下面是小编为大家整理的床料粒度对循环流化床锅炉启动的影响论文,本文共3篇,欢迎阅读与收藏。

篇1:床料粒度对循环流化床锅炉启动的影响论文
床料粒度对循环流化床锅炉启动的影响论文
1、概述
中国华电集团公司石家庄热电厂投产的4台410t/h循环流化床锅炉,是国内目前最大的大型循环流化床锅炉群。它采用床下风道点火器点火方式,床上油枪起助燃的作用。锅炉冷态启动时,在流化床内加装启动物料,首先启动风道点火器,在点火风道中将燃烧空气逐渐加热,在通过水冷式布风板送入流化床,启动物料被加热,床温升至550℃之后投入床上油枪。在床温升到580℃~600℃并维持稳定后,将破碎成0~8mm的煤粒分别由6套给煤装置从前墙水冷壁送入炉膛下部的密相区内燃烧,逐渐提高床温至正常运行水平。
2、问题提出及分析
在运行1年多的时间中,4台410t/h循环流化床锅炉经历了多次启动点火。绝大多数启动中,沿用了停炉后滞留在炉内的旧床料;也有的因停炉原因不同,被迫在停炉过程中排空床料,启动前又加入了筛选后的新床料。由于这两种启动床料粒度不同,在启动过程中锅炉所表现出的现象也不尽相同:
2.1 当采用停炉后滞留在炉内的旧床料进行点火时,在启动初期,床内采用微流化状态时,床层压力与床层差压基本相同;随着流化风量的不断增加,床内达到充分流化状态时,床层压力基本保持并略有下降,而床层差压会有很大的变化,下降十分明显。当向炉内加入新床料进行点火时,在启动初期,床内采用微流化状态时,床层压力与床层差压基本相同,这一点与采用旧床料的现象相同;但随着流化风量的增加,床内达到充分流化状态时,床层压力与床层差压仍没有太大变化,2个参数在数值上依然十分接近,如下表所示:
床内工况床料流化风量(Nm3/h)风室风压(KPa)床层压力(KPa)床层差压(KPa)微流化旧1300008.07.06.4新1300008.06.96.4充分流化旧1700009.06.53.5新1700009.06.56.0
2.2 采用旧床料进行点火的情况下,依靠床下风道点火器床温上升到550℃左右时,床温上升速度就会变得很慢,为了达到580℃的最低投煤温度有时需要1小时左右,但烟气温度相对水平比较高,这时为了提高床温一般要加大床下风道点火器出力并适当减少流化风量,不过点火风道壁温也会相应上升,接近耐火材料承受温度;采用新床料点火时,依靠床下风道点火器床温一般比较容易就提高到620℃左右,点火风道壁温在较大的流化风量下也容易控制。但到并炉后升负荷阶段时就会发现,采用旧床料容易迅速升负荷,而且床温容易控制;而采用新床料时,锅炉负荷上升较慢,床温偏高,为了抑平床温需要更大的流化风量。
2.3 在投煤稳燃后试运冷渣器时会发现,采用旧床料点火的情况下投运1台冷渣器2小时左右,床层压力下降约1 KPa;采用新床料点火的'情况下投运1台冷渣器40分钟左右,床层压力就能下降约1 KPa。
2.4 采用旧床料点火的前期和中期,J阀回料装置的壁温和内部灰温会随着炉膛床温的上升而缓慢上升;在锅炉并炉升负荷后J阀回料装置经过几次吹扫,其壁温和内部灰温会很快达到正常水平,料位也能逐步建立。采用新床料点火时,会发现在点火过程的前期和中期,J阀回料装置的壁温和内部灰温基本保持不变,即使多次吹扫也没有效果,只有在锅炉并炉升负荷后一段时间,仍经过多次吹扫,其壁温和内部灰温才会上升,但上升速度很快,能迅速达到正常水平,此时料位也迅速建立。
