径定理的推论得 , ,这样过P点有两条直线与OP都垂直,与垂线的性质矛盾.
结论是“弦AB、CD不被P点平分”成立.
这道题用反证法证明还有一个方法.
连结 AD、BD、BC、AC・
【提问】用反证法证明怎样反设?怎样归谬?
反设仍是“弦AB、CD能被P点平分”.
学生活动:
讨论后回答
因为 ,所以四边形ABCD是平行四边形,而圆内接平行四边形必是矩形,则其对角线AB、CD必是圆O的直径,这与假设矛盾,所以结论“弦AB、CD不被P点平分”成立・
设计意图:
让学生进一步体会在反证法中如何进行反充、归谬.
教师活动:
【练习】用反证法证明 不是有理数
证明:假设 是有理数,则 可表示为 ( , 为自然数,且互质)
两边平方,得
①
由①知 必是2的倍数,进而 必是2的倍数.
令 代入①式,得
②
由②知, 必是2的倍数, 和 都是2的倍数,则 、不互质,与假定 、互质相矛盾, 不是有理数.
设计意图:
巩固练习.
教师活动:
【例】用反证法证明:如果 ,那么 .
【剖析】运用反证法证明这道题时,怎样进行反设? 的反面是否仅有 ?
证明:假设 不小于 ,则或者 ,或者
当 ,因为 ,所以
在 的两边都乘以 得
,
在 的两边都乘以 得
,
所以
这与假设 矛盾,所以 不成立.
当 时可得到 ,这与假设 矛盾.
综上所述,所以
设计意图:
通过对例题的剖析,使学生掌握如何在反证法中反设和归谬.
教师活动:
三、课堂练习
用反证法证明:
已知:锐角三角形ABC中
求证:
证明:假设 ,则
因为 ,所以 , .这样可推出 是钝角三角形或直角三角形,这与假设 是锐角三角形矛盾.所以
设计意图:
进一步提高运用反证法证题的能力.
四、小结
反证法证题的步骤:
(1)反设;(2)归谬;(3)结论.
运用反证法在归谬中所导出的矛盾可以是与已知条件的矛盾,也可以是与某个公理、定理的矛盾,也可以是证明过程中自相矛盾.
五、作业
1.阅读课本 四种命题中“反证法”部分
2. 四种命题中“反证法”练习1、2.
3.习题 5、6
4.用反证法证明:在 中,AB、BC、AC不全相等,那么 、、中至少有一个大于
证明:假设 、、都大于 ,即 , ,
因为AB、BC、AC不全相等,所以上面三式中不能同时取等号,这样有 .与定理“三角形内角和为 ”矛盾,因此结论 、、中至少有一个大于 成立.
篇8:命题
教学建议
(一)教材分析
1、知识结构
2、重点、难点分析
重点:找出的题设和结论.因为找出一个的题设和结论,是对该深刻理解的前提,而对理解能力是我们今后研究数学必备的能力,也是研究其它学科能力的基础.
难点:找出一个的题设和结论.因为理解和掌握一个,一定要分清它的题设和结论,所以找出一个的题设和结论是十分重要的问题.但有些的题设和结论不明显.例如,“对顶角相等”,“等角的余角相等”等.一些没有写成“如果……那么……”形式的,学生往往搞不清哪是题设,哪是结论,又没有一个通用的方法可以套用,所以分清题设和结论是教学的一个难点.
(二) 教学建议
1、教师在教学过程 中,组织或引导学生从具体到抽象,结合学生熟悉的事例,来理解的概念、找出一个的题设和结论,并能判断一些简单的真假.
2、是数学中一个非常重要的概念,虽然高中阶段我们还要学习,但对于程度好的A层学生还要理解:
(1)假可分为两类情况:
①题设只有一种情形,并且结论是错误的,例如,“1+3=7”就是一个错误的.
②题设有多种情形,其中至少有一种情形的结论是错误的.例如,“内错角互补,两直线平行”这个的题设可分为两种情形:第一种情形是两个内错角都等于90°,这时两直线平行;第二种情形是两个内错角不都等于90°,这时两直线不平行.整体说来,这是错误的.
(2)是否是:
的定义包括两层涵义:①必须是一个完整的句子;②这个句子必须对某件事情做出肯定或者否定的判断.即是判断某一件事情的句子.在语法上,这样的句子叫做陈述句,它由“题设+结论”构成.