针对这些不同之处,我们进行了分析讨论。通过每次锅炉启动前对床料的检查,我们发现停炉后滞留在炉内的旧床料的粒度一般偏细,即细颗粒的比重较大,这主要是由于锅炉的运行原理造成的。在锅炉长时间的运行当中,物料颗粒经过炉内的多次循环,不断进行摩擦碰撞,细颗粒的比重会逐渐增加。这些细颗粒是参与炉内循环和热量传递的主体,它们在正常情况下都悬浮于炉膛密相区的上部和稀相区,因此从冷渣器排出的细颗粒比重较小,当锅炉停运后这些细颗粒才会全部沉积到流化床内。而新床料一般采用冷渣器排出的灰渣,因此新床料的粒度一般偏粗,即粗颗粒的比重较大。
从采用粗、细两种床料点火锅炉所表现出的不同现象可以看出,当床料粒度偏粗时,随着流化风量的增加,只有占床料比重较少的细颗粒离开床层,进入炉膛上部稀相区,而大部分粗颗粒仍然在床层内流化,从参数上表现就是床层压力和床层差压始终十分接近。因为密相区的物料比重增大,加之粗颗粒的蓄热能力大于细颗粒的蓄热能力,使得密相区所占的热量份额偏大,参数上表现就是床温容易提升,局部床温偏高。由于冷渣器采用选择式排灰冷渣器,细颗粒仍会部分返回炉膛,因此当投运冷渣器时,大量粗颗粒床料排出炉膛,显示床压下降速度较快。由于悬浮在稀相区参与炉内循环的细颗粒比重偏小,从参数上就会显示出J阀回料装置中料位偏低,建立正常料位所需的时间比较长,J阀回料装置的壁温和内部灰温长期增长缓慢,但到了点火后期的某一时间随着细颗粒床料的逐步增加达到一定程度,J阀回料装置的壁温和内部灰温会突然上升直至正常水平。另外,细颗粒比重偏小,从密相区带走的热量就少,稀相区颗粒对流换热量下降,水冷壁换热出现不足,就会导致锅炉负荷上升缓慢,尾部烟道中过热器壁温偏高。而采用细颗粒偏多的旧床料进行点火时,就会呈现出与粗颗粒偏多的新床料相反的现象。采用旧床料点火,在并炉带负荷阶段足够的细颗粒参与到炉内大循环中,稀相区的水冷壁得到充分换热,锅炉负荷可以正常上升;另外,J阀回料装置内的料位逐步积累,按时建立正常料位,使炉内物料循环体系得以较快的进入稳定状态,并促使燃烧系统也进入稳定工况。我们曾经发生的一次异常也从侧面反映出炉膛内细颗粒物料的循环量对锅炉负荷的重要性。事前锅炉正常运行负荷401t/h,在J阀回料装置的流化风压力突然由50KPa降至5.2KPa后仅2分钟,由于循环物料量急剧减少,在给煤量没发生变化的情况下,锅炉负荷就降到了320t/h,同时炉膛床压由7KPa降至1.59KPa,这说明正常足够的细颗粒物料循环量对锅炉稳定运行的重要性。
3、改进措施及建议
通过以上分析,我们认为在循环流化床锅炉启动的初始阶段,选用粒度偏粗的床料是有好处的。一方面,在保证炉膛床温稳定升高的条件下,可以减少启动耗油量,降低锅炉启动成本;另一方面,可以保证充足的流化风量,控制点火风道壁温,保护耐火材料温度在规定范围内,以延长使用寿命。当锅炉启动进入投煤阶段后,在床温比较稳定的时候就可以向炉内添加细颗粒床料,同时投运冷渣器。这样一方面,在床压允许的范围内排出一部分粗颗粒床料,以利于后期控制炉膛床温不致过高;另一方面,逐步增加炉内细颗粒的比重,有利于锅炉尽快带负荷。