另外也有一些句子不是陈述句,例如,祈使句(也叫做命令句)“过直线AB外一点作该直线的平行线.”疑问句“∠A是否等于∠B?”感叹句“竟然得到5>9的结果!”以上三个句子都不是.
(3)的组成
每个都是由题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.常写成“如果…,那么…”的形式.具有这种形式的中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.
有些,没有写成“如果…,那么…”的形式,题设和结论不明显.对于这样的,要经过分折才能找出题设和结论,也可以将它们改写成“如果…那么…”的形式.
另外的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;的结论部分,有时也可用“求证……”或“则……”等形式表述.
教学设计示例1
教学目标
1.使学生对、真、假等概念有所理解.
2.使学生理解几何的组成,能够区分的题设和结论两部分,并能将改写成“如果……,那么……”的形式.
3.会判断一些的真假.
教学重点和难点
本节的重点和难点是:找出一个的题设和结论.
教学过程 设计
一、分析语句,理解
1.教师让学生随意说一句完整的话,每个小组可以派一名同学说,如:
(1)我是中国人.
(2)我家住在北京.
(3)你吃饭了吗?
(4)两条直线平行,内错角相等.
(5)画一个45°的角.
(6)平角与周角一定不相等.
2.找出哪些是判断某一件事情的句子?
学生答:(1),(2),(4),(6).
3.教师给出的概念,并举例.
:判断一件事情的句子,叫做,分析(3),(5)为什么不是.
教师分析以上中,每句话都判断什么事情.所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清.在数学课中,只研究数学,请学生举几个数学的例子,每组再选一个同学说.(不要让说过的再说)
如:
(1)对顶角相等.
(2)等角的余角相等.
(3)一条射线把一个角分成两个相等的角,这条射线一定是这个角的平分线.
(4)如果 a>0,b>0,那么a+b>0.
(5)当a>0时,|a|=a.
(6)小于直角的角一定是锐角.
在学生举例的基础上,教师有意说出以下两个例子,并问这是不是.
(7)a>0,b>0,a+b=0.
(8)2与3的和是4.
有些学生可能给与否定,这时教师再与学生共同回忆的定义,加以肯定,先不要给出假的概念,而是从“判断”的角度来加深对这一概念的理解.
4.分析的构成,改写的形式.
例 两条直线平行,同位角相等.
(l)分析此的构成,前一部分是后一部分成立的条件,后一部分是在前一部分条件下所得的结论.已知事项为“题设”,由已知推出的事项为“结论”.
(2)改写的形式.
由于题设是条件,可以写成“如果……”的形式,结论写成“那么……”的形式,所以上述可以改写成“如果两条平行线被第三条直线所截,那么同位角相等.”
请同学们将下列写成“如果……,那么……”的形式,例:
①对顶角相等.
如果两个角是对顶角,那么它们相等.
②两条直线平行,内错角相等.
如果两条直线平行,那么内错角相等.
③等角的补角相等.
如果两个角是等角,那么它们的补角相等.(注意不仅仅限于两个角,如果多个角相等,它们的补角也相等.)
以上三个的改写由学生进行,对(2)要更改为“如果两条平行线被第三条直线所截,那么内错角相等.”
提示学生注意:题设的条件要全面、准确.如果条件不止一个时,要一一列出.
如:两条直线相交,有一个角是直角,则这两条直线互相垂直,可改写为:
“如果两条直线相交,而且有一个角是直角,那么这两条直线互相垂直.”
二、分析,理解真、假
1.让学生分析两个的不同之处.
(l)若a>0,b>0,则a+b>0.
(2)若a>0,b>0,则a+b<0.
相同之处:都是.为什么?都是对a>0,b>0时,a+b的和的正负,做出判断,都有题设和结论.
不同之处:(1)中的结论是正确的,(2)中的结论是错误的.
教师及时指出:同学们发现了的两种情况.结论是正确的或结论是错误的,那么我们就有了对的一种分类:真和假.
2.给出真、假定义.
真:如果题设成立,那么结论一定成立,这样的,叫做真.
假:如果题设成立,结论不成立,这样的都是错误的,叫做假.
注意:
(1)真中的“一定成立”不能有一个例外,如:“a≥0,b>0,则ab>0”.显然当a=0时,ab>0不成立,所以该题是假,不是真.