但是,值得注意的一点是,启动初期的床料不易过粗,就现在的情况来看冷渣器的排渣颗粒就过粗,应该适当进行筛选后再用于锅炉的启动当中。这是因为,如果床料过粗,细颗粒的比重很少,那么炉内的循环物料量就会很少,导致J阀回料装置的温度不能稳步上升,在点火后期其内部温度的突然上升又非常迅速,无法得到有效的控制,使J阀回料装置内部产生很大的热应力,导致耐火材料的开裂、脱落以及装置外部钢材焊缝的开裂,长期如此运行,就会出现J阀回料装置漏灰,局部烧红等缺陷。
在5月17日的一次点火过程中,我们就尝试了以上这种锅炉启动思路,启动过程中的参数变化基本验证了我们的分析结果,在整个启动过程中共耗油21吨,比规定燃油量28吨减少了7吨,节约人民币约2.3万元。在投煤稳燃后,通过添加细床料和投运冷渣器排出部分粗床料,优化了炉内床料粒度分布,顺利的带上了负荷。不过,对J阀回料装置的温升速度仍然没有控制到比较理想的水平,这还有待于今后进一步的摸索。
4、结束语
通过床料粒度对循环流化床锅炉启动的影响分析,使我们加深了对循环流化床锅炉的特性理解,认识到了不同粒度的床料对锅炉的影响,意识到了优化床料对于循环流化床锅炉运行的重要性,这种思路为我们解决其他问题提供了有益的帮助。
篇2:循环流化床锅炉的启动和运行论文
循环流化床锅炉的启动和运行论文
内容摘要
本文从循环流化床锅炉在启动运行中所碰到点火难、易结焦、磨损严重的问题出发,阐述了产生这些问题的机理,详细提出了解决这些问题的措施。
循环流化床锅炉以其具有的独特优点,是国内外目前竞相发展的燃煤技术。同时众所周知,循环流化床锅炉在启动运行中,还普遍存在着点火难、易结焦和磨损严重的问题,即人们常说的“三关”。如何闯过这“三关”,已成为循环流化床锅炉在推广使用中的主要课题之一。
一、点火关
对于不同的煤种和炉型结构,点火启动方法各有差异,但其共性的东西还是主要的。国产35-75t/h循环流化床锅炉一般都采用轻柴油点火,有床上点火和床下点火两种方式。由于床下点火具有点火快、省力、省油等特点,所以使用较为广泛。在实际操作运行过程中,一些用户由于开车准备工作不充分或操作运行经验不够,点火时总是容易发生炉膛灭火或结焦事故,从点火试运行到并汽往往要经历十次、二十次甚至更多的时间,既影响了整个工程进度,又浪费了大量的人力物力。
怎样才能顺利闯过点火这一关呢?
1.锅炉安装完毕验收合格后,首先应做冷态试验,其目的是检验炉子流化状况,了解布风装置阻力特性,发现锅炉在设计安装中存在的问题,提出解决办法。冷态试验内容主要包括:点火油枪雾化试验、布风均匀性试验、布风板阻力特性试验、料层阻力试验等。
2.烘、煮炉完成以后,根据冷态试验参数决定点火方案。点火前,在炉床上铺设一层点火底料,其厚度一般为350―800mm左右,太厚,虽着火初期比较稳定,但点火所需的流化风量大,加热升温时间长,还易造成加热不匀的现象;料层太薄,虽着火时间短、省油,但布风不均匀,底料局部被吹穿可能造成结焦,且着火初期床温不稳定,易受断煤或堵灰的影响,发生灭火或结焦事故。
底料粒度一般在0―13mm之间,如果太细,大量细颗粒易被流化风带走,使料层变薄;颗粒太粗,启动时需较大风量才能将底料流化起来,点火升温困难。一般来说,底料中的细颗粒流化时处于底料的上层,作为着火期的引火源,大颗粒起着在爆燃中吸收燃料热量、自身燃烧后又能储热维持床温的作用。底料热值一般应控制在2093―4186KJ/Kg(500―1000Kcal/Kg)范围内。热值太高,点火时温升速度快,点火难以控制,易造成超温结焦;若热值太低,床温升高困难,易发生挥发份析出并燃尽,但床温仍达不到着火温度的情况。
3.点火过程分底料预热、着火和过渡三个阶段。首先启动引风机、一次风机,各风门开到冷态试验确定的正常流化位置,保持一定的炉膛负压,投油枪,注意观察烟气发生器出口烟温(≤950--1000℃),否则开大冷风门降温。底料预热过程应缓慢升温,采用油量和风量控制床温,待床温升至400--450℃时,可少量间断投煤,密切注视床温变化。当床温升到700℃以上时,若给煤正常,燃烧稳定时可解列油枪。一般来说床温在300℃以下时,因物料吸热量大,温升较快,到300--450℃时温升较慢,450℃以上时投煤一段时间后温升又开始加快,说明投入的煤开始着火,床温接近600℃时,加入炉内的煤开始大量着火,此时应加大流化风量,控制温升速度以防止结焦。当锅炉负荷达到30%--40%以上时可投入二次风助燃。值得注意的是,点火燃料宜采用发热值较高的烟煤,特别是燃煤中不要掺入煤矸石、造气炉渣、石灰石等其它不易燃烧的燃料或原料。
一次成功的点火过程,主要应注意的是床料厚度、床料筛分特性以及床料性质及配比,操作中严格控制点火风量。实践证明,每一种型式的'循环流化床锅炉其点火特性都有一定的差别,需要运行管理人员在实际操作中不断摸索和总结,找出最佳点火升温方案,确保一次点火成功。
二、结焦关
循环流化床锅炉正常运行时炉膛温度一般控制在850--950℃左右。实际操作运行中,不论在点火升温阶段还是正常运行阶段,都有可能引起结焦事故。一旦发生结焦,将严重影响锅炉设备的安全经济运行,且打焦时易损坏布风板、风帽、炉墙及水冷壁管等部件。
结焦主要分高温结焦和低温结焦两种型式。高温结焦是点火升温阶段经常发生的事故,升温时燃煤发生爆燃,造成床温迅速升高,当温度达到灰熔点以上时,使炉膛结成一个整体的焦块表面。在正常运行过程中,若料层厚度控制不当或给煤机与风机自动调节不好,或配风阀开度过大、过猛,导致分离器分离下来的大量高温灰进入炉膛而引起超温而结焦。低温结焦一般发生在点火升温阶段,如果底料过薄且不均匀,烟煤撒播不当,易在局部形成高温,此时流化风量少,热量传递不及时,局部会形成焦块。
实践表明,影响循环流化床锅炉结焦的主要因素有以下几点:
1.炉膛温度过高,超过燃料煤灰熔点温度;
2.料层太厚或不均匀,造成流化风量过大或过小;
3.点火底料厚度及热值、入炉煤粒度、灰熔点值等;
4.工人操作水平,工厂自动化程度高低,仪表指示的正确性。
点火升温阶段,可燃物要在很短的时间内着火燃烧,易造成床温迅速上升而进入爆燃阶段,此阶段底料本身的吸热量远小于放热量,多余的热量如果不及时被风带走,势必造成床内结焦。因此,控制爆燃成为点火升温中必不可少的一项重要手段。