(2)假中“结论不成立”是指“不能保证结论总是正确”,如:“a的倒数一定是”,显然当a=0时不正确,所以也是假。
(3)注意与假的区别.如:“延长直线AB”.这本身不是.也更不是假.
(4)是一个判断,判断的结果就有对错之分.因此就要引入真假,强调真假的大前提,首先是.
3.运用概念,判断真假.
例 请判断以下的真假.
(1)若ab>0,则a>0,b>0.
(2)两条直线相交,只有一个交点.
(3)如果n是整数,那么2n是偶数.
(4)如果两个角不是对顶角,那么它们不相等.
(5)直角是平角的一半.
解:(l)(4)都是假,(2)(3)(5)是真.
4.介绍一个不辨真伪的.
“每一个大于4的偶数都可以表示成两个质数之和”.(即著名的哥德巴赫猜想)
我们可以举出很多数字,说明这个结论是正确的,而且至今没有人举出一个反例,但也没有一个人能证明它对一切大于4的偶数正确.我国著名的数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”.即已经证明了“1+2”,离“1+1”只差“一步之遥”.所以这个的真假还不能做最好的判定.
5.怎样辨别一个的真假.
(l)实际生活问题,实践是检验真理的唯一标准.
(2)数学中判定一个是真,要经过证明.
(3)要判断一个是假,只需举一个反例即可.
三、总结
师生共同回忆本节的学习内容.
1.什么叫?真?假?
2.是由哪两部分构成的?
3.怎样将写成“如果……,那么……”的形式.
4.初步会判断真假.
教师提示应注意的问题:
1.与真、假的关系.
2.抓住的两部分构成,判断一些语句是否为.
3.中的题设条件,有两个或两个以上,写“如果”时应写全面.
4.判断假,只需举一个反例,而判断真,数学问题要经过证明.
四、作业
1.选用课本习题.2.以下供参选用.
(1)指出下列语句中的.
①我爱祖国.
②直线没有端点.
③作∠AOB的平分线OE.
④两条直线平行,一定没有交点.
⑤能被5整除的数,末位一定是0.
⑥奇数不能被2整除.
⑦学习几何不难.
(2)找出下列各句中的真.
①若a=b,则a2=b2.
②连结A,B两点,得到线段AB.
③不是正数,就不会大于零.
④90°的角一定是直角.
⑤凡是相等的角都是直角.
(3)将下列写成“如果……,那么……”的形式.
①两条直线平行,同旁内角互补.
②若a2=b2,则a=b.
③同号两数相加,符号不变.
④偶数都能被2整除.
⑤两个单项式的和是多项式.
篇9:命题
命题
命题mìng tí[释义]①(名)出题目。
②(名)逻辑学指表达判断的语言形式;由系词把主词和宾词联系而成。
[构成] 动宾式:命|题[例句] 这次写的是~作文。(作定语)篇10:四种证明书
范文一:个人收入证明
兹有我公司员工___________,性别______,身份证号码________________________,在我司工作______年,任职______________部门_____________(职位),月收入为人民币_________________元。 特此证明!
_____________________公司(加盖公章)
__________年_____月_____日
兹证明___________是我公司员工,性别______,身份证号码_____________________________,在_________部门任____________职务。月收入___________元,一年总收入约为__________元。特此证明!
本证明仅用于证明我公司员工的工作及在我公司的工资收入,不作为我公司对该员工任何形势的担保文件。
_____________________公司(加盖公章)
__________年_____月_____日
范文二:银行贷款收入证明
________________银行:
_____________系我单位正式员工,年龄_____岁,婚姻状况________,行政职务__________,学历__________,职称______________,月收入情况如下:
1、基本工资________________元;
2、奖金及福利(补贴)________________元;
3、其他收入________________元;
合计:________________元, 大写___________________________________ 元。
特此证明!