如果点火底料热值过高,爆燃期温升加快,爆燃时间延长。因此一旦发现爆燃期温升速度很快,应及早停油枪。另外,根据爆燃初期温升速度趋势及早调整风量对控制爆燃也很重要。点火成功后,分离装置投入,带负荷时随时观察回料管内循环灰量的大小及床温变化情况。根据操作经验,应严格控制料层厚度,掌握适当的放灰时间。放灰时可根据燃料性质、负荷、床温波动来控制,防止返料灰进入炉膛太多而引起床温无法控制而结焦。在锅炉正常炉内压火时,应严格避免炉内进入冷风,冷风的进入可能造成未燃烧的可燃物燃烧而局部超温结焦。
总之,控制稳定的床层温度,是防止炉内结焦的关键,而影响炉温的因素主要是燃料发热量、风量及返料量等。实际运行中燃料的品质会经常发生变化,即使给煤量不变也会引起床温的变化。另外,入炉煤粒度的变化会引起返料量的变化。在负荷不变时,风量增大,床温也将发生变化(在床压一定的情况下床温下降)。为了保证运行中床温稳定在900℃±50℃之间,一般可不通过改变循环量来控制,而主要是通过风量和煤量进行控制。稳定负荷运行时,可在小范围内改变风量和煤量或同时改变风量和煤量来调节床温,床温高时,减煤或增风,床温低时,减风或增煤。锅炉满负荷运行时,风量一般可保持不变,床温波动时,通常可以通过改变给煤量来稳定床温。
三、磨损关
国产循环流化床锅炉通常都选用较低的循环倍率,炉膛内烟气流速约为4.5―5m/s,应该说所产生的磨损是比较轻微的。但是在局部及截面缩小处,其磨损程度是正常的几十倍甚至上百倍。常见磨损比较严重的地方有:埋管、炉墙、水冷壁管系统、分离器、过热器、省煤器、空气预热器等。
(一)、埋管磨损
埋管直接布置在炉膛布风板上方的沸腾区,其磨损程度是可想而知的,从以下函数关系可知:
其中:E―磨损量 ωT―沸腾床中烟气流速
DP―颗粒平均值 Vf―沸腾床中颗粒浓度
气流速度、粒子直径、灰粒子浓度越大,磨损量就越大,与磨损量影响最大的是烟气流速、颗粒直径次之,灰粒子浓度影响最小。因此,对于设计有埋管的循环流化床锅炉主要应采取以下措施:
1.降低入炉煤粒度。尽管磨损量与颗粒直径成平方关系,而与气流速度成立方关系,但粒径愈小所需要的气流速度就越低,可见减少颗粒直径不仅本身减少了对受热面的磨损,而且还因为颗粒直径的减少降低了对埋管受热面的磨损。
2.在埋管受热面磨损严重部分加装防磨鳍片,以保护管子表面不被磨损,并且在鳍片与鳍片之间还形成了由粒子组成的颗粒膜,对鳍片的磨损起缓冲作用。
3.埋管材质可选用高温高硬度和抗氧化性能好的合金材料。如果要降低成本,至少应将鳍片材料采用合金钢。同时还可以采用管壁加厚,在管壁表面涂刷高温耐磨涂料等措施。
4.在实际操作运行过程中尽量使风室床压不要超过规定值,一旦超过时就必须放渣保持料层厚度减少对埋管的磨损。
5.希望有关设备制造厂在锅炉设计时尽量避免设计埋管受热面。
(二)、炉墙磨损
目前在炉墙设计和耐磨材料的选取上各家锅炉厂都有不同的方法,但同时也多少存在着一些缺陷。耐火材料的选取范围应该是比较大的,而实际运行中总是出现这样或那样的炉墙磨损现象,甚至出现垮塌事故。有关资料表明:对炉膛高温且易受冲刷的区域应根据各自磨损特点采用不同耐火防磨材料,象目前使用较广的碳化硅砖、刚玉砖、高铝砖(Al2O3≥65%)等材料都可根据炉墙所处的位置局部采用。粘合剂材料选用HF-135高温强度浇筑料和用磷酸溶液做合料的SiC浇筑料都比较理想,一般能比磷酸盐质砼寿命长2-3倍。同时,锅炉设备在安装时要特别强调其筑炉质量。
(三)、水冷壁管系统的磨损
不论是膜式水冷壁还是光管水冷壁,在实际运行中都不同程度地存在着磨损现象。由于炉膛四角形成涡流的机会最多,因此往往磨损最为严重的就产生在这些地方。有些运行厂在主床四角被冲刷面在加装磨条的基础上采用高温耐火防磨涂料喷涂在受热面上,有些局部受烟气冲刷的区域也可以采取该措施。另外建议锅炉设计时对膜式水冷壁(包括尾部烟道等)的四个角最好做成具有一定半径的圆弧形,以尽量减少烟气扰动。
(四)、分离器磨损
不论是清华大学还是中科院或者是其它科研设计单位的技术,烟气分离器从型式到布置都不尽相同,但其基本原理是一致的。要使达到烟气和灰粒分离的目的,就必须使烟气形成一定的涡流,这时烟气流速增加,对分离器内壁形成强烈冲刷。长此下去,必然导致分离器内部磨损。为了减少分离器的高温磨损,目前锅炉设计时尽量将主分离装置如旋风分离器、平面流分离器等布置在中温或低温区,但这样布置以后大大增加了烟气对一级过热器的磨损,所以一般在炉膛出口一级过热器进口设置了相对阻力较小的百叶窗式、迷宫式等型式的一级分离装置。不管什么样的分离器,其内壁都采用具有耐高温、耐磨的材料做内衬,据资料介绍象SiC瓦、高铝质瓦等应用都比较广泛。
随着我国耐温耐磨材料的不断研制发展,相信循环流化床锅炉分离器的磨损问题在不远的将来一定能得到彻底解决。
(五)、过热器、省煤器、空气预热器的磨损
锅炉尾部三大器(过热器、省煤器、空气预热器)的磨损引起爆管在用户中是相当令人头痛的事情。长期以来,一些锅炉制造厂和用户采取拉稀管束、在弯头处加护板、迎风处加白钢防磨板等措施,且在局部加装防磨板,并进行磨喷涂处理,但还是没有解决根本问题。特别是入炉煤掺有煤矸石或造气炉渣时磨损更为严重。建议用户在锅炉产品定货时就应及早采取措施,针对燃料特性与锅炉制造厂协商,采取有效的防磨措施,尽量延长锅炉的使用寿命。
四、结束语
1.熟悉循环流化床锅炉的基本原理和操作要点,是成功点火启动 的基础;保证合格的燃煤入炉粒度,是正常流化燃烧的条件。
2.控制稳定的床层温度,是防止炉内结焦的关键。
3.降低循环流化速度,是减少受热面及炉墙磨损的主要因素,所以产品选型时一般应选用低倍率的循环流化床锅炉为宜。
篇3:循环流化床锅炉运行调整对安全经济运行的作用论文
一、循环流化床锅炉的现状
循环流化床锅炉自上个世纪八十年代第一台济南锅炉厂生产的35T/H在山东济南明水电厂投运以来,就以其独特的燃烧效率较高、煤种适应性广,运行调整简单,负荷调整范围广、环保、灰渣综合利用率高、脱硫效果明显等优势在电力、化工等行业得到大力的推广。特别是电力行业经过二十年的努力,目前大量大容量循环流化床锅炉投入商业运行,最近四川白马电厂、云南红河电厂300MW连续刷新连续运行记录,云南红河电厂更是创造了连续运行200天的300MW机组的最长运行记录。因此循环流化床锅炉是可以通过运行人员精心调整来确保机组安全经济稳定运行的。这就要求我们电厂生产人员不断的努力学习新知识、积极探索锅炉调整对电厂安全经济运行的重要性,来确保循环流化床锅炉长周期,安全高效经济稳定的运行。
二、运行床温风量的调整