出具人签字:
出具人电话:
单位名称(盖章)
__________年_____月_____日
______________银行_________分行____________支行:
兹证明____________先生(女士)是我单位职工,工作年限_________年,在我单位工作年限__________年,职务为_________________ ,岗位为_______________,职称为___________________。
身份证号码为:___________________________________。
平均月收入为人民币(大写)____________________________元。
此证明仅供该职工申请_______________贷款或该职工为其他个人申请_______________贷款作第三方保证时使用。
单位(盖章):
__________年_____月_____日
________________银行:
兹因__________先生/女士(证件种类:________,证件号:_____________________)为我单位正式员工,现任___________职务(学历:_________,职称:____________)。该同志办公联系电话:_____________ ,家庭电话:_____________,移动电话:_________________。
该同志于______年____月____日至今在我单位工作,在我单位工作年限为_______年,现固定收入为(大写)人民币_________________元,其他年收入为(大写)人民币_________________元。
现婚姻状况为:__________(已婚、未婚、离婚、丧偶)。
经核实上述情况真实无误,我单位已完全知此证明所产生的.法律效力,并对此证明的真实性承担相应的法律责任。
______________________(单位公章)
负责人:_____________
_________年____月____日
备注:________________________________________________________
单位法人地址:_____________________________________ 邮编:_____________
人力资源或劳资管理部门联系人:______________________ 电话:_____________
范文三:法人代表证明书
_______________________________:
兹证明___________同志(性别:______,年龄:_______,国籍:_______,民族:______,身份证件号码:___________________________ )现任我单位__________(职务) ,为我单位法定代表人。
特此证明!
法人单位盖章:
__________年_____月_____日
范文四: 实习证明
兹证明___________(性别:______,身份证号码:__________________________)在我单位从__________年____月_____日 到 __________年____月_____日在________________岗位实习。
现已通过实习。特此证明!
此致
敬礼!
_______________________________(加盖单位公章)
__________年_____月_____日
________________________大学:
贵校__________系_________________专业_____________,于________年____月____日 至 _________年____月____日在我公司____________部门实习工作,各方面表现优秀。
特此证明!
_______________________________(加盖单位公章)
__________年_____月_____日
篇11:高考作文命题
“巧画士农工商,妙绘财神菩萨,尽收天下大事,兼图里巷所闻。”这说的,便是苏州桃花坞木刻年画了。
侯爹是位老桃花坞艺人,十二岁便在鸿云阁里拜师学艺。因他在家中排行老六,老一辈人都叫他侯桃六。我们这样的小辈是断然不敢如此不敬的,都尊称他为侯爹。
每至新春,侯爹便开始走村串镇,叫卖年画。年幼的我也曾随着侯爹四处跑。每至一地,油纸一铺,年画一摊,侯爹就用苏州方言俚语唱开了。侯爹的唱词有些是新编的,当然更多的是祖传,比如那首《老鼠娶亲》。“年三十夜里闹嘈嘈,老鼠做亲真热闹。格只老鼠真灵巧,编掮旗打伞摇了摇。格只老鼠真苦恼,马桶夜壶挑仔一大套。”声音绵远悠长,能把人的魂儿勾走。
侯爹的主顾大多是些怀旧的老人儿,当然也有被侯爹唱腔勾来的姑娘小伙儿。每当顾客是个年轻人,侯爹就絮絮叨叨:“大门贴秦叔宝,卧室里贴《麒麟送子》,书房里挂《五子夺魁》,可不能贴错!”侯爹说上一遍还不够,总是重复上两三遍,弄得小伙们极不耐烦,胡乱点头应是,逃之夭夭。我看见侯爹眉宇间的那丝落寞,侯爹在担忧着什么。
又是一年新春时,旧时天气旧时衣,只有情怀,不似旧家时。
缺了点什么?对,侯爹的唱腔。
侯爹出门时在泥地上滑了一跤,成了跛子,便再也不能出门卖年画,只能托门口杂货店代售,生意也差了许多。
周日晚,我推出姥爷离世前用的轮椅,去侯爹家,想带老人家出门呼吸一下新鲜空气。
抱侯爹坐上轮椅,我感觉像是抱起了一片在风中飘零的落叶。
一老一少默默行于江南水乡,侯爹突然开口:“兴儿,以后把这轮椅借给舅爷用,好吗?”
我点头应是,心中有些疑惑。
轮椅停在一片小湖前,侯爹细眯着双眼,似要看清远方,但额头上那似晒干的葡萄干似的皱纹却并未舒展多少。侯爹突然来了一嗓子:“桃花坞木刻年画!”
听着,竟有几分英雄迟暮的凄凉。
“舅爷,您还要轮椅干什么?”我问。
“我要卖年画,我怕十年后你们不知道什么是桃花坞,我很担忧。”
为什么要担忧?因为侯爹爱她爱得深切!
文档为doc格式