锅炉既是一个蒸发设备又是一个燃烧设备,燃料在炉内燃烧是一个非常复杂的化学反应过程,如何搞好完全燃烧这种化学反应,不但是研究人员、设计人员、制造、安装、调试,监督检验单位的责任,也是使用者的责任。在理论上煤中的炭原子、氢原子、可燃硫原子能和空气中的氧原子发生完全的化合反应,但在实际运行中很难做到。就运行设备而言,在现有的设备基础上通过精心调整,摸索出比较合适的运行工况,按完全燃烧的四个条件(温度、时间、均匀的'混合、充分的氧量)来达到最佳的燃烧工况。循环流化床锅炉采用的是低温燃烧技术,由于燃烧稳定相对电站煤粉炉来说温度偏低,而温度是燃料燃烧中最重要的条件,温度越高,反应的速度就越快,燃烧所需要的时间就相对缩短,一般来讲循环流化床锅炉的燃烧效率要低于常规煤粉炉,但在循环流化床锅炉实际运行中,大中型锅炉都接近了常规煤粉炉,150MW和300MW配套循环流化床锅炉的燃烧效率都能达到90%左右。所以说在一个比较低的温度场内能获得一个较高的燃烧效率且减少了污物的排放是循环流化床锅炉能得到大力发展的前提条件,循环流化床锅炉对燃料的品质要求相对较低是其优于常规煤粉炉。
循环流化床锅炉刚入炉的煤和其它炉型一样,先预热逐渐蒸发出内为在水分,而后析出挥发分在炉内密相区进行燃烧。较小的颗粒的煤被强烈的气流送到稀相区继续燃烧,未燃尽的炭粒子被旋风分离器分离出来,通过返料器返回炉膛继续在炉内燃烧。大颗粒的煤在炉膛内被流化风吹到一定高度,靠自由落体从炉膛四周回到床上,这样燃料煤在炉膛内进行多次循环,直至燃尽。这是因为在整个循环过程中,炉内温度场变化很小,有利于可燃物与氧原子的混合而充分燃尽,使得循环流化床锅炉的燃烧效率保持在很高的状态(大型流化床锅炉的燃烧效率>98%)锅炉运行人员在运行调整中,只要将一 、二次风量、风压、给煤量、床温、床压和氧量控制在合适的范围内就可以保证循环流化床锅炉正常的运行。根据近年来的理论研究和各电厂运行的经验,一、二次风量比为燃烧烟煤、褐煤等挥发分较高的煤种时为6:4左右比较合适,燃用挥发分低的煤种时,根据挥发分的含量一、二次风比例为5:5到6:4之间较为合适,这种风量比例下锅炉燃烧效率就比较高。锅炉负荷在50%以下时可停用二次风机以减少锅炉厂用电。为减少锅炉排烟热损失,烟气中的氧量应控制在3~6%之间,燃烧挥发分高的烟煤、褐煤时烟气中的氧量应控制在下线3~5%,挥发分低与10%的燃料氧量尽量提高到5~6%。料层差压根据锅炉设计进行控制,挥发分高的煤种由于燃尽时间短可小些;挥发分低的煤种燃烧较为困难燃尽时间要多些,料层差压可采取高位运行,以增加其在炉内的燃烧时间。炉膛差压控制在1000~1500Kpa较为合适,正常运行时炉膛保持正压运行,炉膛温度尽量控制在950℃以下,尽量不要低于900℃,这样燃烧效率比较高,负荷控制容易,脱硫效率较好,Nox化合物也能符合国家控制标准,锅炉的各项参数就比较正常,锅炉的循环倍率也能和设计值相吻合。相反,锅炉燃烧效率低,锅炉负荷难带外,对锅炉的安全运行带来很大的影响,也对炉内脱硫脱硝效率影响很大,给企业的外在形象和经济效益带来影响。
三、燃料粒度级配比的调整
循环流化床锅炉负荷的调整,在某种意义上就是说对循环物料的调整即:煤、床料、返料量。锅炉点火后需要相对长的时间锅炉才能带满负荷,其根本原因就是锅炉点火后,炉内料层较薄,蓄热量小和炉内内衬材料的制约,使循环物料少,循环倍率低物料难以建立有效的循环。当循环物料达到一定的浓度、床温比较稳定时,锅炉内物料建立正常的循环后,锅炉负荷就比较好控制。研究和实践证明,进入炉内物料颗粒度比较均匀且颗粒度较小时,锅炉内物料循环就好,燃烧效率就高,飞灰和炉底渣的可燃物就越少,锅炉运行就经济。这就需要我们生产运行人员控制合适的入炉煤粒度,经科技人员研究和在循环流化床锅炉上多次实践给出,比较合适燃料的级配比为,无烟煤入炉煤的粒度应控制在8mm以下,烟煤入炉煤的粒度应控制在13mm以下,褐煤等挥发分高的煤可适当提高入炉煤的粒径控制在30mm以下(云南红河电厂燃烧褐煤最大粒径为50mm)。无烟煤比较合适的级配比为0~0.45mm约占40%,0.45~1mm的约占30%,1~5mm的占20%,大于5mm的约10%。尽量不要出现大量的超过8mm煤粒。燃烧烟煤时比较合适的级配比为0~0.45mm约占35%,0.45~1mm的约占20%,1~8mm的占40%,大于8mm的约5%,尽量不要出现大量的超过13mm煤粒。燃烧褐煤时由于褐煤煤中灰分较少、热爆性强,成灰密度较小,灰质软易磨损飞失等特性,在排渣允许的情况下,为保住床压维持炉内平衡,可适当提高入炉煤的粒度,对褐煤的级配比可适当的放宽。因此无论燃烧那种煤种都要积极的探索,摸索出适合自己锅炉的燃料的级配比和颗粒度,来保证我们的循环流化床锅炉能安全稳定经济运行。每个电厂燃烧的煤种都不可能相同,建议各个电厂要在条件许可的情况下,尽量燃烧可磨性系数较大或成灰性较好的煤,这对锅炉的安全经济稳定运行是有好处的。进入炉膛的煤粒度偏大且不均匀(级配比不好)原煤的可磨性系数偏小,成灰性差,不但造成炉膛料压高,炉内流化不好,灰渣可燃物上升,循环倍率偏离设计值,还造成锅炉燃烧效率降低,热效率降低。强化送风量、风压还易造成炉内磨损加大,连续运行时间缩短,就难以达到循环流化床锅炉安全、稳定、经济运行。因此煤的粒度、粒度的级配比、一、二次风量的比例、送引风量、原煤的可磨性系数、循环倍率、炉内气固两种物质运行的速度、烟气中的含氧量、炉内温度等参数的优化是保证循环流化床锅炉安全、经济、稳定运行的基础。
四、结束语:
循环流化床锅炉运行调整相对常规煤粉炉来说较为简单,但要调整好,以达到最安全、最经济稳定的工况却较为困难。安全和经济有时是很矛盾的。我们生产管理人员一定要充分认识这种矛盾,决不能回避矛盾,才能去解决这种矛盾,安全和经济矛盾的相对解决就能保证循环流化床机组的安全经济运行。生产管理人员的职责就是知道和解决生产中存在的各种矛盾,生产运行人员的职责和工作就是要做到精心操作调整好处理好安全和经济的矛盾。也就是说在确保安全的前提下保证机组在最经济的工况下运行。让燃料的可燃元素在炉内的燃烧反应过程中与空气中的氧原子有一个最佳的混合和配比,使其充分的燃烧,就是根据蒸汽的压力、温度、负荷、炉内燃烧各部温度、煤质情况、循环倍率物料浓度、料层差压和返料温度,返料量等工况,调整好一、二次风的比例和引风量。
参考文献:
岑可法等:循环流化床锅炉原理设计及运行.中国电力出版社.北京.1998
刘德昌:《流化床燃烧技术的工业应用》。中国电力出版社,1999。
党黎军:循环流化床锅炉的启动调试与安全运行。中国电力出版社,2003。
崔建川:燃料粒径对CFB锅炉飞灰可燃物的影响。CFB协作网
赵家恩:浅谈CFB锅炉运行调整及磨损治理。CFB协作网
文档为doc格式